跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃韶鵬
研究生(外文):Shao-peng Huang
論文名稱:高速火焰熔射之不同結構及黏結相碳化鎢塗層磨潤性質研究
論文名稱(外文):Tribological performance of HVOF WC coatings with different structures and binders
指導教授:蘇演良
指導教授(外文):Yan-Liang Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:195
中文關鍵詞:熱熔射塗層碳化鎢高速火焰熔射
外文關鍵詞:Thermal spray coatingWCHVOF
相關次數:
  • 被引用被引用:2
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用高速火焰熔射(High Velocity Oxy-Fuel, HVOF)製程技術,於低碳鋼底材上披覆碳化鎢熔射塗層。主要目的為探討添加WC/Co於Ni基合金塗層;不同型式WC塗層之機械性質、磨潤性質、抗氧化性能、抗腐蝕性。實驗主要分為三個部份:第一部份探討WC/Co摻雜至Ni基合金比例至80%對於鎳基合金塗層性能之影響,此一部份延續學長實驗部份(0 ~ 60 %);第二部份探討微米(傳統型)及奈米、複合雙相三種不同尺寸結構WC晶粒之WC塗層性能;第三部份探討Co、CoCr和Ni三種不同黏結相之WC塗層性能。
由實驗結果得知, WC-Ni基熔射塗層隨著WC摻雜比例之提升,各方面的表現皆隨之提升,其中以60% WC摻雜比例為最佳,而增加至80%之WC強化鎳基鍍層並無明顯的提高其塗層性能;而不同結構之WC/Co塗層則以複合雙相有最佳之抗磨耗性能,可歸因於其結構較為緻密且形成互相固鎖(Interlock)效應,使得WC顆粒更不容易脫落;另外不同黏結相之WC塗層,則以CoCr binder有最好之抗磨耗、腐蝕性能。
The main purpose of this research was to study the effects of WC addition Ni-based alloy coantings and different type WC coatings on mechanical and tribological properties and anti-oxidation, anti-corrosion. The WC coatings on the substrate of low carbon steel were prepared by HVOF.
The experiment was divided into three parts. In the first part, the effect of content (0-80 % of WC addition) on the properties of Ni-based alloy coatings was investigated. In the second part, the effect of different WC structure in micro-scale (conventional), nano-scale and multimodal on the properties of WC/Co coatings were investigated. In the third part, the effect of different binder of Co, CoCr and Ni of WC coatings were investigated.
The results revealed that the hardness, wear resistance, and oxidation resistance of WC/Ni coatings were increased with increasing content of WC addition. And, the coatings with 60 % WC addition showed the best properties, but the coatings with 80% WC addition didn’t obvious increase the properties. The WC/Co coatings with multimodal structure had the best wear resistance, due to the coating structure is dense and form Interlock effect, to avoid the WC grains fall off from the coating. The WC coatings with CoCr binder had the best wear resistance and corrosion resistance.
總 目 錄
口試合格證明...............................................I
摘 要....................................................II
Abstract.................................................III
誌 謝....................................................IV
總 目 錄.................................................V
表 目 錄................................................VIII
圖 目 錄................................................IX
第一章 緒論...............................................1
1-1 前言..................................................1
1-2 研究動機..............................................2
第二章 理論探討與文獻回顧.................................4
2-1 熱熔射技術之基本原理..................................4
2-2 熱熔射塗層之微結構....................................5
2-3 熱熔射技術分類........................................7
2-3-1 高速燃氧熔射........................................7
2-3-2 火焰熔射............................................9
2-3-3 爆震熔射...........................................10
2-3-4 電漿熔射...........................................11
2-3-5 電弧熔射...........................................12
2-3-6 液態火焰融射及動態冷噴塗...........................13
2-4 熱熔射塗層...........................................14
2-4-1 鎳基自熔合金塗層...................................14
2-4-2 碳化鎢/鈷強化鎳基合金塗層..........................17
2-4-3 碳化鎢/鈷瓷金塗層..................................19
2-4-4 奈米結構碳化鎢/鈷瓷金塗層..........................23
2-4-5 不同塗層之氧化及腐蝕機制...........................28
第三章 實驗方法與步驟..................................34
3-1 實驗目的.............................................34
3-2 實驗流程.............................................34
3-3 實驗方法與規劃.......................................35
3-3-1 試件製作、前處理...................................35
3-3-2 實驗參數規劃.......................................36
3-3-3 試件金相觀察.......................................37
3-3-4 成分與元素分析.....................................37
3-3-5 微結構分析.........................................38
3-3-6 SRV磨耗試驗........................................38
3-3-7 微硬度試驗.........................................39
3-3-8 氧化試驗...........................................39
3-3-9 鹽水噴霧試驗.......................................40
3-4 實驗設備.............................................40
第四章 實驗結果與討論....................................42
4-1 熔射粉末分析.........................................42
4-1-1 粉末尺寸大小與形狀.................................42
4-1-2 粉末顯微組織與成分.................................43
4-1-3 粉末結構分析.......................................43
4-2 碳化鎢/鈷強化鎳基熔射塗層系列........................44
4-2-1 塗層結構分析.......................................44
4-2-2 塗層組織與成分.....................................45
4-2-3 硬度試驗...........................................46
4-2-4 磨耗試驗...........................................47
4-2-5 氧化試驗...........................................50
4-2-6 鹽水噴霧腐蝕試驗...................................51
4-3 不同結構碳化鎢/鈷塗層系列............................53
4-3-1塗層結構分析........................................53
4-3-2 塗層組織與成分.....................................54
4-3-3 硬度試驗...........................................55
4-3-4 磨耗試驗...........................................56
4-3-5 氧化試驗...........................................59
4-3-6 鹽水噴霧腐蝕試驗...................................60
4-4 不同黏結相碳化鎢塗層系列.............................61
4-4-1 塗層結構分析.......................................61
4-4-2 塗層組織與成分.....................................61
4-4-3 硬度試驗...........................................62
4-4-4 磨耗試驗...........................................62
4-4-5 氧化試驗...........................................64
4-4-6 鹽水噴霧腐蝕試驗...................................65
第五章 結論與未來展望....................................66
5-1 結論.................................................66
5-2 未來展望.............................................66
第六章 參考文獻..........................................69
附錄一 碳化鎢/鈷強化鎳基系列塗層斷面SEM圖...............180
附錄二 碳化鎢/鈷強化鎳基系列塗層磨痕SEM圖...............182
附錄三 在25°C以氫為標準之還原電位(1 M, 1 atm)...........186
附錄四 碳化鎢/鈷強化鎳基系列塗層氧化GDS縱深分析圖.......187
附錄五 不同結構碳化鎢/鈷系列塗層氧化GDS縱深分析圖.......191
附錄六 不同黏結相碳化鎢系列塗層氧化GDS縱深分析圖........193
自 述..................................................194
著作權聲明..............................................195
1.F.A. Ponce and D.P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices”, Nature 386 (1997) 351–359.
2.A. Wold, “Photocatalytic properties of titanium dioxide (TiO2)”, Chem. Mater. 5 (1993) 280–283.
3.Y.C. Zhu, T. Liu and C.X. Ding, “Structural characterization of TiO2 ultrafine particles”, J. Mater. Res. 14 (1999) 442–446.
4.F.H. Froes and C. Suryanarayana, “Nanocrystalline Metals for Structural Applications”, JOM 41 (1989) 12–17.
5.Q. Han Bing, J. Lavernia Enrique and A. Mohamed Farghalli, “Mechanical properties of nanostructured materials”, Rev. Adv. Mater. Sci. Eng. 9 (2005) 1–16.
6.B.H. Kear, G. Skandan, R.K. Sadangi, “Factors controlling decarburization in HVOF sprayed nano-WC-Co hardcoatings”, Scripta mater, 2001, 44: 1703–1707.
7.A.S. Khameneh, S.M. Heydarzadeh, K. Hokamoto, et al. “Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings”, Wear, 2006, 260: 1203–1208.
8.G. Skandan, R. Yao, R. Sadangi, et al. “Multimodal Coatings:A New Concept in Thermal Spraying”, Journal of Thermal Spray Technology, 2000(9), 9: 329.
9.Y. Qiao, T.E. Fischer, A. Dent, “The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-strayed WC-Co coatings with very fine structures”, Surface and Coatings Technology, 2003, 172: 24-41.
10.J.M. Guilemany, S. Dosta, J.R. Miguel, “The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders”, Surface & Coatings Technology, 2006, 201: 1180–1190.
11.V.L. Tellkamp, M.L. Lau, A. Fabel and E.J. Lavernia, “Thermal spraying of nanocrystalline Inconel 718”, Nanostruct. Mater. 9 (1997) 489–492.
12.M. L. Lau, H. G. Jiang and E. J. Lavernia, “Synthesis and Characterization of Nanocrystalline 316-Stainless Steel Coatings by High Velocity Oxy-Fuel Spraying”, Proceedings of 15th International Thermal Spray Conference, Vol. 1, May 25-29, 1998, Nice, France, pp. 379–384.
13.Y.C. Zhu and C.X. Ding, “Plasma spraying of porous nanostructured TiO2 film”, Nanostruct. Mater. 11 (1999) 319–323.
14.J.H. He and J.M. Schoenung, “A review on nanostructured WC–Co coatings”, Surf. Coat. Technol. 157 (2002) 72–79.
15.呂明生、蕭威典、劉茂賢, “熱熔射塗層技術在工業界之應用”,工業材料雜誌,2008 年 1 月,151–158。
16.R.B. Heimann, Plasma-Spray Coating. Principles and Applications, VCH Weinheim (1996), p. 106.
17.M.J.Tobar, C. Álvarez, J.M. Amado, G. Rodríguez, A. Yáñez, “Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel”,Surf. Coat. Tech. 200 (2006) 6313-6317.
18.Y. Hamatani, Y. Ichiyama, J. Kobayashi, “Mechanical and thermal properties of HVOF sprayed Ni based alloys with carbide” Surf. Coat. Tech. 3 (2002) 319.
19.J. Nerz, B. Kushner, A. Rotolico, J. Therm. Spray Tech. 1 (2) (1992) 147.
20.H. Herman and S. Sampath, “Thermal Spray Coating”,Metallurgical and Ceramic Protective Coatings, Ed. K.H. Stern, Chapman and Hall, London, 1996.
21.劉茂賢, “熔射製程與即時監控技術之原理與應用簡介”,工業材料雜誌,2005年2 月,123–131。
22.Ken Brookes, “Thermal sprays are the stars at ‘Winterev 06’ ”, Metal Powder Report 61 (2006) 42–49.
23.蕭威典, “陶瓷/金屬材料噴塗技術之發展與應用”,工業材料雜誌,2004 年 4 月,164–169。
24.蕭威典, “熔射覆膜技術”,全華科技圖書股份有限公司,2006 年 7 月。
25.呂明生、蕭威典、劉茂賢, “熱熔射塗層技術在工業界之應用”,工業材料雜誌,2008 年 1 月,151–158。
26.H. Kim, S. Hwang, C. Lee, P. Juvanon, “Assesment of wear performance of flame sprayed and fused Ni-based coatings”, Surf. Coat. Technol. 172 (2003) 262–269.
27.J.M. Miguel, J.M. Guilemany, S. Vizcaino, “Tribological study of NiCrBSi coating obtained by different processes”, Tribol. Int. 36 (2003) 181–187.
28.蕭威典、劉武漢, “電漿熔射技術簡介”,工業材料雜誌,2005 年 12 月,158–165。
29.蕭威典、劉武漢, “電漿熔射熱障塗層在高溫防護上之應用”,工業材料雜誌,2006 年 5 月,171–178。
30.J. Tikkanen, K.A. Gross, J. Karthikeyan, V. Pitkanen, J. Keskinen, S. Raghu, M. Rajala, and C.C. Berndt, J. Surf. Coat. Tech., 90(1997)210-216.
31.J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, and H. Herman, Nanostructured Materials, 8(1997)61-74.
32.J. Karthikeyan, C.C. Berndt, T. Tikkanen, J.Y. Wang, A.H. King, and H. Herman, Nanostructured Materials, 9(1997)137-140.
33.李文亞、李長久,“冷噴塗特性”,中國表面工程,2002,12–16。
34.吳中仁、劉武漢、蕭威典、楊寧、劉茂賢、黃金德,“超音速熔射技術簡介及其應用”,工業材料雜誌,2005年2 月,117–122。
35.A.R. Nicoll, “Self-fluxing coatings for stationary gas turbines”, Thin Solid Films, 95 (1982) 285–295.
36.W.P. Clark, “'High tech' hardfacing alloys combat corrosion and abrasion of metal parts”, Welding J. 64 (1985) 69–71.
37.M. Rosso and A. Bennani, “Studies of new applications of Ni-based powders for hardfacing processes”, PM World Congress Thermal Spraying/Spray Forming, 1998, pp. 524–530.
38.J. Rodríguez, A. Martín, R. Fernández and J.E. Fernández, “An experimental study of the wear performance of NiCrBSi thermal spray coatings”, Wear 255 (2003) 950–955.
39.F. Otsubo, H. Era and K. Kishitake, “Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron”, J. Therm. Spray Techn 9(1) (2000) 107–113.
40.J.P. Tu, M.S. Liu and Z.Y. Mao, “Erosion resistance of Ni–WC self-fluxing alloy coating at high temperature”, Wear 209 (1997) 43–48.
41.Z. Ding, R. Knight and R.W. Smith, “Abrasion Wear Characteristics of Ni-Base Self-Fluxing Alloy Spray Welding Over-Layers”, Proceeding of the 1st United Thermal Spray Conference, Materials Park, Ohio, USA, 1997, 91–95.
42.S. Lebaili, M. Durand-Charee and S. Hamar-Thibault, “The metallurgical structure of as-solidified Ni-Cr-B-Si-C hardfacing alloys”, J. Mater. Sci. Eng. 23 (1988) 3603–3611.
43.Y.H. Shieh, J.T. Wang, H.C. Shih and S.T. Wu, “Alloying and post-heat-treatment of thermal-sprayed coatings of self-fluxing alloys”, Surf. Coat. Technol. 58 (1993) 73–77.
44.Q. Li, D. Zhang, T. Lei, C. Chen and W. Chen, “Comparison of laser-clad and furnace-melted Ni-based alloy microstructures”, Surf. Coat. Technol. 137 (2001) 122–135.
45.M.C. Lin, L.S. Chang, H.C. Lin, C.H. Yang and K.M. Lin, “A study of high-speed slurry erosion of NiCrBSi thermal-sprayed coating”, Surf. Coat. Technol. 201 (2006) 3193–3198.
46.W.M. Zhao, Y. Wang, T. Han, K.Y. Wu and J. Xuea, “Electrochemical evaluation of corrosion resistance of NiCrBSi coatings deposited by HVOF”, Surf. Coat. Technol. 183 (2004) 118–125.
47.J. E. Fernández, M.R. Fernández, R.V. Diaz and R.T. Navarro, “Abrasive wear analysis using factorial experiment design”, Wear 255 (2003) 38–43.
48.M.P. Planche, H. Liao, B. Normand and C. Coddet, “Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes”, Surf. Coat. Technol. 200 (2005) 2465–2473.
49.H. Wang, W. Xia and Y. Jin. “A study on abrasive resistance of Nibased coatings with a WC hard phase”, Wear 195 (1996) 47–52.
50.R. Franch, C. Lorenzana, J.M. Miguel and J.M. Guilemany, “Recubrimientos de Cermet/NiCrBSi resistences al desgaste obtenidos por proyección térmica de alta velocidad (HVOF), Soldadura y tecnologías de union”, Spanish, 67 (2001) 9–14.
51.Y. Shieh, J. Wang, H. Shih and S. Wu, “Allowing and post-heat treatment of thermal sprayed coatings of self-fluxing alloys”, Surf. Coat. Technol. 58 (1993) 73–77.
52.G.R. Heath and P.A. Kamer, Surface Modification Technology IX, Cleveland, Ohio, USA, 1995, 109–113.
53.P. Heimgartner, I. Kretsner, R. Polak and P.A. Kammer, The 5th European Conference on Advanced Materials, Processes and Applications, Surface Engineering and Functional Materials, Mastricht, Netherlands, Vol. 3, 1997, 109–113.
54.G.R. Bell, “Furnace Fused Spray Metal Coatings”, Proceedings of the Eighth International ThermalF Spraying Conference, Miami, Florida, USA, 1976, 396–406.
55.H.J. Kim, S.Y. Hwang, C.H. Lee and P. Juvanon, “Assessment of wear performance of flame sprayed and fused Ni-based coatings”, Surf. Coat. Technol. 172 (2003) 262–269.
56.H. Wang, W. Xia and Y. Jin, “A study on abrasive resistance of Ni-based coatings with a WC hard phase”, Wear 195 (1996) 47–52.
57.W. Cerri, R. Mortinella, G.P. Mor, P. Bianchi and D.D. Anglo, “Laser deposition of carbide-reinforced coating”, Surf. Coat. Technol. 49 (1991) 40–45.
58.N. Axen and S. Jacobson, “A model for the abrasive wear resistance of multiphase materials”, Wear 174 (1994) 187–199.
59.A. Martín, J. Rodríguez, J.E. Fernández and R. Vijande, “Sliding wear behaviour of plasma sprayed WC-NiCrBSi coatings at different temperatures”, Wear 251 (2001) 1017–1022.
60.C. Chuanxian, H. Bingtain, L. Huiling, “Plasma wear resistance of ceramic and cermet coating materials”, Thin Solid Films 118 (1984) 485–493.
61.H.L. de Villiers Lovelock, P.W. Richter, J.M. Benson and P.M. Young, “Parameter study of HP/HVOF deposited WC–Co coatings”, J. Thermal Spray Technol. 7 (1998) 97–107.
62.A.K. Akasawat, “Wear properties of WC–Co coatings with plasma and high velocity oxy fuel spraying”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, 281–286.
63.H.M. Hawthorne, B. Arsenault, J.P. Immarigeon, J.G. Legoux and V.R. Parameswaran, “Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings”, Wear 225 (1999) 825–834.
64.A. Karimi, C. Verdon, J.L. Martin and R.K. Schmid, “Slurry erosion behaviour of thermally sprayed WC–M coatings”, Wear 186–187 (1995) 480–486.
65.S.F. Wayne, J.G. Baldoni and S.T. Buljan, “Abrasion and erosion of WC–Co with controlled microstructure”, Tribol. Trans. 33 (1990) 611–617.
66.S. Usmani, S. Sampath, D.L. Huock and D. Lee, “Effect of carbide grain size on the sliding and abrasive wear behavior of thermally sprayed WC-Co coatings”, Tribol. Trans. 40 (1997) 470–478.
67.J. Mateos, J.M. Cuetos, E. Fernandez and R. Vijande, “Tribological behaviour of plasma-sprayed WC coatings with and without laser remelting ”, Wear 239 (2000) 274–281.
68.K. Jia and T.E. Fischer, “Sliding wear of conventional and nanostructured cemented carbides”, Wear 203–204 (1997) 310–318.
69.V. Fervel, B. Normand, H. Liao, C. Coddet, E. Bêche and R. Berjoan, “Friction and wear mechanisms of thermally sprayed ceramic and cermet coatings”, Surf. Coat. Technol. 111 (1999) 255–262.
70.Y. Wang and P. Kettunen, “The optimization of spraying parameters for WC–Co coatings by plasma and detonation-gun spraying”, Thermal Spray International Advances in Coatings Technology, ASM International, Metals Park, OH, 1992, 575–580.
71.B. Schultrich, L.M. Berger, J. Menker and A. Oswald, “Influence of carbide powder composition on decarburization during air plasma spraying”, Proceedings of the 2nd Plasma-Technik Symposium, Lucerne, Switzerland, 1991, 363–371.
72.J. Nerz, B. Kushner and A. Rotolico, “Microstructural evaluation of tungsten carbide–cobalt coatings”, J. Therm. Spray Technol. 1 (2) (1992) 147–152.
73.M.F. Morks, Yang Gao, N.F. Fahim, F.U. Yingqing, M.A. Shoeib, “Influence of binder materials on the properties of low power plasma sprayed cermet coatings”, Surf. Coat. Technol. 199 (2005) 66–71.
74.M.S.A. Khan, T.W. Clyne and A.J. Sturgeon, “Microstructure and abrasion resistance of WC–Co coatings produced by high velocity oxy-fuel spraying”, Thermal Spray: A United Forum for Scientific and Technological Advances ASM International, Metals Park, OH, 1997, 681–690.
75.Y.M. Yang, H. Liao and C. Coddet, “New performance for HVOF thermal spraying systems with the use of natural gas”, Proceedings of 14th International Spray Conference, Osaka, Japan High Temperature Society of Japan, 1995, 307–312.
76.C. Verdon, A. Karimi and J.L. Martin, “A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures”, Mater. Sci. Eng. A 246 (1998) 11–24.
77.D.A. Stewart, P.H. Shipway and D.G. McCartney, “Influence of heat treatment on the abrasive wear behaviour of HVOF sprayed WC–Co coatings”, Surf. Coat. Technol. 105 (1998) 13–24.
78.R. Schwetzke and H. Kreye, “Microstructure and properties of tungsten carbide coatings sprayed with various HVOF spray systems”, Thermal Spray: Meeting the Challenges of the 21st Century vol. 1 ASM International, Metals Park, OH (1998), 187–192.
79.Sh. Khameneh Asl, M. Heydarzadeh Sohi, K. Hokamoto and M. Uemura, “Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings”, Wear 260 (2006) 1203–1208.
80.H.J. Kim, Y.G. Kweon, R.W. Chang, “Wear and erosion behavior of plasma-sprayed WC-Co coatings”, J. Thermal Spray Technol. 3 (2) (1994) 169–178.
81.H.L. de Villiers Lovelock, P.W. Richter, J.M. Benson, P.M. Young, “Powder/processing/structure relationships in WC-Co thermal spray coatings: A review of the published literature”, J. Therm. Spray Technol. 7 (1998) 357–373.
82.C.J. Li, A. Ohmori, Y. Harada, “Formation of an amorphous phase in thermally sprayed WC-Co”, J. Therm. Spray Tech. 5 (1) (1996) 69–73.
83.Ying-chun Zhu, Ken Yukimura, Chuan-xian Ding, Ping-yu Zhang, “Tribological properties of nanostructured and conventional WC–Co coatings deposited by plasma spraying”, Thin Solid Films 388 (2001) 277–282.
84.S. Lay, J.-L. Chermant, J. Vicens, “Plasticity of WC materials by T. E. M. investigations”, Mater. Sci. Res. 18 (1984) 87–96.
85.Priit Kulu, Sergei Zimakov, “Wear resistance of thermal sprayed coatings on the base of recycled hardmetal”, Surf. Coat. Technol. 130 (2000) 46–51.
86.J. M. Guilemany, J. M. Miguel, S. Vizcaino, F. Climent, “Role of three-body abrasion wear in the sliding wear behaviour of WC–Co coatings obtained by thermal spraying”, Surf. Coat. Technol. 140 (2001) 141–146.
87.Jorn Larsen-Basse, “Binder extrusion in sliding wear of WC-Co alloys”, Wear 105 (1985) 247–256.
88.K. Jia and T.E. Fischer, “Abrasion resistance of nanostructured and conventional cemented carbides”, Wear 200 (1996) 206–214.
89.B.H. Kear and L.E. McCandlish, “Chemical processing and properties of nanostructured WC–Co materials”, Nanostruct. Mater. 3 (1993) 19–30.
90.L.E. McCandlish, B.H. Kear, B.K. Kim and L.W. Wu, “Low pressure plasma-sprayed coatings of nanophase WC–Co”, in: R.M. Yazici. (Ed.), Protective Coatings: Processing and Characterization, The Minerals, Metals and Materials Society, Warrendale, PA, 1990, 113–119.
91.M. Gell, “Applying nanostructured materials to future gas turbine engines”, JOM 46 (1994) 30–34.
92.K. Jia, T. E. Fischer and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites”, Nanostruct. Mater. 10 (1998) 875–891.
93.S.I. Cha, S.H. Hong, G.H. Ha and B.K. Kim, “Microstructure and mechanical properties of nanocrystalline WC-10Co cemented carbides”, Scripta Mater. 44 (2001) 1535–1539.
94.H. Chen, C. Xu, Q. Zhou, I.M. Hutchings, P.H. Shipway and J. Liu, “Micro-scale abrasive wear behaviour of HVOF sprayed and laser-remelted conventional and nanostructured WC–Co coatings”, Wear 258 (2005) 333–338.
95.P.H. Shipway, D.G. McCartney and T. Sudaprasert, “Sliding wear behaviour of conventional and nanostructured HVOF sprayed WC–Co coatings”, Wear 259 (2005) 820–827.
96.Jin-hong Kim, Hyun-seok Yang, Kyeong-ho Baik, Byeung Geun Seong, Chang-hee Lee, Soon Young Hwang, “Development and properties of nanostructured thermal spray coatings”, Current Applied Physics 6 (2006) 1002–1006.
97.Hyung-Jun Kim, Chang-Hee Lee, Soon-Young Hwang, “Superhard nano WC–12%Co coating by cold spray deposition”, Mater. Sci. Eng. A 391 (2005) 243–248.
98.L. Jacobs, M. Hyland, M. De Bonte, “Wear behaviour of HVOF and HVAF sprayed WC-cermet coatings”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, May 25–29, 1998, p. 169–174.
99.M.R. Dorfman, B.A. Kushner, J. Nerz and A.J. Rotolico, “A technical assessment of high velocity oxygen-fuel versus high energy plasma tungsten carbide–cobalt coatings for wear resistance”, Proceedings of the 12th International Thermal Spray Conference, London, 1989, 291–302.
100.K. Niemi, P. Vuoristo, T. Mantyla, G. Barbezat and A.R. Nicoll, “Abrasion wear resistance of carbide coatings deposited by plasma and high velocity combustion processes”, Thermal Spray: International Advances in Coating Technology, ASM Int., Materials Park, OH, USA, 1992, 685–689.
101.J. Nerz, B. Kushner and A. Rotolico, “Effects of deposition methods on the physical properties of tungsten carbide 12 wt.% cobalt thermal spray coatings”, Protective Coatings: Processing and Characterization, The Minerals, Metals and Materials Society, Warrendale, PA, 1990, 135–143.
102.J. Wang, K. Li, D. Shu, X. He, B. Sun, Q. Guo, M. Nishio and H. Ogawa, “Effects of structure and processing technique on the properties of thermal spray WC–Co and NiCrAl WC–Co coatings”, Mater. Sci. Eng. A 371 (2004) 187–192.
103.S. Luyckx, C.N. Machio, Characterization of WC–VC–Co thermal spray powders and coatings, International Journal of Refractory Metals & Hard Materials 25 (2007) 11–15.
104.C.N. Machio, G. Akdogan, M.J. Witcomb, S. Luyckx, “Performance of WC–VC–Co thermal spray coatings in abrasion and slurry erosion tests”, Wear 258 (2005) 434–442.
105.G. Skandan, R. Yao, B.H. Kear, Y. Qiao, L. Liu and T.E. Fischer, “Multimodal powders: a new class of feedstock material for thermal spraying of hard coatings”, Scripta mater. 44 (2001) 1699–1702.
106.D.B. Lee, J.H. Ko, S.C. Kwon, “Oxidation of Ni–W coatings at 700 and 800 °C in air”, Surf. Coat. Technol. 193 (2005) 292–296.
107.R. Peraldi, D. Monceau, B. Pieraggi, “Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. II. Growth kinetics”, Oxidation of Metals 58 (2002) 275–295.
108.S.N. Basu, V.K. Sarin, “Oxidation behavior of WC-Co”, Mater. Sci. Eng. A 209 (1996) 206–212.
109.Q. Yang, T. Senda, A. Hirose, “Sliding wear behavior of WC–12% Co coatings at elevated temperatures”, Surf. Coat. Technol. 200 (2006) 4208–4212.
110.E.A. Gulbransen and W.S. Wysong, Technical Publication No. 2224, American Institute of Mining and Metallurgical Engineers. New York, NY, 1947.
111.Qiti Guo, Junwen Wang, Ole Jakob Kleppa, “Note on the enthalpies of formation, from the component oxides, of CoWO4 and NiWO4, determined by high-temperature direct synthesis calorimetry”, Thermochimica Acta 380 (2001) 1–4.
112.R.C. Pullar, S. Farrah, N. McN. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics”, Journal of the European Ceramic Society 27 (2007) 1059–1063.
113.C. Louro, A. Cavaleiro, “The role of nickel in the oxidation resistance of tungsten-based alloys”, Surf. Coat. Technol. 116–119 (1999) 121–127.
114.Ting You, Guangxiang Cao, Xinyu Song, Chunhua Fan, Wei Zhao, Zhilei Yin, Sixiu Sun, “Alcohol–thermal synthesis of flowerlike hollow cobalt tungstate nanostructures”, Materials Letters 62 (2008) 1169–1172.
115.Liang Zhen, Wen-Shou Wang, Cheng-Yan Xu, Wen-Zhu Shao, Lu-Chang Qin, “A facile hydrothermal route to the large-scale synthesis of CoWO4 nanorods”, Materials Letters 62 (2008) 1740–1742.
116.T.S. Sidhu, S. Prakash, R.D. Agrawal, “A comparative study of hot corrosion resistance of HVOF sprayed NiCrBSi and Stellite-6 coated Ni-based superalloy at 900 °C”, Mater. Sci. Eng. A 445–446 (2007) 210–218.
117.Buta Singh Sidhu, S. Prakash, “Studies on the behaviour of stellite-6 as plasma sprayed and laser remelted coatings in molten salt environment at 900 °C under cyclic conditions”, Journal of Materials Processing Technology 172 (2006) 52–63.
118.T.S. Sidhu, S. Prakash, R.D. Agrawal, “Hot corrosion studies of HVOF sprayed Cr3C2–NiCr and Ni–20Cr coatings on nickel-based superalloy at 900 °C”, Surf. Coat. Technol. 201 (2006) 792–800.
119.L. Castaldi, D. Kurapov, A. Reiter, V. Shklover, P. Schwaller, J. Patscheider, “High temperature phase changes and oxidation behavior of Cr–Si–N coatings”, Surf. Coat. Technol. 202 (2007) 781–785.
120.J. M. Guilemany, J. Fernández, J. Delgado, A. V. Benedetti, F. Climent, “Effects of thickness coating on the electrochemical behaviour of thermal spray Cr3C2–NiCr coatings”, Surf. Coat. Technol. 153 (2002) 107–113.
121.B.D. Sartwell, P.M. Natishan, I.L. Singer, K.O. Legg, J.D. Schell, J.P. Sauer, “Aerospace/Airline Plating and Metal Finishing Forum”, San Antonio TX, USA, March 24–26, 1998, American Electroplaters and Surface Finishers Society, Proceedings, 1998, p. 97.
122.Aw Poh Koon, Tan Boon Hee, M. Taylor,M.Weston, J. Yip, “Hard Chrome Replacement by HVOF Sprayed Coatings”, Technical Report PT/99/002/ST, Singapore Institute of Manufacturing Technology, 1999.
123.Marcelino P. Nascimento, Renato C. Souza, Ivancy M. Miguel, Walter L. Pigatin, Herman J. C. Voorwald, “Effects of tungsten carbide thermal spray coating by HP/HVOF and hard chromium electroplating on AISI 4340 high strength steel”, Surf. Coat. Technol. 138 (2001) 113–124.
124.H.J.C. Voorwald, R.C. Souza, W.L. Pigatin, M.O.H. Cioffi, “Evaluation of WC–17Co and WC–10Co–4Cr thermal spray coatings by HVOF on the fatigue and corrosion strength of AISI 4340 steel”, Surf. Coat. Technol. 190 (2005) 155–164.
125.A. Neville, T. Hodgkiess, “Corrosion behaviour and microstructure of two thermal spray coatings”, Surface Engineering 12 (1996) 303–312.
126.J. M. Perry, A. Neville, V. A. Wilson, T. Hodgkiess, “Assessment of the corrosion rates and mechanisms of a WC–Co–Cr HVOF coating in static and liquid–solid impingement saline environments”, Surf. Coat. Technol. 137 (2001) 43–51.
127.J.M. Perry, A. Neville, T. Hodgkiess, “A comparison of the corrosion behavior of WC-Co-Cr and WC-Co HVOF thermally sprayed coatings by in situ Atomic Force Microscopy (AFM)”, J. Therm. Spray Technol. 11 (2002) 536–541.
128.D. Toma, W. Brandl, G. Marginean, “Wear and corrosion behaviour of thermally sprayed cermet coatings”, Surf. Coat. Technol. 138 (2001) 149–158.
129.V.A.D. Souza, A. Neville, “Linking electrochemical corrosion behaviour and corrosion mechanisms of thermal spray cermet coatings (WC–CrNi and WC/CrC–CoCr)”, Mater. Sci. Eng. A 352 (2003) 202–211.
130.C. Monticelli, A. Frignani, F. Zucchi, “Investigation on the corrosion process of carbon steel coated by HVOF WC/Co cermets in neutral solution”, Corros. Sci. 46 (2004) 1225–1237.
131.J.M. Guilemany, S. Dosta, J. Nin, J.R. Miguel, “Study of the properties of WC-Co nanostructured coatings sprayed by high-velocity oxyfuel”, J. Therm. Spray Technol. 14 (2005) 405–413.
132.Xie Guozhi, Zhang Jingxian, Lu Yijun, Wang Keyu, Mo Xiangyin, Lin Pinghua, “Effect of laser remelting on corrosion behavior of plasma-sprayed Ni-coated WC coatings”, Mater. Sci. Eng. A 460–461 (2007) 351–356.
133.Guozhi Xie, Jinxian Zhang, Yijun Lu, Ziyi He, Bing Hu, Dongjie Zhang, Keyu Wang, Pinghua Lin, “Influence of laser treatment on the corrosion properties of plasma-sprayed Ni-coated WC coatings”, Applied Surface Science 253 (2007) 9198–9202.
134.J.E. Cho, S.Y. Hwang, K.Y. Kim, “Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment”, Surf. Coat. Technol. 200 (2006) 2653–2662.
135.T. Rogne, “The importance of corrosion on the erosion–corrosion performance of thermal spray ceramic–metallic coatings”, Proceeding of the 9th International Conference on Thermal Spray, Materials Park, Warrendale, USA, 1996, p. 207.
136.A. Neville, “An Assessment of Galvanic Effects in Thermal Sprayed Coating System”, A United Forum for Science and Technology Advances, ASM Inter, Warrendale, USA, 1997, p. 161.
137.E.J. Wentzel, C. Allen, “The erosion-corrosion resistance of tungsten-carbide hard metals”, International Journal of Refractory Metals and Hard Materials 15 (1997) 81–87.
138.A.M. Human, H.E. Exner, “The relationship between electrochemical behaviour and in-service corrosion of WC based cemented carbides”, International Journal of Refractory Metals and Hard Materials 15 (1997) 65–71.
139.Sutha Sutthiruangwong, Gregor Mori, “Corrosion properties of Co-based cemented carbides in acidic solutions”, International Journal of Refractory Metals and Hard Materials 21 (2003) 135–145.
140.A.M. Human and H.E. Exner, “Electrochemical behaviour of tungsten-carbide hardmetals”, Mater. Sci. Eng. A 209 (1996) 180–191.
141.A. M. Human, B. Roebuck, H. E. Exner, “Electrochemical polarisation and corrosion behaviour of cobalt and Co(W,C) alloys in 1 N sulphuric acid”, Mater. Sci. Eng. A 241 (1998) 202–210.
142.A. r. Trueman, D. P. Schweinsberg, G. a. Hope, “A study of the effect of cobalt additions on the corrosion of tungsten carbide carbon steel metal matrixcomposites”, Corros. Sci. 41 (1999) 1377–1389.
143.V.A.D. Souza, A. Neville, “Mechanisms and kinetics of WC-Co-Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments”, J. Thermal Spray Technol. 15 (2006) 106–117.
144.J.K.N. Murthy, D.S. Rao, B. Venkataranman, “Effect of grinding on the erosion behaviour of a WC-Co-Cr coating deposited by HVOF and detonation gun spray processes”, Wear 249 (2001) 592–600.
145.V.B. Voitovich, V.V. Sverdel, R.F. Voitovich, E.I. Golovko, “Oxidation of WC-Co, WC-Ni and WC-Co-Ni Hard Metals in the Temperature Range 500-800℃”, Metals & Hard Materials 14 (1996) 289-295.
146.Y. Qiao, T.E. Fischer, A. Dent, “The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC–Co coatings with very fine structures”, Surf. Coat. Technol. 172 (2003) 24–41.
147.B.R. Marple, R.S. Lima, “Process Temperature Velocity-Hardness-Wear Relationships for High-Velocity Oxyfuel Sprayed Nanostructured and Conventional Cermet Coatings”, Surf. Coat. Technol. 172 (2003) 24–41. ASM International JTTEE5 14:67-76 Journal of Thermal Spray Technology. 14(1) March 2005—67.
148.P.K. Aw, B.H. Tan, “Study of microstructure, phase and microhardness distribution of HVOF sprayed multi-modal structured and conventional WC-17Co coatings”, Journal of Materials Processing Technology 174 (2006) 305–311.
149.吳佳穎, “奈米結構與傳統型碳化鎢/鈷粒子強化鎳基熱熔射合金塗層之磨潤性質研究”,國立成功大學機械工程研究所碩士論文,2007 年 6 月。
150.翁子勛, “添加不同碳化鎢粒子強化鎳基熱熔射合金塗層之磨耗、氧化及腐蝕性質研究”,國立成功大學機械工程研究所碩士論文,2008 年 6 月。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top