跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳僅評
研究生(外文):Jin-Pin Chen
論文名稱:以新式聚乳酸-聚甘醇酸電紡絲支架作為肌腱修復之組織工程應用
論文名稱(外文):A Novel Tissue Engineering Electrospun-PLGA for Potential Application in Tendon Repair
指導教授:葉明龍葉明龍引用關係
指導教授(外文):Ming-Long Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:99
中文關鍵詞:電紡技術聚乳酸-甘醇酸電紡絲支架阿基里斯纖維母細胞組織工程
外文關鍵詞:tissue engineeringAchilles tendon fibroblastselectrospinningelectrospun-PLGA scaffold
相關次數:
  • 被引用被引用:4
  • 點閱點閱:506
  • 評分評分:
  • 下載下載:197
  • 收藏至我的研究室書目清單書目收藏:0
利用手術縫合治療阿基里斯肌腱斷裂方法仍需改進的技術。因此,要解決肌腱斷裂後修復上的缺陷,可利用組織工程的方法來改進。本研究目的為探討電紡絲製備過程中,不同參數對聚乳酸-甘醇酸纖維直徑和型態的影響,以及所製備出電紡支架對肌腱纖維母細胞活性及型態的影響。電紡纖維支架形成是經由電場所提供的靜電力抽絲而成。結果顯示,控制不同的電紡參數,可得到不同直徑和形態的纖維。本研究可製備出纖維直徑範圍在144 ± 22 nm 到 1247 ± 71 nm,孔洞大小為5-10 μm2 具有 50% 孔洞率的支架。在三個參數下,以聚合物濃度和注射速率對纖維直徑和表面型態影響最大,電場強度則較無明顯的影響。將最佳化的支架來評估阿基里斯纖維母細胞生長情形,結果顯示所製備不同纖維直徑的聚乳酸-甘醇酸支架提供細胞良好的貼附性,快速的生長速率和基因表現量,且可以維持細胞正常成長型態。因此,所製備出的聚乳酸-甘醇酸奈米纖維對於阿基里斯腱具有組織工程發展上的潛力。
The treatment of the ruptured tendon is still an obstacle in respect of suture method. Therefore, such shortcoming in repairing fracture tendons could be overcome through tissue engineering approaches. The aim of present study is to investigate the influence of processing parameters on poly(lactide-co-glycolide) ( PLGA) scaffold morphology and fiber diameters and the effect of the tendon fibroblast with the obtained novel tissue engineering electrospun-PLGA. The result shows that the electrospun scaffold diameter and morphology could be controlled under different processing parameters, such as PLGA concentration, applied electric voltage and solution pumping rate. Electrospun-PLGA in the range of 144 ± 22 nm to 1247 ± 71 nm in diameter were obtained under different processing parameters. By varying the above parameters, the electrospun porous PLGA scaffolds exhibited fibrous morphology either with or without beads. The diameter of electrospun scaffold increased with the PLGA concentration and pumping rate, whereas the electric field strength exerted only minor effect on the average diameter of the electrospun scaffold. The cytocompatibility of the scaffold prepared from optimizing fabrication parameters was evaluated using Achilles tendon fibroblasts. Good results in cell attachment, cell proliferation rate, fibroblast morphology, and gene expression with various sizes of electrospun fibers were observed. Therefore, electrospun PLGA scaffold have the potential for Achilles tendon repair.
ABSTRACT I
摘要 II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF FIGURES VII
LIST OF APPENDIX FIGURES IX
LIST OF TABLES XI
Chapter 1. Introduction 1
1.1 Function and structure of tendon tissue 2
1.1.1 Function of tendon tissue 2
1.1.2 Components of tendon tissue 3
1.1.3 Gross structure 5
1.2 Tissue engineering for tendon repair 7
1.3 The characteristic for electrospun nanofiber 9
1.4 The technique of electrospinning 9
1.5 Poly(lactide-co-glycolide) (PLGA) 13
1.6 Recent studies of Achilles tendon repair worldwide 14
1.7 Specific aim 18
Chapter 2. Material and method 19
2.1 Flowchart of experiment 19
2.2 Materials and instrument 20
2.3 Electrospun-PLGA scaffold fabrication 22
2.4 Fiber morphology 23
2.5 Fiber degradation test 24
2.6 Biological investigation for electrospun-PLGA scaffold/tendon fibroblast 24
2.6.1 Cell culture of Achilles tendon fibroblasts 24
2.6.2 Cell seeding on electrospun-PLGA scaffolds 25
2.7 Cell biocompatibility and viability assay 25
2.7.1 Cell biocompatibility assay 25
2.7.2 Cell viability assay 26
2.8 Cell morphology 26
2.9 Real-time quantitative PCR analysis 26
2.9.1 RNA isolation 26
2.9.2 cDNA synthesis 27
2.9.3 Real-time quantitative PCR and primer synthesis 27
2.10 Statistical analysis 28
Chapter 3. Results 29
3.1 Fiber morphology 29
3.2 Fiber diameter 32
3.3 Fiber pore size and surface porosity 35
3.4 Fiber degradation test 40
3.5 Cell biocompatibility 44
3.6 Cell viability 46
3.7 Cell morphology 48
3.8 Gene expression 51
3.8.1 Primer efficiency Analysis 51
3.8.2 Normalized amount of gene expression 54
3.9.1 The process parameters of electrospinning 56
3.9.2 The inadequate mechanical strength of scaffold 56
Chapter 4. Discussion 57
4.1 Fiber morphology and diameter 57
4.1.1 Effect of PLGA solution concentration 57
4.1.2 Effect of pumping rate 58
4.1.3 Effect of electric field strength 58
4.1.4 Comparison of the influence of different Parameters on fiber diameter 59
4.2 Fiber pore size and surface porosity 65
4.3 Fiber degradation test 68
4.4 Cell biocompatibility and viability 69
4.5 Cell morphology 70
4.6 Gene expression 71
Chapter 5. Conclusion 73
REFERENCE 75
APPENDIX A 85
APPENDIX B 97
1.Maffulli N, Ajis A. Management of chronic ruptures of the Achilles tendon. J Bone Joint Surg Am 2008 Jun;90(6):1348-1360.
2.Watson TW, Jurist KA, Yang KH, Shen KL. The strength of Achilles tendon repair: an in vitro study of the biomechanical behavior in human cadaver tendons. Foot Ankle Int 1995 Apr;16(4):191-195.
3.Wang JH. Mechanobiology of tendon. Journal of biomechanics 2006;39(9):1563-1582.
4.Doroski DM, Brink KS, Temenoff JS. Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials 2007 Jan;28(2):187-202.
5.Schuppan D, Somasundaram R, Dieterich W, Ehnis T, Bauer M. The extracellular matrix in cellular proliferation and differentiation. Annals of the New York Academy of Sciences 1994 Sep 15;733:87-102.
6.Coito AJ, De Sousa M, Kupiec-Weglinski JW. The role of cellular and extracellular matrix adhesion proteins in organ transplantation. Cell Adhes Commun 1994 Jul;2(3):249-255.
7.Derwin KA, Soslowsky LJ, Kimura JH, Plaas AH. Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle. J Orthop Res 2001 Mar;19(2):269-277.
8.Yoon JH, Halper J. Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact 2005 Mar;5(1):22-34.
9.Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL. Tissue engineering of ligaments. Annual review of biomedical engineering 2004;6:131-156.
10.Probstmeier R, Pesheva P. Tenascin-C inhibits beta1 integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology 1999 Feb;9(2):101-114.
11.Beye JA, Hart DA, Bray RC, Seerattan RA, McDougall JJ, Leonard CA, et al. Denervation alters mRNA levels of repair-associated genes in a rabbit medial collateral ligament injury model. J Orthop Res 2006 Sep;24(9):1842-1853.
12.Funakoshi T, Majima T, Iwasaki N, Yamane S, Masuko T, Minami A, et al. Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. J Biomed Mater Res A 2005 Sep 1;74(3):338-346.
13.Majima T, Funakosi T, Iwasaki N, Yamane ST, Harada K, Nonaka S, et al. Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J Orthop Sci 2005 May;10(3):302-307.
14.Cooper JA, Jr., Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, et al. Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 2006 May;27(13):2747-2754.
15.Awad HA, Butler DL, Harris MT, Ibrahim RE, Wu Y, Young RG, et al. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J Biomed Mater Res 2000 Aug;51(2):233-240.
16.Butler DL, Awad HA. Perspectives on cell and collagen composites for tendon repair. Clinical orthopaedics and related research 1999 Oct(367 Suppl):S324-332.
17.Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA, Dee KC. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 2003 Sep;24(21):3805-3813.
18.Koob TJ. Biomimetic approaches to tendon repair. Comparative biochemistry and physiology 2002 Dec;133(4):1171-1192.
19.Noth U, Schupp K, Heymer A, Kall S, Jakob F, Schutze N, et al. Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 2005;7(5):447-455.
20.Torres DS, Freyman TM, Yannas IV, Spector M. Tendon cell contraction of collagen-GAG matrices in vitro: effect of cross-linking. Biomaterials 2000 Aug;21(15):1607-1619.
21.Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002 Oct;23(20):4131-4141.
22.Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 2003 Nov 1;67(2):559-570.
23.Haider M, Leung V, Ferrari F, Crissman J, Powell J, Cappello J, et al. Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: biosynthesis and characterization. Molecular pharmaceutics 2005 Mar-Apr;2(2):139-150.
24.Ahmed Z, Underwood S, Brown RA. Low concentrations of fibrinogen increase cell migration speed on fibronectin/fibrinogen composite cables. Cell motility and the cytoskeleton 2000 May;46(1):6-16.
25.Jorgensen HG, McLellan SD, Crossan JF, Curtis AS. Neutralisation of TGF beta or binding of VLA-4 to fibronectin prevents rat tendon adhesion following transection. Cytokine 2005 May 21;30(4):195-202.
26.Lehto M, Jozsa L, Kvist M, Jarvinen M, Balint BJ, Reffy A. Fibronectin in the ruptured human Achilles tendon and its paratenon. An immunoperoxidase study. Annales chirurgiae et gynaecologiae 1990;79(2):72-77.
27.Parry G, Soo WJ, Bissell MJ. The uncoupled regulation of fibronectin and collagen synthesis in Rous sarcoma virus transformed avian tendon cells. The Journal of biological chemistry 1979 Dec 10;254(23):11763-11766.
28.Hankemeier S, van Griensven M, Ezechieli M, Barkhausen T, Austin M, Jagodzinski M, et al. Tissue engineering of tendons and ligaments by human bone marrow stromal cells in a liquid fibrin matrix in immunodeficient rats: results of a histologic study. Arch Orthop Trauma Surg 2007 Nov;127(9):815-821.
29.Altman GH, Lu HH, Horan RL, Calabro T, Ryder D, Kaplan DL, et al. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. Journal of biomechanical engineering 2002 Dec;124(6):742-749.
30.Barber FA, Dockery WD. Long-term absorption of beta-tricalcium phosphate poly-L-lactic acid interference screws. Arthroscopy 2008 Apr;24(4):441-447.
31.Liem MD, Zegel HG, Balduini FC, Turner ML, Becker JM, Caballero-Saez A. Repair of Achilles tendon ruptures with a polylactic acid implant: assessment with MR imaging. Ajr 1991 Apr;156(4):769-773.
32.Ouyang HW, Goh JC, Mo XM, Teoh SH, Lee EH. The efficacy of bone marrow stromal cell-seeded knitted PLGA fiber scaffold for Achilles tendon repair. Annals of the New York Academy of Sciences 2002 Jun;961:126-129.
33.Qin T, Xie H, Yang Z, Qin J, Cai S, Xu S. [A study on adhesive properties of transformed human embryonic tendon cells to PLA and PLGA]. Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 1999 Jun;16(2):154-158.
34.Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, et al. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng 2004 May-Jun;10(5-6):893-903.
35.Deng D, Liu W, Xu F, Wu XL, Wei X, Zhong B, et al. [In vitro tendon engineering using human dermal fibroblasts]. Zhonghua yi xue za zhi 2008 Apr 1;88(13):914-918.
36.Li F, Li B, Wang QM, Wang JH. Cell shape regulates collagen type I expression in human tendon fibroblasts. Cell motility and the cytoskeleton 2008 Apr;65(4):332-341.
37.Mackley JR, Ando J, Herzyk P, Winder SJ. Phenotypic responses to mechanical stress in fibroblasts from tendon, cornea and skin. The Biochemical journal 2006 Jun 1;396(2):307-316.
38.Oldfield SF, Evans DJ. Tendon morphogenesis in the developing avian limb: plasticity of fetal tendon fibroblasts. Journal of anatomy 2003 Jan;202(1):153-164.
39.Wang JH, Jia F, Yang G, Yang S, Campbell BH, Stone D, et al. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connective tissue research 2003;44(3-4):128-133.
40.Webb K, Hitchcock RW, Smeal RM, Li W, Gray SD, Tresco PA. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. Journal of biomechanics 2006;39(6):1136-1144.
41.Xia CS, Hong GX, Dou RR, Yang XY. Effects of chitosan on cell proliferation and collagen production of tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes. Chinese journal of traumatology = Zhonghua chuang shang za zhi / Chinese Medical Association 2005 Dec;8(6):369-374.
42.Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, et al. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 2008 Jan;26(1):1-9.
43.Dressler MR, Butler DL, Boivin GP. Effects of age on the repair ability of mesenchymal stem cells in rabbit tendon. J Orthop Res 2005 Mar;23(2):287-293.
44.Harris MT, Butler DL, Boivin GP, Florer JB, Schantz EJ, Wenstrup RJ. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res 2004 Sep;22(5):998-1003.
45.Juncosa-Melvin N, Boivin GP, Gooch C, Galloway MT, West JR, Dunn MG, et al. The effect of autologous mesenchymal stem cells on the biomechanics and histology of gel-collagen sponge constructs used for rabbit patellar tendon repair. Tissue Eng 2006 Feb;12(2):369-379.
46.Krampera M, Pizzolo G, Aprili G, Franchini M. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 2006 Oct;39(4):678-683.
47.Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 1998 Jul;16(4):406-413.
48.Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, et al. Cell differentiation by mechanical stress. Faseb J 2002 Feb;16(2):270-272.
49.Ge Z, Goh JC, Lee EH. Selection of cell source for ligament tissue engineering. Cell transplantation 2005;14(8):573-583.
50.Sahoo S, Ouyang H, Goh JC, Tay TE, Toh SL. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng 2006 Jan;12(1):91-99.
51.Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 2005 Apr;26(11):1261-1270.
52.Formhals A. US Patent 1975504 1934.
53.Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006 May;12(5):1197-1211.
54.Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS. Electrospinning of nanofibers. Journal of Applied Polymer Science 2005 Apr 15;96(2):557-569.
55.Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005;46(16):6128-6134.
56.Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng 2006 Mar;12(3):435-447.
57.Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999 Jul;40(16):4585-4592.
58.Lee KH, Kim HY, Bang HJ, Jung YH, Lee SG. The change of bead morphology formed on electrospun polystyrene fibers. Polymer 2003 Jun;44(14):4029-4034.
59.Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer 2002 May;43(11):3303-3309.
60.Buchko CJ, Chen LC, Shen Y, Martin DC. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 1999 Dec;40(26):7397-7407.
61.Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials 2006 Nov;27(33):5681-5688.
62.Durselen L, Dauner M, Hierlemann H, Planck H, Claes LE, Ignatius A. Resorbable polymer fibers for ligament augmentation. J Biomed Mater Res 2001;58(6):666-672.
63.Baek CH, Ko YJ. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold. The Laryngoscope 2006 Oct;116(10):1829-1834.
64.Baek CH, Lee JC, Jung YG, Ko YJ, Yoon JJ, Park TG. Tissue-engineered cartilage on biodegradable macroporous scaffolds: cell shape and phenotypic expression. The Laryngoscope 2002 Jun;112(6):1050-1055.
65.Park SS, Jin HR, Chi DH, Taylor RS. Characteristics of tissue-engineered cartilage from human auricular chondrocytes. Biomaterials 2004 May;25(12):2363-2369.
66.Jin XB, Sun YS, Zhang K, Wang J, Shi TP, Ju XD, et al. Tissue engineered cartilage from hTGF beta2 transduced human adipose derived stem cells seeded in PLGA/alginate compound in vitro and in vivo. J Biomed Mater Res A 2008 Sep 15;86(4):1077-1087.
67.Hu X, Shen H, Yang F, Bei J, Wang S. Preparation and cell affinity of microtubular orientation-structured PLGA(70/30) blood vessel scaffold. Biomaterials 2008 Jul;29(21):3128-3136.
68.Wen SJ, Zhao LM, Li P, Li JX, Liu Y, Liu JL, et al. [Blood vessel tissue engineering: seeding vascular smooth muscle cells and endothelial cells sequentially on biodegradable scaffold in vitro]. Zhonghua yi xue za zhi 2005 Mar 30;85(12):816-818.
69.Zhang L, Ao Q, Wang A, Lu G, Kong L, Gong Y, et al. A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res A 2006 May;77(2):277-284.
70.Zheng X, Miao L, Zhou M, Liu C. [Experimental study on evolution of nano-biomimetic tissue engineered blood vessel after abdominal aorta transplantation in rabbits]. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery 2008 Nov;22(11):1364-1368.
71.Khan YM, Katti DS, Laurencin CT. Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation. J Biomed Mater Res A 2004 Jun 15;69(4):728-737.
72.Meikle MC, Papaioannou S, Ratledge TJ, Speight PM, Watt-Smith SR, Hill PA, et al. Effect of poly DL-lactide--co-glycolide implants and xenogeneic bone matrix-derived growth factors on calvarial bone repair in the rabbit. Biomaterials 1994 Jun;15(7):513-521.
73.Ren T, Ren J, Jia X, Pan K. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res A 2005 Sep 15;74(4):562-569.
74.Yoon SJ, Park KS, Kim MS, Rhee JM, Khang G, Lee HB. Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Tissue Eng 2007 May;13(5):1125-1133.
75.Chen G, Sato T, Ohgushi H, Ushida T, Tateishi T, Tanaka J. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials 2005 May;26(15):2559-2566.
76.Gomes AJ, Lunardi CN, Lunardi LO, Pitol DL, Machado AE. Identification of psoralen loaded PLGA microspheres in rat skin by light microscopy. Micron 2008;39(1):40-44.
77.Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996 Jul;17(14):1417-1422.
78.Yoon JJ, Park TG. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 2001 Jun 5;55(3):401-408.
79.Yoon JJ, Kim JH, Park TG. Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method. Biomaterials 2003 Jun;24(13):2323-2329.
80.Yoon JJ, Song SH, Lee DS, Park TG. Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials 2004 Nov;25(25):5613-5620.
81.Zhu XH, Lee LY, Jackson JS, Tong YW, Wang CH. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnology and bioengineering 2008 Aug 1;100(5):998-1009.
82.Yang Y, Basu S, Tomasko DL, Lee LJ, Yang ST. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Biomaterials 2005 May;26(15):2585-2594.
83.Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000 Dec;21(24):2529-2543.
84.Lee M, Dunn JC, Wu BM. Scaffold fabrication by indirect three-dimensional printing. Biomaterials 2005 Jul;26(20):4281-4289.
85.Husmann M, Schenderlein S, Luck M, Lindner H, Kleinebudde P. Polymer erosion in PLGA microparticles produced by phase separation method. Int J Pharm 2002 Aug 21;242(1-2):277-280.
86.Zhang JX, Zhu KJ, Chen D. Preparation of bovine serum albumin loaded poly (D, L-lactic-co-glycolic acid) microspheres by a modified phase separation technique. J Microencapsul 2005 Mar;22(2):117-126.
87.Rowlands AS, Lim SA, Martin D, Cooper-White JJ. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials 2007 Apr;28(12):2109-2121.
88.Blaker JJ, Knowles JC, Day RM. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta biomaterialia 2008 Mar;4(2):264-272.
89.Huang YX, Ren J, Chen C, Ren TB, Zhou XY. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Journal of biomaterials applications 2008 Mar;22(5):409-432.
90.Chacon M, Molpeceres J, Berges L, Guzman M, Aberturas MR. Stability and freeze-drying of cyclosporine loaded poly(D,L lactide-glycolide) carriers. Eur J Pharm Sci 1999 May;8(2):99-107.
91.Saez A, Guzman M, Molpeceres J, Aberturas MR. Freeze-drying of polycaprolactone and poly(D,L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm 2000 Nov;50(3):379-387.
92.Kim TH, Park TG. Critical effect of freezing/freeze-drying on sustained release of FITC-dextran encapsulated within PLGA microspheres. Int J Pharm 2004 Mar 1;271(1-2):207-214.
93.Bozdag S, Dillen K, Vandervoort J, Ludwig A. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. J Pharm Pharmacol 2005 Jun;57(6):699-707.
94.Packhaeuser CB, Lahnstein K, Sitterberg J, Schmehl T, Gessler T, Bakowsky U, et al. Stabilization of Aerosolizable Nano-carriers by Freeze-Drying. Pharm Res 2009 Jan;26(1):129-138.
95.Suh SW, Shin JY, Kim J, Kim J, Beak CH, Kim DI, et al. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. Asaio J 2002 Sep-Oct;48(5):460-464.
96.Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 2003 Oct;24(22):4011-4021.
97.Oh SH, Kang SG, Lee JH. Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: comparison with control hydrophobic one. J Mater Sci Mater Med 2006 Feb;17(2):131-137.
98.Wu L, Jing D, Ding J. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials 2006 Jan;27(2):185-191.
99.Nilsson-Helander K, Sward L, Silbernagel KG, Thomee R, Eriksson BI, Karlsson J, et al. A new surgical method to treat chronic ruptures and reruptures of the Achilles tendon. Knee Surgery, Sports Traumatology, Arthroscopy 2008 Jun;16(6):614-620.
100.Lee DK. A preliminary study on the effects of acellular tissue graft augmentation in acute Achilles tendon ruptures. J Foot Ankle Surg 2008 Jan-Feb;47(1):8-12.
101.Barber FA, McGarry JE, Herbert MA, Anderson RB, Barber FA, McGarry JE, et al. A biomechanical study of Achilles tendon repair augmentation using GraftJacket matrix. Foot & Ankle International 2008 Mar;29(3):329-333.
102.Suckow MA, Hodde JP, Wolter WR, Hiles MC. Repair of experimental Achilles tenotomy with porcine renal capsule material in a rat model. Journal of materials science 2007 Jun;18(6):1105-1110.
103.Lee DK. Achilles tendon repair with acellular tissue graft augmentation in neglected ruptures. J Foot Ankle Surg 2007 Nov-Dec;46(6):451-455.
104.Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. The Journal of bone and joint surgery 2007 Mar;89(3):621-630.
105.Zantop T, Gilbert TW, Yoder MC, Badylak SF. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J Orthop Res 2006 Jun;24(6):1299-1309.
106.Sato M, Maeda M, Kurosawa H, Inoue Y, Yamauchi Y, Iwase H. Reconstruction of rabbit Achilles tendon with three bioabsorbable materials: histological and biomechanical studies. J Orthop Sci 2000;5(3):256-267.
107.Sanchez M, Anitua E, Azofra J, Andia I, Padilla S, Mujika I, et al. Comparison of surgically repaired Achilles tendon tears using platelet-rich fibrin matrices. American Journal of Sports Medicine 2007 Feb;35(2):245-251.
108.Pihlajamaki H, Tynninen O, Karjalainen P, Rokkanen P. Enveloping bioabsorbable polyglycolide membrane and immobilization in Achilles tendon repair: A comparative experimental study on rabbits. J Orthop Res 2008 Feb;26(2):264-270.
109.Deligianni D, Korovessis P, Porte-Derrieu MC, Amedee J. Fibronectin preadsorbed on hydroxyapatite together with rough surface structure increases osteoblasts' adhesion "in vitro": the theoretical usefulness of fibronectin preadsorption on hydroxyapatite to increase permanent stability and longevity in spine implants. J Spinal Disord Tech 2005 Jun;18(3):257-262.
110.Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. Journal of biomedical materials research 2004 Aug 15;70(2):286-296.
111.Han D, Gouma PI. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine 2006 Mar;2(1):37-41.
112.Fridrikh SV, Yu JH, Brenner MP, Rutledge GC. Controlling the fiber diameter during electrospinning. Phys Rev Lett 2003 Apr 11;90(14):144502.
113.Lee M, Wu BM, Dunn JC. Effect of scaffold architecture and pore size on smooth muscle cell growth. J Biomed Mater Res A 2008 Dec 15;87(4):1010-1016.
114.Wu L, Ding J. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. J Biomed Mater Res A 2005 Dec 15;75(4):767-777.
115.Yoshioka T, Kawazoe N, Tateishi T, Chen G. In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges. Biomaterials 2008 Aug-Sep;29(24-25):3438-3443.
116.Elias KL, Price RL, Webster TJ. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 2002 Aug;23(15):3279-3287.
117.Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng 2007 Mar;13(3):579-587.
118.Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000 Apr;21(7):667-681.
119.Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 2001 Jun;7(3):291-301.
120.Balto HA. Attachment and morphological behavior of human periodontal ligament fibroblasts to mineral trioxide aggregate: a scanning electron microscope study. J Endod 2004 Jan;30(1):25-29.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊