跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹詠翔
研究生(外文):Yung-Hisang Chan
論文名稱:養生條件對轉爐石溶出行為之影響
論文名稱(外文):Leaching characteristics of BOF slag affected by various aging conditions
指導教授:張祖恩張祖恩引用關係
指導教授(外文):Juu-En Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:106
中文關鍵詞:轉爐石碳酸化養生溶出行為
外文關鍵詞:BOF slagLeaching characteristicsCarbonation
相關次數:
  • 被引用被引用:17
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
轉爐石中含有不穩定鈣系物質影響其資源化利用途徑,而二氧化碳具有穩定鈣系物質之能力。本研究以自然養生與快速碳酸化養生比較轉爐石之熟化程度,討論其對轉爐石之物化特性改變,包括轉爐石之總鈣轉換率、pH值、酸鹼中和能力,並以pH dependence 溶出試驗檢驗養生後轉爐石之溶出行為。實驗結果得知轉爐石中氧化鈣與矽酸鈣含量達20%以上,具有以二氧化碳進行碳酸 化之潛力。轉爐石經六個月之自然養生與加水自然養生,其鈣轉化率皆約達15%。而以二氧化碳快速碳酸化養生程序於溫度100℃、水氣含量90%、二氧化碳分壓10%下反應24小時,轉爐石鈣轉化率可達18%。由後續研磨分析與SEM分析可知轉爐石碳酸化反應發生於表面,氧化鈣為主要反應物種,並由溶出實驗證實表面碳酸鈣層具有降低溶出之效果。此外,轉爐石快速碳酸化養生8小時之熟化程度已與自然養生六個月相近,由重金屬溶出結果發現快速碳酸化養生雖然轉爐石pH值由12.5降低至約11,但並不會造成重金屬溶出濃度增加。經24小時快速碳酸化後轉爐石吸附二氧化碳之量可達0.035g of CO2/g of BOF Slag,顯示轉爐石快速碳酸化養生同時具有吸附二氧化碳並達養生穩定化目的,可提升轉爐石後續資源化再利用之價值。
Based on previous studies, calcium-based ashes and slags have the potential to absorb CO2. In this study, the degree of aging of natural aged and rapid carbonation BOF slag were compared on their physical and chemical characteristics, including the conversion rate of total calcium, pH, ANC/BNC, and pH dependence behavior leaching test. Results show that the BOF slag with calcium content over 20% has the potential to absorb CO2. The calcium conversion rate of 6 months natural aged BOF slag were about 15%. Rapid carbonation of BOF slag at temperature of 100℃, moisture content of 90% and 10% partial pressure of carbon dioxide under the reaction for 24 hours, the conversion rate of BOF slag is up to 18%.
According to the follow-up grinding analysis and SEM analysis, it was discovered that BOF slag carbonation reaction occurred on the surface with calcium oxide as the main reaction species. And BOF slag was confirmed by the leaching test which the surface layer of calcium carbonate reduces the effects of dissolution. In addition, the BOF slag conversion degree of 8 hours carbonation has similar results with that of 6 months natural aged.
The rapid carbonation BOF slag although lower pH values from 12.5 to about 11, but did not increase the leaching of heavy metals concentration. BOF slag after a 24-hour rapid carbonation absorbs the amount of CO2 up to 0.035g of CO2/g of BOF Slag. This shows rapid carbonation has the ability of CO2 absorption at the same time achieved the goal of BOF slag stabilization, which enhances the value of BOF slag follow-up reuse.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 X

第一章 前言 1
1-1研究動機與目的 1
1-2研究內容 2

第二章 文獻回顧 3
2-1轉爐石之產出與基本特性 3
2-1-1轉爐石之產出─煉鋼副產物 3
2-1-2轉爐石之物化特性 5
2-2轉爐石之應用與安定化法 10
2-2-1轉爐石資源化現況與問題點 10
2-2-2轉爐石安定化法 13
2-3轉爐石之碳酸化法 17
2-3-1氧化鈣之碳酸化機制 17
2-3-2矽酸鈣之碳酸化機制 22
2-3-3富含鈣系物質之廢棄物碳酸化研究 25
2-3-4鈣系物質碳酸化程序之影響因子 28
2-4廢棄物溶出特性 29
2-4-1影響溶出行為之因素 29
2-4-2溶出實驗與環境相溶性 34
2-5 小結 37

第三章 研究材料、設備與方法 39
3-1研究架構與流程 39
3-2研究材料與設備 41
3-2-1 轉爐石採樣 41
3-2-2實驗藥品與儀器設備 41
3-3 實驗研究方法 45
3-3-1 轉爐石之前處理及基本特性分析 45
3-3-2 轉爐石養生程序 48
3-3-3 pH dependence溶出實驗方法 51
3-3-4碳酸化與溶出特性之判斷指標 52

第四章 結果與討論 55
4-1轉爐石基本特性 55
4-1-1化學特性 55
4-1-2物理特性 57
4-1-3小結 59
4-2 養生對轉爐石物化特性之影響 60
4-2-1 養生條件對碳酸化程度之影響 60
4-2-2 養生條件對轉爐石物種改變之影響 66
4-2-3養生後轉爐石之表面與微觀特性 72
4-3轉爐石養生條件對pH關聯性溶出行為之影響 80
4-3-1 養生條件對於轉爐石抗酸能力之影響 80
4-3-2 養生後轉爐石之溶出行為 85
4-3-3 養生後轉爐石之碳酸鈣層溶出行為 90
4-4轉爐石碳酸化成效之綜合評析 95
4-4-1養生後轉爐石熟化程度之檢討 95
4-4-2轉爐石養生吸附二氧化碳之成效 97
4-4-3小結 98

第五章 結論與建議 99
5-1結論 99
5-2建議 100

參考文獻 101
Baciocchi, R.; Polettini, A.; Pomi, R.; Prigiobbe, V.; Nikulshina, V.; Zedwitz, V.; Steinfeld, A.; CO2 sequestration by direct gas-Solid carbonation of air pollution control (APC) residues. Energy and Fuel, 2006, 20, 1933-1940.
Beruto, D. T.; Botter, R., Liquid-like H2O adsorption layers to catalyze the Ca(OH)2/CO2 solid-gas reaction and to form a non-protective solid product layer at 20 ℃. Journal of the European Ceramic Society, 2000, 20, 497-503.
Bonenfant, D.; Kharoune, L.; Sauve, S.; Hausler, R.; Niquette, P.; Mimeault, M.; Kharoune, M., CO2 sequestration potential of steel slags at ambient and temperature. Industrial and Engineering Chemistry Research, 2008, 47, 7610-7616.
Chen, Q. Y.; Johnson, D. C.; Zhu, L. G.; Yuan, M. H.; Hill, C. D., Accelerated carbonation and leaching behavior of the slag from iron and steel making industry. Journal of University of Science and Technology Beijing, 2007, 14, 297-301.
Cornelis, G.; Jonhson, A.; Gerven, T. V.; Vandecasteele, C., Leaching mechanisms of oxyanionnic metalloid and metal species in alkaline solid wastes: a review. Applied geochemistry, 2008, 23, 955-976.
Crawford, C. B.; Burn, K. N., Building damage from expansive steel slag backfill. Journal of the Soil Mechanics and Foundation Division, 1969, 95, 1325-1334.
Fattuhi, N. I., Concrete carbonation as influenced by curing regime. Cement and Concrete Research, 1988, 18, (3), 426-430.
Fernández, B.M.; Simons, S. J. R.; Hills, C. D.; Carey, P. J., A Review of Accelerated Carbonation Technology in the Treatment of Cement-based Materials and Sequestration of CO2. Journal of Hazardous Materials, 2004, 112, 193-205.
Gerven, T. V.; Keer, E. V.; Arickx, S.; Jaspers, M.; Wauters, G.; Vandecasteele, C., Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. Waste Management, 2005, 25, 219–300.
Goodbrake, C. J.; Young, J. F.; Berger, R. L., Reaction of hydraulic calcium silicates with carbon dioxide and water. Journal of the American Ceramic Society, 1979, 62, 488-491.
Goto, S.; Suenaga, K.; Kado, T.; Fukuhara, M., Calcium silicate carbonation products. Journal of the American Ceramic Society, 1995, 78, 2867-2872.
Huijgen, W. J.; Comans, R. N. J., Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environmental Science and Technology, 2006, 40, 2790-2796.
Huijgen, W. J.; Witkamp, G. J.; Comans, R. N. J., Mineral CO2 Sequestration by Steel Slag Carbonation. Environmental Science and Technology, 2005, 39, 9676-9682.
Jia, L.; Anthony, E. J., Pacification of FBC ash in a pressurized TGA. Fuel, 2000, 79, (9), 1109-1114.
Jiang, G. J.; Chen, M. z.; Zhang, Y.; Xu, X., Pb stabilization in fresh fly ash from municipal solid waste incinerator using accelerated carbonation technology. Journal of Hazardous Materials, 2009, 161, 1046-1051.
Khunthongkeaw, J.; Tangtermsirikul, S.; Leelawat, T., A study on carbonation depth prediction for fly ash concrete. Construction and Building Materials, 2006, 20, 744-753.
Kosson, D. S.; Van der sloot, H. A.; Sanchez, F.; Garrabrants, A. C.; An integrated framework for evaluating leaching in waste management and utilization of secondary materials, Environmental Engineering Science, 2002, 19, 159-204.
Lackner, K. S.; Wendt, C. H.; Butt, D. P.; Joyce, E. L., Jr.; Sharp, D. H., Carbon dioxide disposal in carbonate minerals. Energy (Oxford), 1995, 20, 1153-1170.
Lekakh, S. N.; Robertson, D. G. C.; Rawlins, C. H.; Richards, V. L.; Peaslee, K. D.; Investigation of a two-stage aqueous reactor design for carbon dioxide sequestration using steelmaking slag. Metallurgical and Materials Transactions B, 2008, 39B, 484-492.
Lide, D. R., CRC handbook of chemistry and physics. 2007, Taylor and Francis, BocaRaton, FL.
Mahieux, P. Y.; Aubert, J. E., Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Construction and Bulding Materials, 2009, 23, 742-747.
Matsuya, S.; Lin, X.; Udoh, K.-I.; Nakagawa, M.; Shimogoryo, R.; Terada, Y.; Ishikawa, K., Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact. Journal of Materials Science: Materials in Medicine, 2007, 18, (7), 1361-1367.
Meima, J. A.; Van der Weijden, R. D.; Eighmy, T. T.; Comans, R. N. J., Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Applied Geochemistry, 2002, 17, 1503-1513.
Mess, D.; Sarofim, A. F.; Longwell, J. P., Product layer diffusion during the reaction of calcium oxide with carbon dioxide. Energy and Fuels, 1999, 13, (5), 999-1005.
Nikulshina, V.; Galvez, M. E.; Steinfeld, A., Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle. Chemical Engineering Journal, 2007, 129, 75-83.
Papadakis, V. G.; Vayenas, C. G.; Fardis, M. N., Reaction engineering approach to the problem of concrete carbonation. AIChE Journal, 1989, 35, 1639-1650.
Reddy, E. P.; Smirniotis, P. G., High-temperature sorbents for CO2 made of alkali metals doped on CaO supports. Journal of Physical Chemistry B, 2004, 108, 7794-7800.
Shih, S.-M.; Ho, C. u.-S.; Song, Y.-S.; Lin, J.-P., Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Industrial and Engineering Chemistry Research, 1999, 38, (4), 1316-1322.
Shtepenko, O.; Hills, C.; Brough, A.; Thomas, M., The effect of carbon dioxide on beta-dicalcium silicate and Portland cement. Chemical Engineering Journal, 2006, 118, 107-118.
Song, H. S.; Kim, C. H., Effect of surface carbonation on the hydration of CaO. Cement and Concrete Research, 1990, 20, (5), 815-823.
Van der Sloot, H. A.; Dijkastra, J. J., Development of horizontally standardized leaching tests for construction materials: a material based or release based approach ? : Identical leaching mechanisms for different materials, ECN-04-060, 2004.
Walton, J. C.; Bin-Shafique, S.; Smith, R. W.; Gutierrez, N.; Tarquin, A., Role of carbonation in transient leaching of cementitious wasteforms. Environmental Science and Technology, 1997, 31, (8), 2345-2349.
Yang, T.; Keller, B.; Magyari, E.; Hametner, K.; Gunther, D., Direct observation of the carbonation process on the surface of calcium hydroxide crystals in hardened cement paste using an atomic force microscope. Journal of Materials Science, 2003, 38, 1909-1916.
Zhang, H.; He, P. J.; Shao, L. M.; Lee, D. J.; Temporary stabilization of air pollution control residues using carbonation. Waste Management, 2008, 28, 509–517.
中國鋼鐵股份有限公司,2003。爐石利用推廣手冊。
中國鋼鐵股份有限公司,2005。中鋼安衛報告書。
中聯資源股份有限公司,2009。中聯資源股份有限公司97年年報。
王金鐘,2004。轉爐石作為基底層材料及其工程特性之研究,國立成功大學土木工程研究所,博士論文。
沈永年、林仁益、黃兆龍,1993。核磁共振解析含飛灰水泥漿體之索反應,中國土木水利工程學刊,第5 卷,第4 期,第387-392頁。
李春雄,2002。中鋼轉爐石回脹抑制方法之研究,國立成功大學土木工程研究所,碩士論文。
林志棟,2001。氣冷爐石添加飛灰、底灰應用於基底層材料之研究,期末報告,國立中央大學土木工程研究所。
林財富,洪旭文,2009。中鋼公司轉爐石重金屬鉻在土壤環境中之穩定行為探討,轉爐石應用與管理研討會暨圓桌會議。
張高僑,2008。鈣系爐渣封存二氧化碳行為之研究,國立成功大學環境工程學系碩士論文。
黃兆龍,1984。混凝土性質與行為,詹氏書局。
楊貫一,1992。爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練,第17卷,第一期,第31~46頁。
劉國忠,2001。煉鋼爐渣之資源化技術與未來推展方向,環保月刊,第4期十月號,第117~118頁。
蘇茂豐,陳立,2005。電弧爐煉鋼爐渣之資源化現況與未來展望,工業污染防治,第93期,第27~51頁。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top