跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 14:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳進旺
研究生(外文):Chin-Wang Chen
論文名稱:遺傳和外遺傳分析肌動素調節蛋白質在胃腺癌的表現
論文名稱(外文):Genetic and epigenetic analysis of gelsolin expression in gastric adenocarcinoma
指導教授:沈延盛沈延盛引用關係謝達斌
指導教授(外文):Yan-Shen ShanShieh DB
學位類別:碩士
校院名稱:國立成功大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:57
中文關鍵詞:肌動素調節蛋白質胃腺癌
外文關鍵詞:gelsolingastric adenocarcinoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
胃癌是全世界常見癌症死亡原因,尤其好發於亞洲地區。根據衛生署2008年統計資料顯示,胃癌在台灣男性及女性十大癌症中排名皆第五位,是所有癌症的5.9%。手術切除腫瘤是目前主要治療的方法。早期胃癌五年存活率可達九成,但一旦侵襲至晚期胃癌,五年存活率降到20-30%,其中轉移是造成癌症病人死亡的主要原因。因此了解侵襲的機轉對控制胃癌的轉移是非常關鍵的。
肌動素調節蛋白 (gelsolin) 位在人類的第九對染色體,主要是藉由肌動蛋白的動態調節,進而調控細胞形態維持、細胞移動、細胞分化及細胞凋零。在過去研究中已知在許多人類癌症中,gelsolin蛋白質表現下降,且在一些癌組織之大規模基因體掃描實驗中也証明它是表現量最顯著受到抑制的蛋白質之一,然而胃癌發展與gelsolin 之間的關係尚未被完整研究。本研究主要目的在探討gelsolin與胃癌侵襲過程的關係。在免疫組織化學染色分析中發現,與正常胃黏膜組織比較,癌組織其gelsolin表現相對減少。而且隨著侵襲的過程中,gelsolin表現更為明顯減少。在病人的預後因子方面,gelsolin表現量的減少與較差的預後相關,在統計上為一獨立的胃癌預後因子。在胃癌細胞株gelsolin的過度表現會抑制癌細胞的移動、侵襲及增生的能力。在gelsolin之遺傳分析方面, 我們選擇四個單一核甘酸多型性來分析正常胃黏膜細胞,胃癌細胞及胃癌細胞株的對偶基因頻率,實驗發現這三者並沒有統計上的差別,也就是胃癌在gelsolin的遺傳分析上是沒有差異性的.另外, 在gelsolin的表觀遺傳表現調節方面,實驗中以胃癌細胞株加上去氧核糖核酸甲基化抑制劑及去組織蛋白乙醯化抑制劑治療,發現gelsolin表現明顯上升。同時在胃癌病患的腫瘤組織中明顯有甲基特異聚合酵素連鎖反應結果。顯示胃癌中gelsolin表現可能是經由去氧核糖核酸甲基化及組織蛋白乙醯化所調控。
綜觀之,gelsolin的表現在胃癌臨床上具有預後之指標意義尤其於初期癌症並且與癌細胞侵犯行為等有關。以胃癌細胞株模型及基因遺傳分析探討的後續研究中進一步發現gelsolin在促進癌侵襲力之結果與基因去氧核糖核酸甲基化及組織蛋白乙醯化有關。
Gastric cancer is one of the most common causes of cancer death in the world, with a particularly high incidence in Asia. In Taiwan, it accounts for an estimated 5.9% of all malignancies in 2008. Surgical resection is the only potential curative method to treat patients with gastric cancer. The prognosis at stage I and II gastric cancer is promising (5-year survival about 90%), but it deteriorates rapidly at stage III and IV (5-year survival about 20~30%). Therefore, to understand the pathophysiology of metastasis is demanded for future treatment of gastric cancer. It is important to understand the molecular genetic events involved in the tumor progression and metastases of gastric cancer.
Discovered in 1971, gelsolin is located at chromosome 9q33, an actin-binding protein involving in dynamic change of the actin cytoskeleton. It has been known to regulate cell morphology maintenance, motility, cellular differentiation, and apoptosis. It is one of the most commonly down regulated proteins in many types of human malignancies. However, the role of gelsolin in gastric carcinogenesis has not been well evaluated. In this study, we demonstrated that gelsolin expression was decreased in gastric cancer tissue, as compared with normal gastric mucosal epithelium. Nevertheless, a significant negative association between gelsolin expression and the cancer progression was observed. Clinicopathological evaluation revealed that gelsolin expression was negatively correlated with the serum CEA level, lymph node invasion and TMN stage. Significant higher survival rate was associated with increasing gelsolin expression in gastric cancer patients, especially at the early stage of disease, implying the potential role of gelsolin as an independent prognostic biomarker in gastric cancer.
The molecular mechanisms of gelsolin expression in gastric cancer cell motility and invasion, as well as cellular proliferation were further investigated in gastric cells. Overexpression of gelsolin in gastric cancer cells could suppress cell motility, cell invasion and cell proliferation. Four selected single nucleotide polymorphisms (SNPs) in coding region have been genotyped using the TaqMan SNP genotyping assay. The genotype frequency of four SNPs in gelsolin gene was not significantly different between gastric cancer cells, gastric cancer tissue and gastric epithelium in gastric cancer patients. In addition, treatment of gastric cells with 5-azacytidine (a demethylation agent) and trichostatin A (a histone deacetylation agent) also enhanced gelsolin expression. In the methylation-specific PCR study, the result showed a tumor-specific hypermethylation of the gelsolin promoter. These genetic and epigenetic analyses suggested that an epigenetic regulatory mechanism of DNA methylation and histone acetylation could be one of the mechanisms for gelsolin expression modulation in gastric cancer cells.
In summary, loss of gelsolin expression is a significantly positive biomarker during gastric cancer progression and participates in gastric carcinogenesis through the modulation of cell motility, cell invasion, and cell proliferation. Gelsolin play a role as a tumor suppressor in gastric cancer and it’s down-regulated may be regulated by changes in DNA hypermethylation and histone acetylation.
Contents
Abstract…………………………………………………………i
English Abstract……………………………………………i
Chinese Abstract……………………………………………iii
Acknowledgement…………………………………………………v
Contents…………………………………………………………vi
Table Contents…………………………………………………viii
Figure Contents………………………………………………ix
Abbreviation …………………………………………………x
Medication ……………………………………………………xi
Introduction…………………………………………………1
Gastric cancer……………………………………………1
Genetic alteration in humancancer…………………5
Epigenetic alteration in human cancer………………6
Gelsolin………………………………………………………8
Materials and Methods…………………………………………12
Human subject and tissue collection……………………12
Gastric cancer cell lines…………………………………12
Immunohistochemistry (IHC) and grading score………13
Transfection of gelsolin overexpression constructs……13
Western blot analysis………………………………………14
Cell proliferation assay…………………………………15
Cell Migration assay………………………………………15
Immunofluorescence of cytoskeleton……………………16
Long-term activity of gastric carcinoma xenografts in vivo…………16
Genotyping of gelsolin gene single nucleotide polymorphisms…16
Epigenetic regulation of gelsolin expression……………17
Methylation-specific PCR………………………………………17
Statistics………………………………………………………18
Results……………………………………………………………19
Discussion…………………………………………………………25
Summary……………………………………………………………28
References…………………………………………………………29
Tables………………………………………………………………36
Figures……………………………………………………………42
Adrian P.E., G Rajaseger. Types of inter-atomic interactions at the MHC-peptide interface: identifying commonality from accumulated data. BMC Struct Biol, 2, 2, (2002).

Arora, P.D. and McCulloch, C.A. Dependence of fibroblast migration on actin severing activity of gelsolin. J Biol Chem, 271, 20516-20523, (1996).

Asch, H.L., Head, K., Dong, Y.. Widespread loss of gelsolin in breast cancers of humans, mice, and rats. Cancer Res, 56, 4841-4845, (1996).

Asch, H.L., Winston, J.S., and Edge, S.B.. Down-regulation of gelsolin expression in human breast ductal carcinoma in situ with and without invasion. Breast Cancer Res Treat, 55, 179-188, (1999).

Ben-Ze'ev, A.. Cytoskeletal and adhesion proteins as tumor suppressors. Curr Opin Cell Biol, 9, 99-108, (1997).

Burtnick, L.D., Koepf, E.K., Grimes, J. The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell, 90, 661-670, (1997).

Button, E., Shapland, C. and Lawson, D. Actin, its associated proteins and metastasis. Cell Motil Cytoskeleton, 30, 247-251, (1992).

Cho, KR and B. Vogelstein. Genetic alterations in the adenocarcinoma sequence. Cancer 70 (Suppl): 1727-1731, (1995).

Chaponnier, C. and Gabbiani, G. Gelsolin modulation in epithelial and stromal cells of mammary carcinoma. Am J Pathol, 134, 597-603, (1989).

Chaponnier, C., Janmey, P.A. and Yin, H.L. The actin filament-severing domain of plasma gelsolin. J Cell Biol, 103, 1473-1481, (1986).

Chen, P., Murphy-Ullrich, J.E. and Wells, A. A role for gelsolin in actuating epidermal growth factor receptor-mediated cell motility. J Cell Biol, 134, 689-698, (1996).

Cunningham, C.C., Stossel, T.P. and Kwiatkowski, D.J. Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science, 251, 1233-1236, (1991).

De Corte, V., Bruyneel, E., Boucherie, C., Mareel, M., Vandekerckhove, J. and Gettemans, J. Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling. Embo J, 21, 6781-6790, (2002).

Dunn BK, M. Verma. Epigenetic in cancer prevention: early detection and risk assessment: introduction. Ann N Y Acad Sci, 983, 1-4, ( 2003).

Dosaka-Akita, H., Hommura, F., Fujita, H., Kinoshita, I., Nishi, M., Morikawa, T., Katoh, H., Kawakami, Y. and Kuzumaki, N. Frequent loss of gelsolin expression in non-small cell lung cancers of heavy smokers. Cancer Res, 58, 322-327, (1998).

Feitelson, MA, J, et al. Early molecular and genetic determinants of primary liver malignance. Surg clin north Am, 84, 339-354, (2004).
Fujita, H., Okada, F., and Hamada, J. Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. Int J Cancer, 93, 773-780, (2001).

Furuuchi, K., Fujita, H., Tanaka, M. et al. Gelsolin as a suppressor of malignant phenotype in human colon cancer. Tumor Targeting, 2, 277-283, (1997).

Huebner, K. and C.M. Croce. FRA3B and other common fragile sites: the weakest links. Nat Rev Cancer 1,214-221, (2001).

Janmey, P.A.. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol, 56, 169-191, (1994).

Jones P.A. and P.W. Laird. Cancer epigenetic comes of age. Nat Genet, 21, 163-167, (1999).

Kopnin BP. Targets of oncogenes and tumor suppressors: key for understanding basic mechanisms of carcinogenesis. Biochemistry, 65, 2-27, (2002).

Kuzumaki, N. Progress of research on tumor suppressor genes. Hokkaido Igaku Zasshi, 71, 133-137, (1996).

Kwiatkowski, D.J. Predominant induction of gelsolin and actin-binding protein during myeloid differentiation. J Biol Chem, 263, 13857-13862, (1988).

Kwiatkowski, D.J. Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol, 11, 103-108, (1999).

Kwiatkowski, D.J., Janmey, P.A., Mole, J.E. and Yin, H.L. Isolation and properties of two actin-binding domains in gelsolin. J Biol Chem, 260, 15232-15238, (1985).

Kwiatkowski, D.J., Mehl, R., Izumo, S., Nadal-Ginard, B. and Yin, H.L. Muscle is the major source of plasma gelsolin. J Biol Chem, 263, 8239-8243, (1988a) .

Kwiatkowski, D.J., Mehl, R. and Yin, H.L. Genomic organization and biosynthesis of secreted and cytoplasmic forms of gelsolin. J Cell Biol, 106, 375-384, (1988b).

Kwiatkowski, D.J., Stossel, T.P., Orkin, S.H., Mole, J.E., Colten, H.R. and Yin, H.L. Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature, 323, 455-458, (1986).

Kwiatkowski, D.J., Westbrook, C.A., Bruns, G.A. and Morton, C.C. Localization of gelsolin proximal to ABL on chromosome 9. Am J Hum Genet, 42, 565-572, (1988c).

Lee, H.K., Driscoll, D., Asch, H., Asch, B. and Zhang, P.J. Downregulated gelsolin expression in hyperplastic and neoplastic lesions of the prostate. Prostate, 40, 14-19, (1999).


Meerschaert, K., De Corte, V., De Ville, Y., Vandekerckhove, J. and Gettemans, J. Gelsolin and functionally similar actin-binding proteins are regulated by lysophosphatidic acid. Embo J, 17, 5923-5932, (1998).

Mielnicki, L.M., Ying, A.M., Head, K.L., Asch, H.L. and Asch, B.B. Epigenetic regulation of gelsolin expression in human breast cancer cells. Exp Cell Res, 249, 161-176, (1999).

Mullauer, L., Fujita, H., Ishizaki, A. and Kuzumaki, N. Tumor-suppressive function of mutated gelsolin in ras-transformed cells. Oncogene, 8, 2531-2536, (1993).

Munger, K. Disruption of oncogenes/tumor suppressor networks during human carcinogenesis. Cancer invest, 20, 71-81, (2002).

Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. CA Cancer J Clin, 55, 74-108, (2005).

Pawlak, G. and Helfman, D.M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev, 11, 41-47, (2001).

Rao, J., Seligson, D., Visapaa, H., Horvath, S., Eeva, M., Michel, K.. Tissue microarray analysis of cytoskeletal actin-associated biomarkers gelsolin and E-cadherin in urothelial carcinoma. Cancer, 95, 1247-1257, (2002).

Ross, JS and GS Gray Targeted therapy for cancer: the HER-2/neu and Herceptin story. Clin Leadersh Manag rev, 17, 330-340, (2003).

Sager, R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc Natl Acad Sci U S A, 94, 952-955, (1997).

Sazawa, A., Watanabe, T., Tanaka, M., Haga, K., Fujita, H., Harabayashi, T., Shinohara, N., Koyanagi, T. and Kuzumaki, N. Adenovirus mediated gelsolin gene therapy for orthotopic human bladder cancer in nude mice. J Urol, 168, 1182-1187, (2002).

Schmidt EV. The role of c-myc in regulation of translation lnitiation. Oncogene 23, 3217-3221, (2004).

Shieh, D.B., Godleski, J., Herndon, J.E., 2nd, Azuma, T., Mercer, H., Sugarbaker, D.J. and Kwiatkowski, D.J. Cell motility as a prognostic factor in Stage I nonsmall cell lung carcinoma: the role of gelsolin expression. Cancer, 85, 47-57, (1999).

Strachan, G, S, Williams. Reduced toxicity of expression, in Escherichia coli, of antipollutant antibody fragments and their use as sensitive diagnostic molecules. J Appl microbial 87, 410-7, (1999).

Strathdee G, R, Brown. Aberrant DNA methylation in cancer: potential clinical interventions. Exp. Rev. Mol. Med, 4 March, (2002).

Strauli P, Haemmerli G. Cancer Metastasis Rev 3, 127-141, (1984).

Sugimura T and T Ushijima. Genetic and epigenetic alterations in carcinogenesis. Mutat res, 462, 235-246, (2000).

Tanaka, M., Mullauer, L., Ogiso, Y., Fujita, H., Moriya, S., Furuuchi, K., Harabayashi, T., Shinohara, N., Koyanagi, T. and Kuzumaki, N. Gelsolin: a candidate for suppressor of human bladder cancer. Cancer Res, 55, 3228-3232, (1995).

Tanaka, M., Sazawa, A., Shinohara, N., and Kobayashi, Y. Gelsolin gene therapy by retrovirus producer cells for human bladder cancer in nude mice. Cancer Gene Ther, 6, 482-487, (1999).

Thor, A.D., Edgerton, S.M., Liu, S., Moore, D.H., 2nd and Kwiatkowski, D.J. Gelsolin as a negative prognostic factor and effector of motility in erbB-2-positive epidermal growth factor receptor-positive breast cancers. Clin Cancer Res, 7, 2415-2424, (2001).

Witke, W., Sharpe, A.H., Hartwig, J.H., Azuma, T., Stossel, T.P. and Kwiatkowski, D.J. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell, 81, 41-51, (1995).

Yin, H.L. and Stossel, T.P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature, 281, 583-586, (1979).

Zhang Y, HH Ng. Analysis of the NuRD subunits reveales a histone deacetylase core complex and a connection with DNA methylation. Gene Dev,13, 1924-1935, (1999).

行政院衛生署. 台灣地區97年主要癌症死亡原因. (2009) http://www.doh.gov.tw/index1.asp.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top