跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林典瑩
研究生(外文):Dian-Ying Lin
論文名稱:骨水泥增強之髖螺釘生物力學探討
論文名稱(外文):Biomechanics of cement-augmented dynamic hip screw
指導教授:張志涵張志涵引用關係
指導教授(外文):Chih-Han Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:81
中文關鍵詞:擴孔骨水泥髖關節骨折動態加壓髖螺釘
外文關鍵詞:Hip fractureDynamic hip screwBone cementExpand
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
  臨床上常使用動態加壓髖螺釘來治療髖關節骨折,在骨質較差的患者裡,配合骨水泥的使用可以減少髖螺釘鬆動的情況,然而過多的骨水泥灌注量,常導致滲漏與回流的情況產生,造成骨折斷面無法癒合。
  本研究主要目的在於設計一新型骨水泥注射式髖螺釘,用於骨水泥增強之動態加壓髖螺釘系統。以提供一個較好的骨水泥灌注方式,將骨水泥遞送到股骨頭內且減少滲漏現象發生,使骨水泥增強後的髖螺釘可以增強其生物力學表現。
  研究以髖螺釘中心孔為導管,在髖螺釘螺紋區側邊開鑿長槽孔,使骨水泥可以沿著髖螺釘注入骨頭內。以開放孔洞性的發泡塑料與閉鎖孔洞性的發泡塑料模擬人類海綿骨,使用擴孔工具在閉鎖孔洞性的發泡塑料內製造空腔,鎖入髖螺釘並灌注骨水泥。經由髖螺釘骨水泥流動性測試與錨定強度測試結果,顯示使用此新型骨水泥注射式髖螺釘來灌注骨水泥,確實可以控制骨水泥的流動位置,並且增強髖螺釘的錨定強度(28.6%)與錨定勁度(33.4%)。在有限元素模擬的部份,研究建立與髖螺釘錨定實驗相符的骨水泥增強之試件模型。在此模型的邊界條件下,改變不同的擴孔形狀,評估擴孔形狀與錨定強度之間的關係。結果顯示骨水泥與骨頭的接觸面積越大之下,可以有較好的髖螺釘錨定效果。
  此骨水泥注射式髖螺釘搭配擴孔工具的使用,可控制骨水泥的流動位置與凝固外形。對於將來動態加壓髖螺釘系統的產品設計與手術方式提供初步評估資料。
The dynamic hip screw is often used to treat hip fractures in clinical practice. For osteoporotic bone, the bone cement could be applied to enhance the fixation of the lag screw. However, leakage is a problem in cement injecting. It could cause the bone nonunion if cement leaks to the fracture site.
The purpose of this study is to present a new design of slotted lag screw to augment the fixation with bone cement. This slotted lag screw plays the role of the injecting tube in regular cement injection. To evaluate the flow mode of the cement of this new lag screw, a pre-drilled pilot hole on the sawbones was prepared for screw insertion and expanded by cavitation tools to provide space for cement diffusing within dense sawbones. The cement was then injected through the center hole of the lag screw and spread only around the slotted thread region. This provided a better approach to deliver the cement within femur head to reduce the leakage possibility.
With the pull-out test, it shown that the cement-augmented group could increase anchoring strength (28.6%) and stiffness (33.4%) than cementless group. This slotted lag screw design could enhance its biomechanical performance with cement-augmented. With the finite element simulation, various types of cavity expansion models are evaluated and it showed that the more bonding interface area between cement and sawbones, the more anchoring stiffness of the inserted slotted lag screw.
To conclude, by providing side slots on the thread region of a lag screw, it could provide a better way to inject cement and spread the cement around thread region to prevent leakage. Cavity expansion on dense bone can help bone cement to diffuse and increasing the mechanical performance. Moreover, the size of bonding interface area of cement is more important than cement cavity shape to enhance the anchoring stiffness.
中文摘要 I
英文摘要 II
致謝 IV
目錄 V
表目錄 IX
圖目錄 X


第一章 導論1

1.1 引言1
1.2 股骨解剖構造簡介2
1.3 近端股骨骨折簡介5
1.4 動態加壓髖螺釘簡介8
1.5 動態加壓髖螺釘手術方法12
1.6 研究動機與目的15

第二章 材料與方法16

2.1 研究流程概述16
2.2 髖螺釘之設計18
2.3 骨水泥與注射系統20
2.4 人造骨頭資料22
2.5 人造骨頭材料測試24
2.6 髖螺釘骨水泥流動性試驗25
2.7 髖螺釘錨定強度試驗26
2.7.1 材料試驗機與夾具設計27
2.7.2 髖螺釘錨定強度試驗方法31
2.7.3 拉伸位移量測方法31
2.7.4 開放式孔洞發泡塑料試件製作方式32
2.7.5 結實發泡聚氨酯塑料骨水泥增強組試件之製作方式33
2.7.6 結實發泡聚氨酯塑料無骨水泥組試件之製作方式35
2.8 有限元素模擬37
2.8.1 有限元素模型建立與材料性質37
2.8.2 骨水泥增強試件之錨定強度模擬38
2.8.3 不同擴孔外形之有限元素模擬40
2.9 資料分析43

第三章 結果44

3.1 骨水泥流動性數據分析44
3.2 人造骨頭材料測試46
3.3 髖螺釘錨定強度分析49
3.3.1 開放式孔洞發泡塑料49
3.3.2 結實發泡聚氨酯塑料50
3.4 模擬與實驗之比對54
3.5 模擬不同擴孔形狀之錨定強度比較57

第四章 討論60

4.1 髖螺釘槽孔之骨水泥流動性60
4.2 骨水泥增強之錨定效果61
4.3 實驗與模擬之準確性63
4.4 不同擴孔形狀之錨定強度比較65
4.5 實驗設置與變異性67
4.6 有限元素模擬與相關條件設定69

第五章 結論與未來展望70

參考文獻72

附錄76
1. Jewell, D.P.A., et al., Locking plates increase the strength of dynamic hip screws. Injury-International Journal of the Care of the Injured, 2008. 39(2): p. 209-212.
2. Vidal, E.I.O., et al., Mortality within 1 year after hip fracture surgical repair in the elderly according to postoperative period: a probabilistic record linkage study in Brazil. Osteoporosis International, 2006. 17(10): p. 1569-1576.
3. Haleem, S., et al., Mortality following hip fracture: Trends and geographical variations over the last 40 years. Injury-International Journal of the Care of the Injured, 2008. 39(10): p. 1157-1163.
4. Rohen, J.W., et al., Color atlas of anatomy : a photographic study of the human body. 3rd ed. 1993, New York: Igaku-Shoin.
5. Hertling, D. and R.M. Kessler, Management of common musculoskeletal disorders : physical therapy principles and methods. 2nd ed. 1990, Philadelphia: Lippincott.
6. Gulan, G., et al., Femoral neck anteversion: Values, development, measurement, common problems. Collegium Antropologicum, 2000. 24(2): p. 521-527.
7. Kate, B.R., Anteversion Versus Torsion of Femoral-Neck. Acta Anatomica, 1976. 94(3): p. 457-463.
8. Fabry, G., G.D. Macewen, and A.R. Shands, Torsion of Femur - Follow-up Study in Normal and Abnormal Conditions. Journal of Bone and Joint Surgery-American Volume, 1973. A 55(8): p. 1726-1738.
9. Müller, M.E., The comprehensive classification of fractures of long bones. 1990, Berlin ; New York: Springer-Verlag. xiii, 201 p.
10. Banan, H., et al., The treatment of unstable, extracapsular hip fractures with the AO/ASIF proximal femoral nail (PFN) - our first 60 cases. Injury-International Journal of the Care of the Injured, 2002. 33(5): p. 401-405.
11. D. Kay Clawson, M.D., Intracapsular fractures of the femur treated by the sliding screw plate fixation method. Journal of Trauma, 1964. 4: p. 753-756.
12. Ecker, M.L., J.J. Joyce, and E.J. Kohl, Treatment of Trochanteric Hip Fractures Using a Compression Screw. Journal of Bone and Joint Surgery-American Volume, 1975. A 57(1): p. 23-27.
13. D. Kay Clawson, M.D., Trochanteric fractures treated by the sliding screw plate fixation method. Journal of Trauma, 1964. 4: p. 737-752.
14. Baumgaertner, M.R., et al., The Value of the Tip-Apex Distance in Predicting Failure of Fixation of Peritrochanteric Fractures of the Hip. Journal of Bone and Joint Surgery-American Volume, 1995. 77A(7): p. 1058-1064.
15. Esser, M.P., J.Y. Kassab, and D.H.A. Jones, Trochanteric Fractures of the Femur - a Randomized Prospective Trial Comparing the Jewett Nail-Plate with the Dynamic Hip Screw. Journal of Bone and Joint Surgery-British Volume, 1986. 68(4): p. 557-560.
16. Mulholla.Rc, D.R. Gunn, and M.C. Orth, Sliding Screw Plate Fixation of Intertrochanteric Femoral Fractures. journal of Trauma, 1972. 12(7): p. 581-591.
17. Sommers, M.B., et al., A laboratory model to evaluate cutout resistance of implants for pertrochanteric fracture fixation. Journal of Orthopaedic Trauma, 2004. 18(6): p. 361-368.
18. Hardy, D.C.R., et al., Use of an intramedullary hip-screw compared with a compression hip-screw with a plate for intertrochanteric femoral fractures - A prospective, randomized study of one hundred patients. Journal of Bone and Joint Surgery-American Volume, 1998. 80A(5): p. 618-630.
19. Haynes, R.C., et al., Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw. Injury-International Journal of the Care of the Injured, 1997. 28(5-6): p. 337-341.
20. Butt, M.S., et al., Comparison of Dynamic Hip Screw and Gamma-Nail - a Prospective, Randomized, Controlled Trial. Injury-International Journal of the Care of the Injured, 1995. 26(9): p. 615-618.
21. Simpson, A.H.R.W., K. Varty, and C.A.F. Dodd, Sliding Hip Screws - Modes of Failure. Injury-International Journal of the Care of the Injured, 1989. 20(4): p. 227-231.
22. Ahrengart, L., et al., A randomized study of the compression hip screw and gamma nail in 426 fractures. Clinical Orthopaedics and Related Research, 2002(401): p. 209-222.
23. Watson, J.T., et al., Comparison of the compression hip screw with the Medoff sliding plate for intertrochanteric fractures. Clinical Orthopaedics and Related Research, 1998(348): p. 79-86.
24. Bridle, S.H., et al., Fixation of Intertrochanteric Fractures of the Femur - a Randomized Prospective Comparison of the Gamma-Nail and the Dynamic Hip Screw. Journal of Bone and Joint Surgery-British Volume, 1991. 73(2): p. 330-334.
25. Adams, C.I., et al., Prospective randomized controlled trial of an intramedullary nail versus dynamic screw and plate for intertrochanteric fractures of the femur. Journal of Orthopaedic Trauma, 2001. 15(6): p. 394-400.
26. Aros, B., et al., Is a Sliding Hip Screw or IM Nail the Preferred Implant for Intertrochanteric Fracture Fixation? Clinical Orthopaedics and Related Research, 2008. 466(11): p. 2827-2832.
27. Goodman, S.B., et al., Norian SRS cement augmentation in hip fracture treatment - Laboratory and initial clinical results. Clinical Orthopaedics and Related Research, 1998(348): p. 42-50.
28. Stoffel, K.K., et al., A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clinical Biomechanics, 2008. 23(1): p. 45-51.
29. Heini, P.F., et al., Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clinical Biomechanics, 2004. 19(5): p. 506-512.
30. Kramer, A., et al., Augmentation of the screw fixation in the femoral head by cement application through the implant - a biomechanical study. Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete, 2000. 138(5): p. 464-469.
31. Mermelstein, L.E., et al., The reinforcement of cancellous bone screws with calcium phosphate cement. Journal of Orthopaedic Trauma, 1996. 10(1): p. 15-20.
32. Moore, D.C., et al., Hip screw augmentation with an in situ setting calcium phosphate cement: An in vitro biomechanical analysis. Journal of Orthopaedic Trauma, 1997. 11(8): p. 577-583.
33. Parker, M.J., Cutting-out of the Dynamic Hip Screw Related to Its Position. Journal of Bone and Joint Surgery-British Volume, 1992. 74(4): p. 625-625.
34. Thomas, A.P., Dynamic Hip Screws That Fail. Injury-International Journal of the Care of the Injured, 1991. 22(1): p. 45-46.
35. Davis, T.R.C., et al., Intertrochanteric Femoral Fractures - Mechanical Failure after Internal-Fixation. Journal of Bone and Joint Surgery-British Volume, 1990. 72(1): p. 26-31.
36. Mainds, C.C. and R.J. Newman, Implant Failures in Patients with Proximal Fractures of the Femur Treated with a Sliding Screw Device. Injury-International Journal of the Care of the Injured, 1989. 20(2): p. 98-100.
37. Rao, J.P., et al., Treatment of Unstable Intertrochanteric Fractures with Anatomic Reduction and Compression Hip Screw Fixation. Clinical Orthopaedics and Related Research, 1983(175): p. 65-71.
38. Burge, R., et al., Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. Journal of Bone and Mineral Research, 2007. 22(3): p. 465-475.
39. Müller, M.E., et al., Manual of internal fixation : techniques recommended by the AO-ASIF Group. 3rd ed. 1991, Berlin ; New York: Springer-Verlag.
40. Keaveny, T.M., et al., BIOMECHANICS OF TRABECULAR BONE. Annual Review of Biomedical Engineering, 2001. 3: p. 307-333.
41. Rohlmann, A., et al., Material Properties of Femoral Cancellous Bone in Axial Loading .1. Time Independent Properties. Archives of Orthopaedic and Trauma Surgery, 1980. 97(2): p. 95-102.
42. ASTM, ASTM Standard F543-07, Standard Specification and Test Methods for Metallic Medical Bone Screws. 2007.
43. Watanabe, Y., et al., Biomechanical study of the resurfacing hip arthroplasty - Finite element analysis of the femoral component. Journal of Arthroplasty, 2000. 15(4): p. 505-511.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top