跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃尚仁
研究生(外文):Shang-Jen Huang
論文名稱:具改良式電流源之電阻抗影像系統
論文名稱(外文):Electrical Impedance Tomographic System Development with Improved Current Source
指導教授:鄭國順鄭國順引用關係
指導教授(外文):Kuo-sheng Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:70
中文關鍵詞:電特性多頻率多通道電流型態電阻抗影像系統
外文關鍵詞:Electrical impedance tomography (EIT)current patternmulti-channelmulti-frequencyelectrical property
相關次數:
  • 被引用被引用:1
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
電阻抗影像系統是一種生物阻抗儀器,具高度發展潛力於組織及人體量測;且有下列優點:非侵入式、無輻射危害,及成本低,但最重要的特點是,它提供與其他醫療儀器不同的資訊:阻抗電特性。為了量測物體在不同頻率下、電阻抗的改變,及阻抗分布的成像,便需要多頻率及多通道功能。電阻抗影像系統主要分為六模組:(1)數位震盪器,(2)電流產生器,(3)電壓量測,(4) 輸出入介面板,(5)輸出入介面,(6)使用者圖形控制介面。數位震盪器以28位元、DDS (Direct Digital Synthesis) AD9833產生20kHz到100kHz、振幅1Vrms、0V準位的正弦波;電流產生器使用12位元乘法數位轉類比器AD5447,做成32個通道,並控制振幅在-1Vrms至+1Vrms,且每個通道皆能各自被使用者更改以建構成任意電流型態,32個改良型Howland電壓控制型電流源憑藉高輸出阻抗輸出±1 mArms振幅之穩定電流;電壓量測器含類比解多工器,其負責切換32個通道電壓給類比轉數位器,和震盪器訊號至另一個類比轉數位器;輸出入介面板有編碼模組和公用匯流排將各模組視為定址裝置來存取,並提供2個空置的接頭作未來擴充用;輸出入介面以並列輸出經排針讓使用者自行定義傳輸協定;使用者圖控介面提供頻率、電流型態,及電壓量測控制功能。本研究另一個重要目標:穩定電流源、改良型Howland電流源;由6種常用運算放大器,透過OrCAD Pspcie做模擬與實際電路測試;經模擬條件:增加量1 kHz和負載電阻1 kΩ,結果指出OPA37有最好的頻率響應,從100 Hz到截止12.115 MHz,並評估出實際電路該選用之電阻大小;在100 kHz實際電路測試中,OPA37最差只有0.0105的標準誤差。
Electrical impedance tomography (EIT) system is a kind of biomedical instrument that has great potential in tissue or body measurement. It has some advantages: non-invasive, no radiation hazard, low cost. The most important characteristic is that it can show electrical property in terms of impedance different from the other medical instrument. In order to measure the variance at different frequency and image the distribution of the impedance in object, it needs a multi-frequency and multi-channel function respectively. The EIT system has six major modules: (1) digital oscillator, (2) current generator, (3) voltage measurement, (4) I/O interface board, (5) I/O interface, (6) graphic user interface. The digital oscillator takes 28-bit DDS (Direct Digital Synthesis) AD9833 as oscillator to generate a sinusoidal signal sweeping from 20 kHz to 100 kHz at 1 Vrms with zero offset. The current generator uses 12-bit multiplying DAC AD5447 to control voltage amplitude from -1 Vrms to +1 Vrms and each of 32-channel can be programmed individually by user to construct arbitrary current pattern. 32-channel enhanced Howland voltage controlled current source output current at stable ±1 mArms by high output impedance. The voltage measurement includes analog demultiplexer to switch 32-channel voltage to an ADC and the oscillator signal to an ADC. The I/O interface board has codec module and public address and data bus to control and access EIT system module as address device. It also provides two reserved connector for extended module. The I/O interface is in parallel way via head pins for user-definition protocol. The GUI provides frequency, current pattern and voltage measurement function. Another major approach in this study is the stable current source: enhanced Howland VCCS. The 6 commonly used OP (Operating Amplifier) experiment by OrCAD Pspice simulation and actual circuit testing. The simulation results indicates the OPA37 has the best frequency response from 100 Hz to 2.3 MHz cutoff frequency and estimates the resistor value that should be at 10 kΩ level in actual circuit, with simulation condition 1 kHz increment and output load resistor 1 kΩ. The OPA37 only has about 0.07% standard derivation at 100 kHz in actual circuit.
CONTENTS
摘要..................................................I
ABSTRACT..................................................II
ACKNOWLEDGMENT..................................................III
LIST of TABLES..................................................VI
LIST of FIGURES ..................................................VII
Chapter 1 Introduction ..................................................1
1.1 Tissue electrical characteristics..................................................1
1.2 Electrical impedance tomography..................................................7
1.3 Literature review..................................................9
1.3.1 Rensselaer Polytechnic Institute: Adaptive Current Tomography 4..................................................10
1.3.2 Sheffield University: Mk3.5..................................................11
1.3.2 Dartmouth University: H-F EIT..................................................12
1.4 Motivations and purposes..................................................14
Chapter 2 Materials and Methods..................................................16
2.1 Research framework..................................................16
2.2 Hardware design..................................................17
2.2.1 I/O interface card of EIT..................................................17
2.2.2 Digital control module..................................................19
2.2.3 Current source module..................................................23
2.2.4 Data acquisition module..................................................32
2.3 Software design..................................................36
2.3.1 Demodulation algorithm..................................................36
2.3.2 User interface on PC..................................................37
2.4 NCKU BINIL EIT system specification..................................................37
Chapter 3 Results and Discussion ..................................................39
3.1 Digital oscillator module card..................................................39
3.2 Current source module card..................................................40
3.3 Data acquisition module card..................................................58
3.4 Graphic user interface..................................................59
Chapter 4 Conclusions and Prospects ..................................................60
4.1 Conclusions ..................................................60
4.2 Prospects..................................................62
References..................................................63
Appendix A..................................................67
References
[1]E. N. Marieb, J. Mallatt, and P. B. Wilhelm, Human Anatomy. 4th ed., San Francisco, CA: Pearson Benjamin Cummings, 2003.
[2]J. G. Webster, Electrical Impedance Tomography, Bristol, New York: Adam Hilger, 1990, pp. 8-10.
[3]D. S. Holder, Electrical Impedance Tomography, Methods, History and Applications, Bristol, Philadelphia: Institute of Physics Pub., 2005, pp. 416-420.
[4]L. E. Baker, “Principles of the impedance technique”, IEEE Eng. Med. Biol. Mag., vol. 8, pp. 11-15, 2003.
[5]J. G. Webster, Medical Instrumentation: Application and Design, 3rd ed., New York: Wiley, 1990, p. 259.
[6]R. P. Keil, J. D. Merryman and et al, “IEEE Guide for Safety in AC Substation Grounding,” IEEE Std 80-2000, Jan. 30, 2000.
[7]P. Church, J. E. McFee, S. Gagnon and P. Wort, “Electrical impedance tomographic imaging of buried landmines,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2407-2420, Sept. 2006.
[8]P. P. Bhattacharjee and S. Sen “Wire-mesh tomography for gas-liquid flow measurement,” in Proc. IEEE Indicon 2005 Conf., 2005, pp.427-430.
[9]T. I Oh, J. S. Lee and E. J. Woo, “Multi-frequency EIT and TAS hardware development,” in Proc. 6th Biomedical Application of Electrical Impedance Tomography, 2005.
[10]D. Isaacson, “Distinguishability of conductivities by electric current,” IEEE Trans. Biomed. Eng., vol. MI-5, no. 2, Jun. 1986.
[11]C. S. Ren, H. Y. Wang, A. Yuan, S. Hong and G. J. Lin, “Development of electrical bioimpedance tomography in the future,” in Proc. 20th Ann. Inter. Conf. IEEE Eng. Med. Biol. Soc. vol. 20, no.2, 1998, pp. 1052-1054.
[12]F. Seoane, M. Lu, M. Persson and K. Lindecrantz, “Electrical bioimpedance cerebral monitoring: a study of the current density distribution and impedance sensitivity maps on a 3D realistic head model,” in Proc. 3rd Inter. IEEE EMBS Conf on Neural Eng., 2007, pp. 256-260.
[13]F. S. You, X. Z. Dong, X. T. Shi, F. Fu, R. G. Liu and W. J. Shuai, “An image monitoring system for intraperitoneal bleeding using electrical impedance tomography and its preliminary results in vivo,” in Proc. 27th Ann. Inter. Conf. IEEE Eng. Med. Biol. Soc., 2005, pp. 1500-1503.
[14]J. F. Edd, L. Horowitz and B. Rubinsky, “Temperature dependence of tissue impedivity in electrical impedance tomography,” IEEE Trans. Biomed. Eng., vol. 52, no. 4, Apr. 2005.
[15]G. J. Saulnier, N. Liu, C. Tamma, H. Xia, T. J. Kao, J. C. Newell and D. Isaacson, “An electrical impedance spectroscopy system for breast cancer detection,” in Proc. 29th Ann. Inter. Conf. IEEE Eng. Med. Biol. Soc., 2007, pp. 4154-4157.
[16]R. J. Halter, A. Hartov and K. D. Paulsen, “A broadband high-frequency electrical impedance tomography system for breast imaging,” IEEE Trans. Biomed. Eng., vol. 55, no. 2, Feb. 2008.
[17]S. Nebuya, M. Noshiro, A. Yonemoto, S. Tateno, B. H. Brown, R. H. Smallwood and P. Milnes, “Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system,” Physiol. Meas., vol. 27, pp. 129-137, 2006.
[18]J. C. Newell, D. G. Gisser and D. Isaacson, “An electric current tomography,” IEEE Trans. Biomed. Eng., vol. 35, no. 10, Oct. 1988.
[19]A. J. Wilson, P. Milnes, A. R. Waterworth, R. H. Smallwood and B. H. Brown, “Mk3.5: a modular, multi-frequency successor to the Mk3a EIS/EIT system,” Physiol. Meas., vol. 22, pp. 49-54, 2001.
[20]A. McEwan, G. Cusick and D S Holder, “A Review of errors in multi-frequency EIT instrumentation,” Physiol. Meas., vol. 28, pp. S197–S215, 2007.
[21]I. Frerichs, P. A. Dargaville, H. V. Genderingen, D. R. Morel and P. C. Rimensberger, “Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation,” Am. J. Respir. Cell Mol. Biol., vol. 174, pp. 772-779, 2006.
[22]T. I. Oh, E. J. Woo and D. Holder, “Multi-frequency EIT system with radially symmetric architecture: KHU Mark1,” Physiol. Meas., vol. 28, pp. 183-196, 2007.
[23]A. S. Ross, G. J. Saulnier, J. C. Newell and D. Isaacson, “Current source design for electrical impedance,” Physiol. Meas., vol. 24, pp. 509-516, 2003.
[24]R. N. Mandana and H. McCann, “A survey of digital techniques in Medical EIT,” in Proc. 6th Biomedical Application of Electrical Impedance Tomography, 2005.
[25]NI 6533/6534 for NI-DAQ™mx Help.
[26]D. G. Gisser, D. Isaacson and J. C. Newell, "Current topics in impedance imaging," Clin. Phys. Physiol. Meas., vol. 8, Suppl. A, pp. 39-46, 1987.
[27]W. L. Huang, EIT System Circuits Optimization and Simulation for Tissue Monitoring Application, Master thesis, Institute of Biomedical Engineering, National Cheng Kung University, July 2005.
[28]K.-S. Cheng, C.-Y. Chen, M.-W. Huang and C.-H. Chen, “A multi-frequency current source for bioimpedance application,” Proc. IEEE Inform. Tech. App. Biomed., Ioannina, Greece, 2006.
[29]AD9833 Datasheet, Analog Devices Inc. 2003.
[30]AD5447 Application notes, AN-320A, Analog Devices Inc. 2006.
[31]AD5447 Datasheet, Analog Devices Inc. 2005.
[32]S. Franco, Design with Operational Amplifiers and Analog Integrated Circuit. 3th ed., New York, McGraw-Hill, 2002, pp.70-71.
[33]J. Rosell, D. Murphy, R. Pallas and P. Rolfe, "Analysis and assessment of errors in a parallel data acquisition system for electrical impedance tomography," Clin. Phys. Physiol. Meas., vol. 9, Suppl. A, pp. 93-99, 1988.
[34]Y. Y. Lu, The Electrical Impedance Imaging System; A Digital Design Approach, Master thesis, Institute of Biomedical Engineering, National Cheng Kung University, July 1994.
[35]AD7671 Datasheet, Analog Devices Inc. 2003.
[36]C. F. Wu, Electrical Impedance Imaging Design for Tissue Electrical Property Application, Master thesis, Institute of Biomedical Engineering, National Cheng Kung University, July 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top