跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/12 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝榮泰
研究生(外文):Jung-Tai Hsieh
論文名稱:虛擬多軸銑床導入靜態切削力預估之研究
論文名稱(外文):Study on Cutting Force Evaluation for Virtual Multi-Axis Milling Machine
指導教授:李榮顯李榮顯引用關係
指導教授(外文):Rong-Shean Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:81
中文關鍵詞:側向磨耗多軸三軸虛擬工具機銑削力評估
外文關鍵詞:flank wearmulti-axisvirtual machine toolthree-axismilling force evaluation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:499
  • 評分評分:
  • 下載下載:164
  • 收藏至我的研究室書目清單書目收藏:3
多軸工具機在工業界使用範圍廣泛,現有商用CAM軟體可提供刀具路徑規劃及切削模擬的功能,讓使用者在實際加工前可以檢視產品加工情況及評估其可製造性。然而大部分的CAM軟體在模擬切削過程中無法顯示切削力相關資訊。若虛擬工具機可同時顯示切削力,將可強化製程規劃的決策。
本文將靜態銑削力導入虛擬工具機,配合CAM軟體所產生的刀具路徑檔,在虛擬工具機模擬時計算切削力。以一般端銑刀幾何定義為模版,建立常用的刀具模組,包括端銑刀、球銑刀及牛鼻銑刀。透過刀具路徑檔計算出軸向切深及徑向切深,代入銑削力模式中計算銑削力,並建立傾斜刀軸模式,模擬多軸加工情形。又利用磨耗切削力模式估算刀具產生磨耗時的切削力,評估刀具在加工過程中的狀態。結合端銑刀銑削力模式,可得到磨耗切削力的預估結果,便 於進行刀具管理。
模擬結果與實驗數據比對吻合,而切削力也可以反應出製程中之切削參數變化。在切削工件實例中,結果會依照刀具路徑檔(CL file)行數顯示相對應的平均銑削力及磨耗切削力,而從銑削力與刀具路徑檔行數關係圖可以看出銑削力變化趨勢與切削參數(軸向切深)相關,因此使用者可以藉由切削力結果作為製程參數評估。
Multi-axis machine tool is used generally and frequently in industry. Current commercial Computer-Aided Manufacturing (CAM) software provide for functions of arranging tool path and cutting geometry simulation for the machinability evaluation. So far, general commercial CAM software do not provide for cutting force simulation. If the virtual machine tool can display the cutting force simultaneously, the decision of process planning can be enhanced.
This paper introduces static milling force model into virtual machine tool. Using CL file coming from the CAM software to calculate the cutting force in simulation. General milling cutters, including cylindrical end mill, ball end mill and bull nose end mill, are represented. From CL file, the axial depth of cut and the radial depth of cut are extracted, and then substituted into end milling model to calculate cutting force. Also the inclined cutter axis model is added to simulate multi-axis manufacturing situation. An analytical mechanistic model of milling process is used for evaluating force and cutter’s condition when cutter is worn. And connecting this model with end milling force model, it can obtain the cutting force for tool management.
Results of cutting force simulation agree well with the experimental results. The cutting force can reflect the change of cutting parameter during the process. In the simulation example, it shows the average milling force and milling force of worn cutter according to CL file line by line. From plot of milling force and CL file lines we can find out the variation of milling force depending on cutting parameters. So the user can obtain the cutting force for the evaluation of manufacturing parameter.
中文摘要 I
英文摘要 II
誌謝 IV
總目次 V
表目次 VII
圖目次 VIII
符號說明 XI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-2-1 銑削力模式建立 1
1-2-2 磨耗切削力模式建立 3
1-2-3 虛擬實境與虛擬製造 3
1-3 研究目的與範疇 6
1-4 章節瀏覽 6
第二章 端銑刀之銑削力模式 8
2-1 前言 8
2-2 局部力解析式 8
2-2-1 物理意義 8
2-2-2 LSFM模式 10
2-2-3 DGCC模式 11
2-3 總銑削力 11
2-3-1 圓柱端銑刀座標系統 11
2-3-2 總銑削力 14
2-3-3 平均銑削力與切削係數 15
2-4 一般端銑刀之銑削力通式 16
2-4-1 一般端銑刀輪廓幾何 16
2-4-2 一般端銑刀螺旋切刃幾何 20
2-4-3 一般端銑刀總銑削力 26
2-5傾斜銑削力模式 26
第三章 磨耗切削力模式 31
3-1前言 31
3-2磨耗切削力模式建立 31
3-3 磨耗參數關係 41
第四章 切削範例與虛擬多軸加工模擬系統實作 42
4-1 輸入檔案製作 42
4-2 軸向切深及徑向切深演算法 48
4-3 系統設計需求與架構 52
4-3-1 開發工具 52
4-4 結果呈現 55
第五章 結論與建議 71
5-1 結論 71
5-2 建議 71
參考文獻 73
[1]Alauddin, M., El Baradie, M. A., and Hashmi, M. S. J., “Prediction of tool life in end milling by response surface methodology,” Journal of Materials Processing Technology, 71(3), 456-465, 1997.
[2]Altintas, Y., and Yellowley, I., “The identification of radial width and axial depth of cut in peripheral milling,” International Journal of Machine Tools and Manufacture, 27(3), 367-381, 1987.
[3]Altintas, Y., and Lee, P., “Mechanics and dynamics of ball end milling,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 120(4), 684-691, 1998.
[4]Altintas, Y., “Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design Cambridge,” New York: Cambridge University Press, 2000.
[5]Armarego, E. J. A., and Whitfield, R. C., “Computer based modeling of popular machining operations for forces and power prediction,” CIRP Annals, 34(1), 65-69, 1985.
[6]Armarego, E. J. A., and Deshpande, N. P., “Computerized predictive cutting model for cutting forces in end-milling including eccentricity effects,” CIRP Annals, 38(1), 45-49, 1989.
[7]Bayoumi, A. E., Barnwal, S., and Hutton, D. V., “Prediction of flank wear and engagements from force measurements in end milling operations,” Wear, 170(2), 255-266, 1993.
[8]Ber, A., and Goldblatt, M., “The influence of temperature gradient on cutting tool’s life,” CIRP annals, 38(1), 69-73, 1989.
[9]Budak, E., Altintas, Y., and Armarego, E. J. A., “Prediction of milling force coefficients from orthogonal cutting data,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 118(2), 216-224, 1996.
[10]Chen, Lienjing, Bender, P., Renton, P., and EI-Wardany, T., “Integrated Virtual Manufacturing System for Process Optimisation and Monitoring,” CIRP Annals - Manufacturing Technology, 51(1),409-412, 2002
[11]Choudhury, S. K., and Rath, Subhashree, “In-process tool wear estimation in milling using cutting force model,” Journal of Materials Processing Technology, 99(1), 113-119, 2000.
[12]Diei, E. N., and Dornfeld, D. A., ”Acoustic emission of tool wear in face milling,” Journal of Engineering and Industry, 109(3), 234-240, 1987.
[13]Diei, E. N., and Dornfeld, D. A., “Acoustic emission from the face milling process – the effect of process variables,” Journal of Engineering and Industry, 109(1)-4, 92-99, 1987.
[14]Ehmann, K. F., Kapoor, S. G., DeVor, R. E., and Lazoglu, I., “Machining process modeling: a review,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 119(4), 398-404, 1994.
[15]Endres, W. J., DeVor, R. E., and Kappor, S. G., “Dual-mechanism approach to the prediction of machining forces, part 1: Model development,” Journal of engineering for industry, 117(4), 526-533, 1995.
[16]Engin, S., and Altintas, Y., “Mechanics and dynamics of general milling cutters. Part I: helical end mills,” International Journal of Machine Tools and Manufacture, 41(15), 2195-2212, 2001.
[17]Erkorkmaz, Kaan, Yeung, Chi-Ho, and Altintas, Y., “Virtual CNC system. Part II. High speed contouring application,” International Journal of Machine Tools and Manufacture, 46(10), 1124-1138, 2006
[18]Geoffrey Boothroyd, 1976, “Fundamentals of metal machining and machine tools,” 2nd ed., 68-70, Taipei, Central Book Company, New York, McGraw-Hill.
[19]J. -J. Junz, Wang, S. Y. Liang, and W. J. Book, “Convolution analysis of milling force pulsation,” Journal of engineering for industry, 116(1), 17-25, 1994.
[20]Jalai, S. A., and Kolarik, W. J., “Tool life and machinability models for drilling steels,” International Journal of Machine Tools & Manufacture, 31(3), 273-282, 1991.
[21]Kline, W. A., DeVor, R. E., and Snareef, I. A., “The prediction of surface accuracy in end milling,” Journal of Engineering for Industry, 104(3), 272-278, 1982.
[22]Kline, W. A., DeVor, R. E., and Lindberg, J. R., “The prediction of cutting force in end milling with application to cornering cuts,” International Journal of Machine Tool Design and Research, 22(1), 7-22, 1982
[23]Ko, J. H., Yun, W. S., Cho, D. W., and Ehmann, K. F., “Development of a virtual machining system, part 1: approximation of the size effect for cutting force prediction,” International Journal of Machine Tools and Manufacture, 42(15), 1595-1605, 2002
[24]Koenigsberger, F., and Sabberwal, A. J. P., “An investigation into the cutting force pulsations during milling operations,” International Journal of Machine Tool Design and Research, 1, 15-33, 1961.
[25]Kulzanic, E., “An investigation of wear in single tooth and multi-tooth milling,” International Journal of Machine Tool Design and Research, 4(4), 95-109, 1974.
[26]Lazoglu, I., and Liang, S. Y., “Modeling of ball-end milling forces with cutter axis inclination,” Journal of Manufacturing Science and Engineering, 122, 3-11, 2000.
[27]Lin, S. C., and Lin, R. J., “Tool wear monitoring in face milling using force signals,” Wear, 198, 136-142, 1996.
[28]Martellotti, M. E., “An analysis of the milling process,” Transaction of ASME, 63, 677-700, 1941.
[29]Martellotti, M. E., “An analysis of the milling process, Part 2: down milling,” Transaction of ASME, 67, 233-251, 1945.
[30]Narita, H., “Trial-less Machining Using Virtual Machining Simulator for Ball End Mill Operation,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 49(1), 50-55, 2006
[31]Ong, S. K., Jiang, L., and Nee, A. Y. C., “An Internet-Based Virtual CNC Milling System”, International Journal of Advanced Manufacturing Technology, 20(1), 20-30, 2002.
[32]Oraby, S. E., and Hayhurst, D. R., “Development of models for tool wear force relationships in metal cutting,” International Journal of Mechanical Sciences, 33(2), 125-138, 1991.
[33]Oraby, S. E., and Hayhurst, D. R., “Tool life determination based on the measurement of wear and tool force ratio variation,” International Journal of Machine Tools & Manufacture, 44, 1261-1269, 2004.
[34]Sabberwal, A. J. P., “Chip section and cutting force during the milling operation,” Annals of the CIRP, 10, 197-203, 1961.
[35]Sikdar, C., Paul, S., and Chattopadhyay, A. B., “Effect of variation in edge geometry on wear and life of coated carbide face milling inserts,” Wear, 157(1), 111-126, 1992.
[36]Teitenberg, Tony M., Bayoumi, A. E., and Yucesan, G., “Tool wear modeling through an analytic mechanistic model of milling processes,” Wear, 154(2), 287-304, 1992.
[37]Tlusty, J., and MacNeil, P., “Dynamics of cutting forces in end milling,” Annals of the CIRP, 24(1), 21-25, 1975.
[38]Yang, M., and Park, H., “The prediction of cutting force in ball end milling,” International Journal of Machine Tools & Manufacture, 31(1), 45-54, 1991.
[39]Yellowley, I., “Observations on the mean values of forces, torque and specific power in the peripheral milling process,” International Journal of Machine Tool Design and Research, 25(4), 337-346, 1985.
[40]Yeung, C. H., Altintas, Y., and Erkorkmaz, Kaan, “Virtual CNC system. Part I. System architecture,” International Journal of Machine Tools and Manufacture, 46(10), 1107-1123, 2006
[41]Ko, J. H., Yun, W. S., and Cho, D. W., “Off-line feed rate scheduling using virtual CNC based on an evaluation of cutting performance,” Computer-Aided Design, 35(4), 383-393, 2003
[42]Yun, W. S., Ko, J. H., Cho, D. W., and Ehmann, K. F., “Development of a virtual machining system, part 2: prediction and analysis of a machined surface error,” International Journal of Machine Tools and Manufacture, 42(15), 1607-1615, 2002
[43]Yun, W. S., Ko, J. H., Lee, H. UI., Cho, D. W., and Ehmann, K. F., “Development of a virtual machining system, part 3: cutting process simulation in transient cuts,” International Journal of Machine Tools and Manufacture, 42(15), 1617-1626, 2002
[44]吳錫章(2007),“非正交型車銑複合虛擬工具機運動模擬系統之發展”,碩士論文,國立成功大學機械工程研究所,台南市
[45]林彥宏(2004),“五軸虛擬工具機模擬系統一般化建構之研究”,碩士論文,國立成功大學機械工程研究所,台南市
[46]徐偉程(2002),“應用虛擬實境技術於多軸工具機切削運動之研究”,碩士論文,國立成功大學機械工程研究所,台南市
[47]張煌權(2000),“包含側邊及底邊犁切力之端銑及面銑力模式”, 碩士論文,國立成功大學機械工程研究所,台南市
[48]梅可人(2007),“ Study on Automated Universal Construction of Virtual Machine Tool Geometry for Simulation System”,專題論文,國立成功大學機械工程研究所,台南市
[49]鄒震贏(2006),“應用OpenGL於五軸虛擬工具機系統之發展” , 碩士論文,國立成功大學機械工程研究所,台南市
[50]劉大隆(2003),“應用插值運算於多軸工具機切削運動模擬之研究”,碩士論文,國立成功大學機械工程研究所,台南市
[51]鄭嘉敏(2002),“考慮剪切及犁切效應之通用銑削力模式及其在判認比切削係數、偏心幾何及穩定性預測上之應用”,博士論文,國立成功大學機械工程研究所,台南市
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top