跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 13:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊崇柏
研究生(外文):Chung-Po Chuang
論文名稱:利用生質酒精發酵殘渣產氫程序之研究
論文名稱(外文):Evaluation of Bioenergy Recovery Processes Treating Organic Residues from Ethanol Fermentation
指導教授:黃良銘黃良銘引用關係
指導教授(外文):Liang-Ming Whang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:83
中文關鍵詞:甲烷化發酵兩階段式生質能源程序酒精發酵後廢液厭氧氫發酵
外文關鍵詞:anaerobic hydrogen fermentationalcohol fermentation residuetwo-stage bioenergy processmethanogenesis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:557
  • 評分評分:
  • 下載下載:174
  • 收藏至我的研究室書目清單書目收藏:0
隨著人類對於能源的需求逐漸迫切,伴隨著嚴重的污染及化石燃料快速地消耗,開發新興且乾淨的再生能源成為各國努力並積極發展之重點。一般現有技術對能源作物進行酒精發酵之過程中,預期會有20~25%之殘渣無法完全利用,若可將20~25%之殘渣進行生質能再回收可解決生質能源工業化時的環保問題,同時能有效地回收寶貴的能源。本研究針對木薯之酒精發酵殘渣進行特性分析,酒精發酵後廢液含有大量的有機物質,包括碳水化合物、有機酸類、甲醇及乙醇等,COD高達64,000 mg/L,且富含營養成分(C/N為13)。在各成份之電子分佈方面,碳水化合物占總COD值的37 %,此部分可利用產氫發酵回收能源;另外,有機酸約佔12 %,甲醇及乙醇佔約42 %,加上氫發酵後產生的揮發酸類(Volatile fatty acids, VFAs),此部分可利用甲烷化回收剩餘之能源,故可利用兩階段式生質能源程序處理此生質酒精發酵後廢水。
經由生化產氫潛能測試(BHP test)探討pH與基質負荷(S0/X0) 對產氫程序之影響可知此股廢液具有產氫之潛能,其最佳操作之pH值為6.0而最佳之操作負荷為3.0 mg COD/mg VSS,最高產氫速率約為26 mL-H2/hr,轉化效率達0.7~1.3 mmole H2/g COD。且由額外添加乙醇之前導測試可知,當額外添加乙醇,將使氫氣產量降低(當酒精濃度達0.1 %以上,產氫速率以降低一倍),在此批次試驗中,產氫量皆不多,可見酒精對產氫之抑制。
本研究以CSTR厭氧氫發酵槽經過連續操作四個試程後,於第三試程有最高之反應速率約為0.77 mmol-H2/g-VSS/hr,此時之體積負荷為59 kg-COD/m3-day;第一試程在體積負荷25.2 kg-COD/m3-day有最好的氫氣產率,約為1.32 mmole-H2/g-COD,因此往後若欲實廠工程化,則須考量以產氫速率或是轉化效率做為操作之標的,以符合經濟效益。由於試程二沒有產氣效果不佳,且在試程後期量測不到氣體產生,因此將試程二之微生物取出,模擬試程一(S0/X0 = 6)、試程二產氣(S0/X0 = 12)與不產氣階段之食微比進行批次實驗,在此批次實驗中,S0/X0 = 12 g COD/g VSS產氫量及速率皆高於S0/X0 = 6組約5倍左右,且於有機酸的分析上,S0/X0 = 6組僅有乳酸消耗的現象,但S0/X0 = 12組則是消耗乳酸與乙酸且產生丁酸後,才有明顯產氣,故推測是因為代謝路徑不同,所以在氫氣產量上才有巨大之差異。
高食微比之批次實驗中,僅S0/X0 = 12, X0 = 2,000 mg/L此組有產氣之行為,而此組之產氣行為與上一批次實驗相同,同樣在分解麥芽糖時沒有氣體產生,而在分解乳酸及乙酸時才有產氣之行為;在微生物生長速率方面,當食微比越高比生長速率越快。在不同pH值的批次試驗中可發現,在馴養一段時間後,pH = 6有最佳之產氫效率,比產氫速率可達13.6 mmol-H2/g-VSS/hr,顯示在pH = 6馴養一段時間後,確實可培養出較適應此環境之微生物。
將厭氧氫發酵產生之揮發酸,及未去除之COD以甲烷化發酵處理,甲烷產率可達345 mL CH4/gCOD,比產甲烷速率最高為9.24 mL CH4/gVSS-hr,顯示甲烷發酵槽可有效率地將酒精發酵廢液中剩餘COD做生質能回收。將氫發酵槽及甲烷發酵槽之代謝物質進行電子平衡可知,經由兩階段生質能源程序後,可將2 % 的COD轉化成氫氣,67 % 轉換成甲烷;可利用總COD的91 % 左右;顯示兩階段之生質能源程序,可有效的進行生質能源的回收再利用。
In recent years, developing novel renewable “green energy” becomes a trend in many countries for the fast consumption of fossil fuels and the pollution after using them. Recent technologies can only convert 75-80% of the energy crop into energy by the alcohol fermentation process, about 20-25% of wasted as residue. The aim of this study was to re-utilized this fermentation residue to produce energy products. The characteristics of the tapioca alcohol fermentation residue were studied. Large amount of organics containing carbohydrates, organic acids, methanol and ethanol were found in the residue. The COD was as high as 64,000 mg/L, with C/N ratio of 13. For the electron distribution, carbohydrates comprised 37% of the total COD, and this portion can be fermented to hydrogen. On the other hand, the remaining organic acids (12%) and alcohols (42%), together with the volatile fatty acids produced in hydrogen fermentation, can further be utilized by methanogens to produce methane as energy product. Therefore, a two-stage bioreactor with hydrogen fermentation and methanogenesis was established in this study to treat this tapioca alcohol fermentation residue.
Effects of pH and substrate loading (S0/X0) on hydrogen production with this residue wastewater were evaluated from the biochemical hydrogen potential (BHP) test. The optimum pH and loading was 6.0 and 3.0 mg COD/mg VSS respectively. The highest hydrogen production rate in this test was 26 mL-H2/hr, with the conversation efficiency of 0.7-1.3 mmol H2/g COD. The effect of ethanol concentration was also study. When ethanol concentration was up to 0.1%, the hydrogen production rate was one fold lower compared to the blank. This shows that ethanol has certain inhibition effect on hydrogen production.
There were four runs in the CSTR anaerobic hydrogen fermentation tank. The highest specific hydrogen production rate, 0.77 mmol H2/g VSS/hr was obtained in run 3. The volumetric loading was 59 kg COD/m3-day. The highest hydrogen production, 1.32 mmol H2/g COD, was observed during run 1, with the volumetric loading of 25.2 kg COD/m3-day. During run 2, the hydrogen production efficiency was not good, with no gas production observed. Therefore, batch tests with different substrate loading (S0/X0=6 of run 1 and S0/X0=12 of run 2) were conducted using the sludge in run 2. Results showed that both hydrogen production and production rate of the S0/X0=12 group was five times higher than the S0/X0=6 group. For the organic acid analysis, only lactate consumption was observed in the S0/X0=6 group. For the S0/X0=12 group, hydrogen production was observed after the consumption of lactate and acetate and the production of butyrate. This showed that the differences in hydrogen production may be due to different metabolic pathways.
To study the hydrogen production under high F/M ratio conditions (S0/X0=12 and 24), batch tests was conducted to investigate the metabolic characteristics of the microorganisms. Sludge in run 4, which was acclimated under high F/M ratio for a period, was used in this test. In this test, hydrogen production was only observed in the group with S0/X0=12 and X0=2,000. Similar to previous test, no gas was produced during maltose degradation. Hydrogen began to produce when lactate and acetate was degraded. Higher microbial growth rate was obtained with higher F/M ratio. In the batch with different pH values, the highest hydrogen production rate, 13.6 mmol H2/g VSS/hr was observed under pH=6.
The fatty acids produced in the anaerobic hydrogen fermentation process, together with the residue COD was utilized by methanogens. The methane production was up to 345 mL CH4/g COD, and the highest specific methane production rate was 9.24 mL CH4/g VSS-hr. This indicated that the alcohol fermentation residue can effectively be converted to energy through methanogensis. The electron balance of the two-stage reactor showed that 2% of COD was converted to hydrogen and 67% to methane. Total 91% of COD was utilized in the process. This showed that this two-stage bioenergy process can effectively recover the energy from alcohol fermentation residue.
考試合格證明 II
致謝 III
摘要 V
Abstract VII
目錄 IX
表目錄 XI
圖目錄 XIII
第一章 前言 1
第二章 文獻回顧 3
2-1 潔淨再生能源之展望及全球能源使用趨勢 3
2-2 生物產氫程序的種類與發展 5
2-3 厭氧發酵產氫微生物 7
2-3-1 Clostridium 與其 hydrogenase 8
2-3-2 Entrobacter 11
2-4 厭氧微生物產氫之機制 12
2-4-1 碳水化合物厭氧發酵代謝機制 13
2-4-2 含氮物質厭氧發酵代謝途徑 20
2-4-3 複合基質厭氧發酵 22
2-5 厭氧氫發酵的環境影響因子 23
第三章 材料與方法 29
3-1 兩階段式 CSTR 厭氧生物氫發酵槽 29
3-2 酒精發酵後廢液之來源 30
3-3 水質分析項目與使用儀器 30
3-3-1 一般水質分析項目 30
3-3-2 儀器分析 31
3-4 生化氫氣產能試驗及生物活性量測 32
3-4-1 生化氫氣產能試驗 32
3-4-2 生物活性量測數據整理方式 32
第四章 結果與討論 33
4-1 生質酒精發酵廢液特性分析 33
4-2 生質能源程序最佳化因子探討及水解產氫菌效能評估 38
4-2-1 生質能源程序最佳化因子探討 38
4-2-2 操作發酵殘渣有機物產氫程序 44
4-2-3 酒糟發酵殘渣厭氧氫發酵與文獻之比較 51
4-2-4 總結 53
4-3 酒糟發酵槽微生物之活性測試及反應動力機制探討 54
4-3-1 不同食微比對產氫程序之影響 54
4-3-2 高食微比對產氫程序之影響 62
4-3-3 不同pH下對產氫程序之影響 65
4-4 甲烷化程序與操作兩階段式發酵殘渣有機物 70
4-4-1 產氫後殘渣之甲烷化程序 70
4-4-2 兩階段式生質能源程序之效能評估 73
第五章 結論與建議 75
5-1 結論 75
5-2 建議 76
第六章 參考文獻 77
白明德、鄭幸雄、趙禹杰、蕭嘉瑢、楊雅斐 (2002) 厭氧氫發酵程序中氫分壓的影響與重要性,第27屆廢水研討會論文集。

任維傑 (2006) 探討厭氧產氫純菌Clostridium在不同pH 下之反應動力機制,國立成功大學環境工程學系碩士論文。

林佩瑩、吳怡儒、任維傑、李學霖、黃良銘 (2004) Clostridium屬菌株生物產氫:代謝途徑與數學模式模擬研究,第29屆廢水研討會論文集。

梁德明、鄭幸雄、吳坤龍 (2002) Behavior of gas separation for submersed hollow fibers installed in an anaerobic hydrogen fermentor,第27屆廢水研討會論文集。

張仕旻、鄭幸雄 (2001) 利用薄膜反應器於高溫厭氧產氫生物程序之研究,國立成功大學環境工程學系碩士論文。

趙禹杰、鄭幸雄 (2004) 澱粉及蛋白腖複合基質厭氧發酵程序之功能評估,國立成功大學環境工程學系碩士論文。

鄭幸雄、白明德、蔡遠瑋、王永福、蕭嘉瑢 (2003a) 厭氧產氫菌分解蛋白質之機制探討,第 28屆廢水研討會論文集。

鄭幸雄、白明德、趙禹杰 (2003b) 厭氧產氫菌分解高分子碳水化合物及peptone 之產氫機制,第28 屆廢水研討會論文集。

鄭幸雄、林秋裕、曾怡禎、李季眉、林信一、林明瑞、陳幸德 (2003c) 複合基質生物產氫機制及程序應用之整合研究-2002 年,第28 屆廢水研討會論文集。

蕭景庭、李季眉、董昀昌 (2000) 不同產氫光合作用細菌之最佳產氫條件研究, 338-344。

蕭嘉瑢、鄭幸雄 (2004) 複合基質厭氧產氫發酵生物程序操控之功能評估及分生檢測生態之研究,國立成功大學環境工程學系碩士論文。

Adams, M. W. W. and E. I. Stiefel (1998). "Biological hydrogen production: not so elementary." Science 282: 1842-1843.

Allison, C. and G. T. MacFarlane. (1990). "Regulation of protease production in Clostridium sporogenes." Applied and Environmental Microbiology 56: 3485-3490.

Bai, M., S. S. Cheng, et al. (2001). Biohydrogen produced due to peptone degradation by pretreated seed sludge. ASIAN WATERQUAL , IWA Asia-Pacific Regional Conference. Japan: 315-320.

Baldwin, R. L. and L. P. Milligan (1964). "Electron transport in Peptostreptococuss elsdenii." Biochimica et Biophysica Acta 92: 421-432.

Baronofsky, J. J., W. J. A. Schreurs, et al. (1984). "Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum." Applied and Environmental Microbiology 48(6): 1134-1139.

Bockris, J. O. (2002). "The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment." International Journal of Hydrogen Energy 27(7-8): 731-740.

Brosseau, J. D. and J. E. Zajic (1982). "Hydrogen-gas production with Citrobacter intermedim and Clostridium pasteurianum." Journal of Chemical Technology and Biotechnology 32(3): 496-502.

Buchanan, B. B. and D. I. Arnon (1970). "Ferredoxins:chemistry and function in photosynthesis, nitrogen fixation and fermentative metabolism." Advanced Enzymology 33: 119-176.

Cheng, S. S., I. C. Tseng, et al. (1999). Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. The 7th IWA Asic-Pacific Regional Conference. Taipei, Taiwan: 759-764.

Crabbendam, P. M., O. M. Neijssel, et al. (1985). "Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture." Archives of Microbiology 142(4): 375-382.

Das, D. and T. N. Veziroglu (2001). "Hydrogen production by biological processes: a survey of literature." International Journal of Hydrogen Energy 26(1): 13-28.

Dunn, S. (2002). "Hydrogen futures: toward a sustainable energy system." International Journal of Hydrogen Energy 27(3): 235-264.

Ezeji, T. C., N. Qureshi, et al. (2004). "Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping." Applied Microbiology and Biotechnology 63(6): 653-658.

Fabiano, B. and P. Perego (2002). "Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes." International Journal of Hydrogen Energy 27(2): 149-156.

Fang, H. H. P. and H. Liu (2002). "Effect of pH hydrogen production from glucose by a mixed culture." Bioresource Technology 82: 87-93.

Fumiaki, T., J. D. Chang, et al. (1993). "Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B from termites." Canadian Journal of Microbiology 39: 726-730.

Gibson, A. M., R. C. L. Ellis-Brownlee, et al. (2000). "The effect of 100% CO2 on the growth of nonproteolytic Clostridium botulinum at chill temperature." International Journal of Food Microbiology 54: 39-48.

Girbal, L. and P. Soucaille (1994). " Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool." Journal of Bacteriology 176: 6433-6438.

Girbal, L. and P. Soucaille (1998). "Regulation of solvent production in Clostridum acetobutylicum. ." Trends in Biotechnology 16(11-16).

Gottschalk G. (1985). Bacterial Metabolism. New York, Springer-Verlag.

Hüsemann, M. H. W. and E. T. Papoutsakis (1989). "Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum." Applied Microbiology and Biotechnology 30(6): 585-595.

Hefner, R. A. (2002). "The age of energy gases." International Journal of Hydrogen Energy 27(1): 1-9.

Herrero, A. A., R. F. Gomez, et al. (1985). "Growth inhibition of Clostridium thermocellum by carboxylic acids:a mechanism based on uncoupling by weak acods." Appl Microbiol Biotechnol 22: 53-62.

Heyndrickx, M., P. de Vos, et al. (1991). "Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol." Journal of Applied Bacteriology 70: 3233-3241.

Hippe, H., J. R. Andreesen, et al. (1992). The Prokaryotes. New York, Springer-Verlag.

Jones, M. V. (1989). Modified atmospheres. In: Mechanisms of action of food preservation procedures. England, Elsevier Applied Science Essex.

Kalia, V. C., S. R. Jain, et al. (1994). "Fermentationof bio-waste to H2 by Bacillus lichenoformis." World Journal of Microbiology and Biotechnology 10: 224-227.

Kataoka, N., A. Miya, et al. (1997). "Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria." Water Science and Technology 36(6-7): 41-47.

Kell, D. B., M. W. Peck, et al. (1981). "On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum." Biochemical and Biophysical Research Communications 99: 81-88.

Kumar, N. and D. Das (2000). "Production and purification of alpha-amylase from hydrogen-producing Enterobacter cloacae IIT-BT 08." Bioprocess and Biosystems Engineering 23: 205-208.

Lambert, A. L., J. P. Smith, et al. (1991). "Shelf life extension and microbiological safety of fresh meat: A review." Food Microbiology 8: 267-297.

Lay, J.-J. (2000). "Modeling and Optimization of Anaerobic Digested Sludge Converting Starch to Hydrogen." Biotechnolog and Bioengineering 68(3): 269-278.

Lay, J. J. (2001). "Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose." Biotechnology and Bioengineering 74: 280-287.

Lee, Y. J., T. Miyahara, et al. (2001). "Effect of iron concentration on hydrogen fermentation." Bioresource Technology 80: 227-231.

Lovitt, R. W., G. J. Shen, et al. (1998). "Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J." Bacteriology 170: 2809-2815.

McCarty, P. L. (1964). Anaerobic Waste Treatment Fundamentals III, Public Works.

Michel-Savin, D., R. Marchal, et al. (1990). "Butyrate production in continuous culture of Clostridum tyrobutyricum: effect of end-product inhibition." Applied Microbiology and Biotechnology 33: 127-131.

Miyake, J. (1998). Biohydrogen. New York, Plenum Press.

Niel, E. W., P. A. M. Claassen, et al. (2003). "Substrate and product inhibition of hydrogen production by extreme thermophile, Caldicellulosiruptor saccharolyticus." Biotechnology and bioengineering 81: 255-262.

Onodera, H., T. Miyahara, et al. (1999). "Influence of ammonia concentration on hydrogen transformation of sucrose." Proc. of 7th IWQA.: 1139-1144.

Payne, M. J., A. Chapman, et al. (1993). "Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. ." FEBS Lett. 317: 101-104.

Rachman, M. A., Y. Nakashimada, et al. (1998). "Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor." Applied Microbiology and Biotechnology 49(4): 450-454.

Reith, J. H., R. H. Wijffels, et al., Eds. (2003). Bio-methane & Bio-hydrogen, Dutch Biological Hydrogen Foundation on behalf
of the contributing authors.

Rittmann, B. E. (2008). "Opportunities for Renewable Bioenergy Using Microorganisms." Biotechnology and Bioengineering 100(2): 203–212.

Schwartz, R. D. and K. F. A. (1982). " Acetic acid production by Clostridium themoacetium in pH-controlled batch fermentations at acidic pH." Applied and Environmental Microbiology 43: 1385-1392.

Taguchi, F., N. Mizukami, et al. (1995). " Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2." Canadian Journal of Microbiology 41: 536-540.

Tanisho, S., M. Kuromoto, et al. (1998). "Effect of CO2 removal on hydrogen production by fermentation." International Journal of Hydrogen Energy 23(7): 559-563.

Tanisho, S., N. Wakao, et al. (1983). "Biological hydrogen production by Enterobacter aerogenes." Journal of chemical engineering of Japan 16: 529-530.

Tanisho, S. and I. Y. (1994). "Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes." International Journal of Hydrogen Energy 19: 807-812

Terracciano, J. S., W. J. A. Schreurs, et al. (1987). "Membrance H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum." Applied and Environmental Microbiology 53: 782-786.

Thauer, R. K., K. Jungermann, et al. (1977). "Energy conservation in chemotrophic anaerobic bacteria." Bacteriological Reviews 41(1): 100-180.

Ueno, Y., S. Haruta, et al. (2001). "Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost." Applied Microbiology and Biotechnology 57(4): 555-562.

Van Andel, J. G., G. R. Zoutberg, et al. (1985). "Glucose fermentations by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture." Applied and Environmental Biotechnology 23: 21-26.

Van Ginkel, S. and B. Logan (2005). "Inhibition of biohydrogen production by undissociated acetic and butyric acids. Erviron. Sci. Technol. 39: 9351-9356.
." Science Technology 39: 9351-9356.

Vasconcelos, I., L. Girbal, et al. (1994). "Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol." Journal of Applied Bacteriology 176: 1443-1450.

Wang, G. and D. I. C. Wang (1984). "Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum." Applied and Environmental Microbiology 47: 294-298.

Yokoi, H., T. Ohkawa, et al. (1995). "Characteristics of hydrogen production by acid uric Enterobacter aerogen strain HO-39." Journal of Fermentation and Bioengineering 80: 571-574.

Zoetemeyer, R. J., A. J. C. M. Matthijse, et al. (1982). "Product inhibition in the acid forming stage of the anaerobic digestion process. Water Res. 16: 633-639." Water Research 16: 633-639.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top