跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李劭勉
研究生(外文):Shau-Mien Lee
論文名稱:楊氏圖及其應用
論文名稱(外文):A Survey On Young Tableau and Its Application
指導教授:林正洪林正洪引用關係
指導教授(外文):Ching-Hung Lam
學位類別:碩士
校院名稱:國立成功大學
系所名稱:數學系應用數學碩博士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:34
外文關鍵詞:Specht modulegroup representationYoung Tableau
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, we give a survey on Young Tableau and its
application. We first introduce some definitions and properties about representations of finite groups and the construction of Specht modules in the beginning of the thesis. Then we study the irreducible representations of symmetric group constructed by Young symmetrizer, which is a equivalent construction with Specht modules.
1 Representations of finite groups......................3
1.1 Matrix representations................................3
1.2 Submodules and Maschke's theorem......................5
1.3 G-homomorphisms.......................................6
1.4 Structure of Hom(V,W).................................7
1.5 The number of irreducible submodules.................10
1.6 Characters of groups.................................11
1.7 The relation between characters
and reducibility.....................................12
2 Representations of symmetric groups..................18
2.1 Young diagrams.......................................18
2.2 Definition of Young tabloids.........................19
2.3 The $S_n$-module grnerated by Young tabloids
of a fixed shape.....................................20
2.4 Some elements in $mathbb{C}[S_n]$ and definition
of Specht modules....................................21
2.5 $S^lambda$ is irreducible ..........................22
2.6 A basis for Specht module............................25
2.7 Representations constructed by Young ymmetrizers.....29
2.8 $V_lambda$ is irreducible...........................29
[1] G.D. James, “The Representation Theory of the Symmetric Groups”, Lecture notes in Mathematics, Vol. 682, Springer-Verlag,New York, NY, 1978, 13∼14.
[2] W. Fulton and J. Harris, “Representations Theory : A First Cours”, Graduate text in Mathematics, Springer-Verlag, 1991, 45∼46, 53∼54.
[3] Bruce E. Sagan, “The Symmetric Group : Representations, Combinatorial algorithms, and Symmetric Functions”, Graduate text in mathematics, Springer Verlag, 2000, 1∼73.
[4] Willard Miller, Jr. “Symmetric Groups And Their Applications”, Academic Press, 1972, 123∼125.
[5] K.I. Beidar, “Advanced Linear Algebra”, Lecture Notes, 2002, 94.
[6] T.Y. Lam, “Representations of Finite Groups : A Houndred Years, Part I”, Notice of the AMS, March 1998.
[7] H. Boerner, “Representations of Groups with Special Consideration for the Needs of Merdern Physics”, North-Holland, New York, NY, 1970.
[8] R. P, Stanley, “Some aspects of groups acting on finite posets”, J. Combin. Theory Ser. A 32(1982),132∼161.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top