跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連雅棉
研究生(外文):Ya-Mein Lien
論文名稱:紫外光活化過硫酸鹽氧化甲基第三丁基醚之研究
論文名稱(外文):Ultraviolet Light-activated Persulfate Oxidation of MTBE in Water
指導教授:邱成財林財富林財富引用關係
指導教授(外文):Cary T. ChiouTsair-Fuh Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:111
中文關鍵詞:化學氧化過硫酸鹽紫外光活化甲基第三丁基醚
外文關鍵詞:chemical oxidationpersulfateUVactivatedMTBE
相關次數:
  • 被引用被引用:15
  • 點閱點閱:472
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:0
現地化學氧化技術的過硫酸鹽 (persulfate) 會產生高反應性的硫酸根自由基 (SO4–•) 與氫氧自由基 (OH•),具有氧化有機污染物的能力。由於未活化的過硫酸鹽對有機污染反應速率很慢,無法在短時間內快速氧化有機物,因此本研究藉由紫外光活化過硫酸鹽以加速氧化甲基第三丁基醚 (MTBE)。研究使用254 nm和365 nm 波長的紫外光活化過硫酸鹽,並探討在不同pH系統和不同MTBE與氧化劑莫耳濃度比例系統,活化過硫酸鹽對MTBE之氧化反應動力。

實驗顯示254 nm UV可有效活化過硫酸鹽產生自由基,有效地去除破壞MTBE,在反應時間1小時內,40 %過硫酸鹽被消耗,MTBE的降解率為99.5 %。在活化過硫酸鹽氧化MTBE的系統中,隨著反應時間的增加,反應初期產生的氧化中間產物TBA與TBF會逐漸轉變為acetone,並且在反應時間50分鐘後,將53 %的MTBE礦化成CO2。根據實驗結果推測254 nm UV 活化過硫酸鹽/MTBE系統的反應動力為二階反應,且該系統的反應級數似乎不會受到系統pH明顯的影響。不同pH系統的反應動力也顯示,酸性環境條件下有較快的MTBE反應速率,可能是氫離子易催化過硫酸鹽產生SO4–•所導致。

365 nm UV活化實驗顯示,在反應時間1小時內,過硫酸鹽無明顯消耗現象,MTBE的降解率約為25 % ; 反應時間50分鐘後,系統約有21 % 的MTBE礦化。365 nm UV活化過硫酸鹽對於MTBE的氧化降解速率較慢,其反應速率符合可以用假一階反應動力描述。
Persulfate is one of the oxidants used in of in-situ chemical oxidation (ISCO) of groundwater contamaintion. The oxidant may produce sulfate radical (SO4–•) and hydroxyl radical (OH•) with high oxidation potential in the remediation techniques. Although the oxidation potential for the chemical is high, the kinetics is very slow under typical environmental conditions. Therefore, the objective of this work was to investigate the feasibility of enhancing the reaction rates of persulfate for the oxidation of methyl tert-isobutyl ether using ultraviolet (UV) light.

In this study, 254 nm and 365 nm UV were used to activate persulfate for oxidizing MTBE at different pH values. MTBE was easily degraded by the persulfate/UV254 system. Within 50 mins, 53% of MTBE was mineralized in the persulfate/UV254 system. The concentration of persulfate was decreased by 40 %, while that of MTBE was reduced by 99.5% within 1 hour in the 254 nm UV system. A second-order kinetic model well described the reduction of MTBE in aqueous solution. At lower pH, higher kinetic rate was observed for MTBE reduction.

For the persufate/UV365system, MTBE was resistant to degrade. Within 1 hr of reaction, very minor amount of persulfate decomposed, and only 25% and 17% of MTBE was degraded and mineralized, respectively. Unlike that in the persulfate/UV254 system, the degradation of MTBE for this case followed a pseudo-first-order reaction.
目錄

摘要… II
Abstract. III
誌謝… V
目錄… VII
表目錄 X
圖目錄 XI
第一章 前言 1
1.1研究緣起 1
1.2 研究內容 3
1.3 研究目的 4
第二章 文獻回顧 5
2.1 甲基第三丁基醚的性質與影響 5
2.1.1甲基第三丁基醚之特性 5
2.1.2 MTBE對環境衝擊及流佈 7
2.1.3 MTBE對人體健康之影響 8
2.2 現地化學氧化法 9
2.2.1現地化學氧化法原理 9
2.2.2 ISCO常用化學氧化劑 10
2.3 過硫酸鹽氧化劑 15
2.3.1過硫酸鹽物化特性 15
2.3.2過硫酸鹽於水溶液中的反應 15
2.3.2過硫酸鹽氧化反應與影響因素 18
2.4 高級氧化程序應用在受MTBE污染之水源 23
2.4.1 Ozone / Hydrogen peroxide 26
2.4.2 Ozone / Ultraviolet irradiation 27
2.4.3 Hydrogen peroxide / Ultraviolet irradiation 28
第三章 實驗設備與方法 31
3.1 過硫酸鹽分析 33
3.1.1 實驗試劑與設備 33
3.1.2 分析方法 33
3.2 MTBE與氧化中間產物分析 35
3.2.1 實驗試劑與設備 35
3.2.2 分析方法 35
3.3 TOC分析 36
3.4 UV 之波長強度量測 37
3.4.1實驗設備 37
3.4.2 量測方法 37
3.5 氧化實驗 39
3.5.1實驗試劑與設備 39
3.5.2實驗方法 39
第四章 結果與討論 43
4.1 過硫酸鹽與MTBE氧化降解反應 43
4.2 紫外光活化過硫酸鹽 46
4.3 紫外光與MTBE降解反應 48
4.4 254 nm UV活化過硫酸鹽與MTBE氧化降解 51
4.4.1 254 nm UV /過硫酸鹽/MTBE去離子水系統之氧化降解動力 51
4.4.2 254 nm UV/過硫酸鹽/MTBE磷酸緩衝系統之氧化降解動力 61
4.4.3 254 nm UV /過硫酸鹽/MTBE在鹼性系統之氧化降解動力 67
4.4.4 254 nm UV/過硫酸鹽/MTBE系統生成之氧化中間產物 73
4.5 365NM UV活化過硫酸鹽與MTBE氧化降解動力 78
4.5.1 365 nm UV/過硫酸鹽/MTBE在去離子水系統氧化動力 78
4.5.2 365 nm UV/過硫酸鹽/MTBE在鹼性系統氧化動力 82
4.5.3 365 nm UV/過硫酸鹽/MTBE系統生成氧化中間產物 84
4.6 光活化過硫酸鹽與MTBE在去離子水系統之氧化反應礦化率 87
4.7 過硫酸鹽與TBF氧化降解反應 90
4.7.1 過硫酸鹽/TBF在去離子水系統氧化動力 90
4.7.2 254 nm UV/過硫酸鹽/TBF在去離子水系統氧化動力 92
第五章 結論與建議 95
5.1 結論 95
5.2 建議 97
參 考 文 獻 99
附錄:總碳及總有機碳的關係 109
自述.. 111




表目錄

表2.1 MTBE之物理化學性質 6
表2.2 四種常見氧化劑及其衍生自由基之氧化還原電位 13
表2.3 四種氧化劑對污染物的處理效益比較 13
表2.4 四種氧化劑優缺點彙整 14
表2.5 過硫酸鹽於水溶液中降解方程式 17
表4.1 254 nm UV活化過硫酸鹽與MTBE在去離子水溶液之反應動力 速率常數 55
表4.2 254 nm UV活化過硫酸鹽與MTBE在磷酸緩衝系統之反應動力 速率常數 63
表4.3 254 nm UV活化過硫酸鹽與MTBE在鹼性系統溶液之反應動力 速率常數 69
表4.4 254 nm UV與Persulfate/MTBE (6.7 mM/0.45 mM) 系統之MTBE 降解速率常數與半衰期 69








圖目錄

圖2.1 ISCO之示意圖 9
圖2.2 MTBE於高級氧化處理主要的降解途徑 25
圖2.3 MTBE於高級氧化處理的降解途徑與降解比例 25
圖3.1 研究架構流程圖 32
圖3.2 過硫酸鹽檢量線 34
圖3.3 UV光源光譜, (A) UV-C 254 nm ; (B) UV-A 365 nm 38
圖3.4 反應裝置 41
圖4.1 6.7 mM過硫酸鹽氧化初始濃度0.45 mM MTBE 氧化降解反應, (A) 過硫酸鹽與MTBE 濃度變化; (B) pH與ORP 變化 45
圖4.2 初始濃度6.7 mM過硫酸鹽自解及降解初始濃度0.45 mM MTBE動力.47
圖4.3 254 nm UV與不同初始濃度之MTBE降解反應, (A) MTBE濃度變化; (B) 初始濃度0.45 mM MTBE中間產物生成變化; (C) 初始濃度0.9 mM MTBE中間產物生成變化 49
圖4.4 365 nm UV與初始濃度0.45 mM MTBE降解反應, (A) MTBE濃度 變化; (B) MTBE之中間產物生成變化….…………………………..….50
圖4.5 254 nm UV活化6.7 mM過硫酸鹽氧化0.45 mM MTBE之降解反應, (A)過硫酸鹽與MTBE 濃度變化; (B) PH與ORP變化 56
圖4.6 254 nm UV活化6.7 mM過硫酸鹽氧化0.9 mM MTBE之降解反應, (A)過硫酸鹽與MTBE濃度變化;(B)pH與ORP變化 57
圖4.7 254 nm UV活化6.7 MM過硫酸鹽在去離子水溶液氧化0.45 mM與 0.9 mM MTBE之氧化降解反應 58
圖4.8 254 nm UV活化過硫酸鹽與MTBE在去離子水溶液之反應動力 (A) P/M=3 (B) P/M=15 59
圖4.9 254 nm UV活化過硫酸鹽與MTBE (P/M=9) 在去離子水溶液之反應 動力預測曲線及實驗值 60
圖4.10 254 nm UV活化6.7 mM過硫酸鹽在磷酸緩衝系統氧化0.45 mM MTBE之氧化降解反應 64
圖4.11 254 nm UV活化過硫酸鹽與MTBE在磷酸緩衝系統溶液之反應動力; (A) P/M=3, (B) P/M=15 65
圖4.12 254 nm UV活化過硫酸鹽與MTBE (P/M=9) 在磷酸緩衝系統溶液之反應動力預測及實驗值 66
圖4.13 254 nm UV活化6.7 mM過硫酸鹽在鹼性系統氧化0.45 mM MTBE之 氧化降解反應 70
圖4.14 254 nm UV活化過硫酸鹽與MTBE在鹼性系統之反應動力 71
(A) P/M=3 (B) P/M=15 71
圖4.15 254 nm UV活化過硫酸鹽與MTBE (P/M=9) 在鹼性系統之反應動力 預測及實驗值 72
圖4.16 254 nm UV活化6.7 mM過硫酸鹽與0.45 mM之MTBE在去離子水 溶液氧化反應之中間產物生成動力 76
圖4.17 254 nm UV活化6.7 mM過硫酸鹽與0.45 mM之MTBE在磷酸緩衝 溶液氧化反應之中間產物生成動力 76
圖4.18 254 nm UV活化6.7 mM過硫酸鹽與0.45 mM之MTBE在鹼性系統 氧化反應之中間產物生成動力 77
圖4.19 365 nm UV 活化6.7 mM過硫酸鹽氧化0.45 mM MTBE之降解反應, (A)過硫酸鹽與MTBE 濃度變化; (B) pH與ORP變化 80
圖4.20 365 nm UV活化過硫酸鹽氧化0.45 mM MTBE之降解反應, 81
(A) 過硫酸鹽初始濃度4 mM ; (B) 過硫酸鹽初始濃度13 mM 81
圖4.21 365 nm UV活化6.7 mM過硫酸鹽在鹼性系統氧化0.45 mM MTBE 氧化降解反應 83
圖4.22 365 nm UV活化6.7 mM過硫酸鹽與0.45 mM之MTBE在去離子水 系統氧化反應之中間產物生成動力 86
圖4.23 365 nm UV活化6.7 mM過硫酸鹽與0.45 mM之MTBE在鹼性系統 氧化反應之中間產物生成動力 86
圖4.24 紫外光活化過硫酸鹽與MTBE反應系統之總碳與有機碳濃度變化, (A)254 nm UV活化系統; (B)365 nm UV活化系統 89
圖4.25 初始濃度6.7 mM過硫酸鹽與液相濃度0.35 mM TBF之氧化反應, (A) TBF、TBA及acetone濃度之變化; (B)系統pH及ORP變化 91
圖4.26 254 nm UV活化過硫酸鹽氧化初始濃度0.35 mM TBF反應動力, (A) 過硫酸鹽初始濃度4 mM; (B) 過硫酸鹽初始濃度6.7 mM 94
Acero, J. L., Haderlein, S. B., Schmidt, T. C., Suter, M. J. F., and Gunten, U. V. (2001). MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: Efficiency of the process and bromate formation. Environmental Science and Technology, 35, 4252-4259.

Alexander, A., and Eli, K. (2001). Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. The Journal of Chemical Thermodynamics, 33, 61-69.

Amarante, D. (2000). Applying in situ chemical oxidation. Pollution Engineering, 32, 40-42.

Baus, C., Sona, M., and Brauch, H. J. (2007). Ozonation and combined ozone/H2O2, UV/ozone and UV/H2O2 for treatment of fuel oxygenates MTBE, ETBE, TAME, and DIPE from water - a comparison of removal efficiencies. Water Science and Technology, 55(12): 307-311.

Balaji Ramakrishnan. (2004). Treatment of MTBE contaminated waters using air stripping and advanced oxidation processes. B.E. Civil Engineering, Anna University, India.

Barreto, R.D., Gray, K.A., Anders, K. (1995). Photocatalytic degradation of methyl tert-butyl ether in TiO2 slurries: a proposed reaction scheme. Water Research, 29, 1243-1248.

Behrman, E.J., and Dean, D.H. (1999). Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (Persulfate) in polyacrylamide gel electrophoresis. Journal of Chromatography B, 723, 325-326.

Berglind, L., Gjesing, E., and Skipperud, J. E. (1979). Removal of organic matter in water by UV and hydrogen peroxide. EPA-570/9-79-020, U.S. EPA.

Berlin, Ad. A. (1986). Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds. Kinetics and Catalysis, 27, 34-39.

Bolton, J. R. (2001). Ultraviolet applications handbook, Bolton Photosciences, Inc., Ontario, Canada.

Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B. (1988). Critical review of rate constants for hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O–) in aqueous solution. Journal Physical and Chemical Reference Data, 17(2), 13.

Brown, R.A., Robinson, D., Skladany, G.., and Loeper, J. (2003). Response to naturally occurring organic material: Permanganate versus persulfate Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1692-1698, May 12-16, Gent, Belgium.

Chang, P. B. L., and Young, T. M. (2000). Kinetics of methyl tertbutyl ether degradation and by-products formation during UV/H2O2 water treatment. Water Research, 34, 2233-2240.

Charlotte Rosendahl Pedersen and Carla Essenberg. (2007). University of Minnesota. http://umbbd.msi.umn.edu/mtb/mtb_map.html

Clarke, N. and Knowles, G. (1982). High purity water using H2O2 and UV radiation. Effluent and Water Treatment Journal, 22, 335-341.

Clesceri, L.S., Greenberg, A.E., Eaton, A.D., (1998). Standard methods for the examination of water and wastewater, 20thed. APHA, AWWA, and WEF.

Davidson, J.M. and Creek, D.N., (2000). Using the gasoline additive MTBE in forensic environmental investigations, Environmental Foresics, 1, 31-36.

Dogliotti, L., and Hayon, E. (1967). Flash photolysis of persulfate ions in aqueous solutions. Study of the sulfate and ozonide redical anions. The Journal of Physical Chemistry, 71(8), 2511-2516.

Elovitz, M.S.; von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone Science & Engineering, 21(3), 239-260.

Gareth, J.P., and Andrew, A.C. (1996). Polymer communications: sonochemical acceleration of persulfate decomposition. Polymer, 37(17), 3971-3973.
Garoma, T., and M. D. Gurol. (2006). Oxidation of methyl tert-butyl ether in aqueous solution by an ozone/UV process. Journal of Environmental Engineering-ASCE , 132(11): 1404-1412.

Garoma, T., and Gurol, M. D. (2008). Comprehensive kinetic model for the degradation of methyl tert-butyl ether by an ozone/UV process. Industrial & Engineering Chemistry Research, 47(20): 7654-7662.

Goulden, P. D. and Anthony, D. H. J. (1978). Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Analytical Chemistry, 50(7), 953-958.

Graham, J. L., Striebich, R., Patterson, C. L., Radhakrishnan, E., and Haught, R. C. (2004). MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation. Chemosphere, 54, 1011-1016

Hayon, E., and McGarvey, J.J. (1967). Flash photolysis in the vacuum ultraviolet region of SO42-, CO32- and OH- ions in aqueous solutions. The Journal of Physical Chemistry, 71, 1472-1477.

Hayon, E., Treinin, A., and Wilf, A. (1972). Electron spectra, photochemistry and qutooxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. Journal of the American Chemical Society, 94, 47-57.

Hoag, G.E., Chheda, V., Woody, B.A., and Dobbs, G.M. (2000). Chemical oxidation of volatile organic compounds. U.S. Patent no.6, 019, 548.

House, D.A. (1962). Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 62, 185-203.

Huang, K.C., Couttenye, R.A., Hoag, G.E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE), Chemoshpere, 49, 413-420.

Hung, H.W., and Lin, T.F. (2006). Adsorption of MTBE from contaminated water by carbonaceous resins and mordenite zeolite, Journal of Hazardous Materials, 135 (1-3), 210-217.

The Interstate Technology & Regulatory Council (ITRC), (2005). Technical and regulatory guidance for in situ chemical oxidation ,2nd Ed. http://www.itrcweb.org/.

Kavanaugh, M. C., Chowdhury, Z., Kommineni, S., Liang, S., Min, J., Croue, J., Corin, N., Amy, G., Simon, E., Cooper, W., Tornatore, P. M., and Nickelsen, M. (2003). Removal of MTBE with advanced oxidation processes, AWWA Research Foundation, Denver, CO.

Kelly, K.L., Marley, M.C., and Sperry, K.L. (2002). In situ chemical oxidation on MTBE. Proceedings of 2002 Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, July 21-24, Niagara Falls, Ontario, Canada.

Kislenko, V.N., Berlin, A.A., and Litovchnko, N.V. (1995). Kinetics of oxidation of glucose by persulfate ions in the presence of Mn(II) ions. Kinetics and Catalysis, 38(3), 359-364.
Kolthoff I.M. and Miller I.K., (1951). The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society, 73, 3055-3059.

Leitner, N.K. V., Papailhou A.-L., Croue J.-P., Peyrot J., and Dore M. (1994). Oxidation of methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) by ozone and combined ozone/hydrogen peroxide. Ozone Science & Engineering, 16, 41-54.

Lewis, R.W. (2002). Key factor for a successful ISCO application with permanganate. Teleconference of In Situ Treatment of Groundwater Contaminated with Non-Aqueous Phase Liquids, Dec 10-11, 2002, Chicago, IL. http://www.clu-in.org/.

Liang, C.J., Bruell, C.J., Marley, M.C., and Sperry, K.L. (2003). Thermally activated persulfate oxidation of Trichloroethylene (TCE) and 1,1,1-Trichlorothane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination, 12(2), 207-228.

Liang, C.J., Bruell, C.J., Marley, M.C., and Sperry, K.L. (2004a). Persulfate oxidation for in situ remediation of TCE. I. Acivated by ferrous ion with and without a persulfate-thiosulfate reedox couple. Chemosphere, 55, 1213-1223.

Liang, C.J., Bruell, C.J., Marley, M.C., and Sperry, K.L. (2004b). Persulfate oxidation for in situ remediation of TCE. II. Acivated by chelated ferrous ion. Chemosphere, 55, 1225-1233.

Liang, C.J., Wang, Z.S., and Mohanty, N. (2006). Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C. Science of the total environment, 370 (2-3): 271-277.

Liang, C.J., Wang, Z.S., and Bruell, C.J. (2007). Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 66 (1): 106-113.

Mitani, M. M., Keller, A. A., Bunton, C. A., Rinker, R. G., and Sandall, O. C. (2002). Kinetics and products of reactions of MTBE with ozone and ozone/hydrogen peroxide in water. Journal of Hazardous Materials, 89, 197-212.

Neta, P., Robert E. H., and Alberta, B. R. (1988). Rate constants for reactions of inorganic radical in aqueous solution. Journal of Physical Chemistry Reference Data, 17 (3), 1027-1262.

Peyton, G.R. (1993). The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 41, 91-103.

Peyton, G. R., and Glaze, W. H. (1987). Mechanism of photolytic ozonation - photochemistry of environmental aquatic systems. American Chemical Society Symposium Series, Washington, D.C, 76-88.

Pugh, J.R. (1999). In situ remediation of soils containing organic contaminants using the electromigration of peroxysulfate ions. U.S. Patent 597348.

U.S. EPA, Methyl Tertiary Butyl Ether (MTBE). http://www.epa.gov/MTBE/

Raupp, G. B., and Junio, C. T. (1993). Photocatalytic oxidation of oxygenated air toxics. Applied Surface Science, 72, 321-327.

Richard, A.B., David, R., George, S., and Joseph, L. (2002). Response to naturally occurring organic material: permanganate versus pesulfate. USEPA, Solid Waste and Emergency Response, EPA-542-N-02-002, 43, 1692-1698.

Salari, D., Daneshvar, N., Aghazadeh, F., and Khataee A.R. (2005). Application of artificial neural networks for modeling of the treatment of wastewater contaminated with methyl tert-butyl ether (MTBE) by UV/H2O2 process. Journal of Hazardous Materials, 125(1-3): 205-210.

Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., and Lowe, K.S. (2001). Principle and practices of in situ chemical oxidation using permanganate. Battelle Press.

Siegrist, R.L. (2002). Fundamentals of in situ chemical oxidation (ISCO). Teleconference of in situ treatment of groundwater contaminated with non-aqueous phase liquids, Dec 10-11, 2002, Chicago, IL. http://www.clu-in.org/.

Tieckelmann, R.H., Thorp, D.S., Gagliardi, C., and Downey, G.D. (1998). Use of persulfate to destroy haloform. U.S. Patent 5, 849, 985.


Venkatadri, R., and Peters, R. W. (1993). Chemical oxidation technologies: Ultraviolet light/hydrogen peroxide, Fenton's reagent and titanium dioxide assisted photocatalysis. Hazardous Waste and Hazardous Materials, 10(2), 107-149.

Wagler, J. L., and Malley, J. P. Jr. (1994). The removal of methyl tertiary-butyl ether from a model ground water using UV/peroxide oxidation. Journal NEWWA. Sep., 236-260.

Yeh, C. K., and Novak, J. T. (1995). The effect of hydrogen peroxide on the degradation of methyl and ethyl tert-butyl ether in soils. Water Environment Research 67, 828-834.

方瑋寧,「MTBE好氧分解之可行性研究」,國立中山大學環境工程研究所碩士論文,2002。

林財富、鄭仲凱,「現地化學氧化技術之發展與案例分析」,第八屆土壤及地下水污染整治技術研討會論文集,127-140,台北市,2003。

洪旭文,「吸附劑材質透水性處理牆處理受甲基第三丁基醚污染地下水之研究」,國立成功大學環境工程系博士論文,2005。

林佩雲,「過硫酸鹽熱催化氧化三氯乙烯的影響」,國立成功大學環境工程系碩士論文,2005。

劉俊延,「過硫酸鹽再生活性碳及氧化甲基第三丁基醚之研究」,國立成功大學環境工程系碩士論文,2007。

行政院環境保護署,「以釋氧化劑整治牆處理受油污染之地下水」,計畫編號:EPA-96-04-006,2007。

行政院環境保護署相關資料,汽油添加劑甲基第三丁基醚之環境影響http://www.epa.gov.tw。

Hazardous Substances Data Bank (HSDB®),網路版。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊