跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃英洲
研究生(外文):Ying-Chou Huang
論文名稱:聚(3-己烷基噻吩)/碳六十衍生物為主動層之高分子太陽能電池特性研究
論文名稱(外文):Studies of polymer solar cells using blend system of poly(3-hexylthiophene) and fullerene derivative
指導教授:鄭弘隆
指導教授(外文):Horng-long Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:106
中文關鍵詞:拉曼光譜吸收光譜有機太陽能電池薄膜結構碳六十衍生物聚(3-己烷基噻吩)X-ray繞射光譜
外文關鍵詞:Organic solar cellsPoly(3-hexylthiophene)X-ray diffractionAbsorption spectroscopyFullereneThin-film structureRaman spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:803
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以聚(3-己烷基噻吩)(Poly(3-hexylthiophene), P3HT)與碳六十衍生物([6,6]-phenyl-C61-butyric acid methyl ester, PCBM)混合異質結構(bulk-heterojunction)為主動層之有機太陽能電池之元件物理與電特性。本文分為二部份,第一部份利用改變P3HT/PCBM混合比例製作主動層,第二部份則是使用不同溶劑種類製作主動層,利用吸收光譜、拉曼光譜與X-ray繞射光譜深入解析P3HT/PCBM主動層之結構性質,並探討主動層結構對太陽能電池元件電參數的影響,特別聚焦於太陽能電池元件之轉換效率。
綜合兩部分的實驗,在AM1.5G且100 mW/cm2的模擬太陽光照射下,我們得到以氯苯為溶劑,且P3HT:PCBM混合的比例為1:1時,獲得元件的轉換效率為3.67%,優於使用其它溶劑,如二氯苯和三氯苯。由吸收光譜分析可知當PCBM摻入P3HT後,可見光波段的吸收會隨PCBM量增加而降低,且P3HT鏈會形成較無序的聚集結構,不利載子傳遞,是造成元件主動層採用P3HT:PCBM 混合比例為 1:2 與1:3時,短路電流過低的主因。當使用P3HT:PCBM比例為1:1製作主動層薄膜時,拉曼分析指出1446 cm-1振動峰半高寬值最大,建議P3HT與PCBM能進行有效混合,導致較多的p-n接面,因而提升電子和電洞分離的機率;X-ray繞射光譜結果則指出P3HT分子鏈間的間距較小,將有助於載子在分子間的傳遞,使得短路電流較高,元件的轉換效率也較高。另外,我們觀察到拉曼光譜之1446 cm-1波峰比上1378 cm-1波峰的強度比和面積比較大,其對應的元件短路電流也較大。
第二部份分別使用氯苯、二氯苯、與三氯苯製作P3HT/PCBM 為主動層之太陽能電池,發現以二氯苯與三氯苯為溶劑製成的主動層, P3HT於薄膜的結晶程度優於使用氯苯為溶劑,且其薄膜均勻性亦較佳,建議P3HT和PCBM會相分離,而後各自形成微區(domain),導致p-n接面面積減少,轉換效率較低。結果顯示當P3HT:PCBM的比例為1:1時,且選擇氯苯做為溶劑,所製成的有機太陽能電池有最佳的電轉換效率。
This study investigates the thin-film structural and electronic properties of poly (3-hexylthiophene) (P3HT): fullerene derivatives ([6,6]-phenyl-C61-butyric acid methyl ester, PCBM) based bulk-heterojunction organic solar cells (OSCs). The study was divided into two parts: in the first part a series of P3HT:PCBM active layers with different composition ratios were used to prepare OSC devices. For the second part of this study, the influence of solvent on the structure of active layers and on electronic characteristics of P3HT:PCBM-based OSC devices were investigated. The P3HT:PCBM active layers were investigated using absorption spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). We investigate the correlation between the structure properties of the P3HT:PCBM active layer and the electrical parameters of OSC devices.
Part 1: Under the simulate sunlight, with a AM1.5G filter at 100 mW/cm2, we found that the power conversion efficiency of the OSC device was 3.67% for P3HT:PCBM blends, in a 1:1 weight ratio, prepared from a chlorobenzene (CB) solvent, and was superior to when using 1,2-Dichlorobenzene (DCB) and 1,2,4-Trichlorobenzene (TCB) as the solvents. The absorption spectra indicated that the absorbance in the visible region decreased with an increase in the amount of PCBM in the P3HT:PCBM active layer. At the same time, the P3HT chains had the tendency to form disorder and aggregate structures and thus inferior charge transport properties. This may provide a reason for the low short-circuit current of the OSC devices with P3HT:PCBM weight ratios of 1:2 and 1:3. The Raman analysis results indicated that the 1:1 weight ratio P3HT:PCBM film has a broader half-width than the band at 1446 cm-1. This suggests the formation of a large area of p-n junctions, which may offer the benefit of separation of electrons and holes, due to the well-mixture of P3HT and PCBM. XRD results indicated a reduced interchain distance of the P3HT chains in the 1:1 P3HT:PCBM active layer, thus benefiting the interchain charge transport properties. Consequently, the OSC device made by the 1:1 P3HT:PCBM exhibits a high short-circuit current and a high power conversion efficiency as compared to other devices with different blending ratios. Additionally, we observed that the higher the intensity ratio of 1446 to 1378 cm-1 Raman bands, the larger short-circuit current of the corresponding OSC devices.
Part 2: The influence of the used solvents, including the CB, DCB, and TCB, on the structure of the P3HT/PCBM active layer and the electrical characteristics of the corresponding OSC devices were studied. The P3HT:PCBM thin films made by the DCB and TCB show that the smaller half-width of (100) the diffraction peak and of the Raman bands and thus suggests a better crystal quality and a thin film uniformity when compared with that made by the CB. However, the corresponding OSC devices made by the DCB and TCB display a lower power conversion efficiency than that of the CB device. It thus suggested that P3HT and PCBM may form the individual domains respectively, which resulted in a decrease of the area of the p-n junction and thus lowered the power conversion efficiency of the OSC devices. We have obtained excellent electrical characteristics of the OSC devices when using the P3HT:PCBM active layer with a weight ratio of 1:1 and made by the CB solvent.
中文摘要..................................................I
Abstract................................................III
誌謝.....................................................VI
目錄....................................................VII
表目錄....................................................X
圖目錄..................................................XII
第一章 簡介及理論基礎...................................1
1.1 前言..................................................1
1.2 有機太陽能電池的發展..................................3
1.3 有機太陽能電池工作原理................................6
1.4 有機太陽能電池的等效電路..............................9
1.5 有機太陽能電池的特性.................................11
1.5.1 開路電壓.........................................11
1.5.2 短路電流.........................................11
1.5.3 填充因子.........................................12
1.5.4 轉換效率.........................................12
1.6 太陽光的頻譜.........................................13
1.7 研究目的.............................................14

第二章 不同主動層混合比例的高分子太陽能電池之特性研
究..............................................20
2.1 前言.................................................20
2.2 實驗方法.............................................22
2.2.1 實驗材料.........................................22
2.2.2 P3HT/PCBM溶液配製................................23
2.2.3 元件製作........................................ 23
2.3 元件電性量測與分析儀器...............................26
2.3.1 校正太陽光模擬器.................................26
2.3.2 J-V特性曲線量測..................................26
2.3.3 實驗分析儀器.....................................27
2.4 結果討論.............................................28
2.4.1主動層P3HT:PCBM不同混合比例之元件電性.............28
2.4.2 吸收光譜.........................................29
2.4.3 拉曼光譜分析.....................................31
2.4.4 X-ray繞射光譜分析................................33
2.5 結語.................................................36

第三章 溶劑效應對P3HT:PCBM高分子太陽能電池之特性研
究..............................................58
3.1 前言.................................................58
3.2 實驗方法.............................................61
3.2.1 實驗材料.........................................61
3.2.2 P3HT/PCBM溶液配製................................62
3.2.3 元件製作.........................................63
3.3 元件電性量測與分析儀器...............................64
3.3.1 校正太陽光模擬器.................................64
3.3.2 J-V特性曲線量測..................................64
3.3.3 實驗分析儀器.....................................64
3.4 結果討論.............................................66
3.4.1 主動層P3HT:PCBM溶於不同溶劑之元件電性............66
3.4.2 吸收光譜.........................................67
3.4.3 拉曼光譜分析.....................................68
3.4.4 X-ray繞射光譜分析................................71
3.5 結語.................................................73

第四章 總結與未來展望..................................96
參考文獻................................................100
[1] C. Reese, M. Roberts, M.-M. Ling and Z. Bao,“Organic
thin film transistors”Mater. Today, p.20, 2004.

[2] C. Lee, J. Ko, J. Lee and I. Chung,“Fabrication and characterization of a pentacene thin film transistor with a polymer insulator as a gate dielectric”J. Vac. Sci. Technol. A. 26, p.710, 2008.

[3] M. Hamedi, L. Herlogsson, X. Crispin, R. Marcilla, M. Berggren and O. Inganäs,“Fiber-Embedded Electrolyte-Gated Field-Effect Transistors for e-Textils”Adv. Mater. 21, p.573, 2009.

[4] M. C. Gather, A. Köhnen, A. Falcou, H. Becker and K. Meerholz,“Solution-Processed Full-Color Polymer Organic Light-Emitting Diode Displays Fabricated by Direct Photolithography”Adv. Funct. Mater. 17, p.191, 2007.

[5] T. Komoda, N. Ide and J. Kido,“High Efficient OLEDs and Their Application to Lighting”J. Light & Vis. Env. 32, p.75, 2008.

[6] C. N. Hoth, S. A. Choulis, P. Schilinsky and C. J. Brabec,“High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends”Adv. Mater. 19, p.3973, 2007.

[7] C. W. Tang,“Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, p.183, 1986.

[8] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl,“Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene”Science. 258, p.1474, 1992.

[9] G. Yu, C. Zhang and A. J. Heeger,“Dual-function semiconducting polymer device light-emitting and photodetecting diodes”Appl. Phys. Lett. 64, p.1540, 1993.

[10] G. Yu, J. Gao, J. Hummelen, F. Wudl and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of a internal
donor-acceptor heterojunctions”Science. 270, p.1789, 1995.

[11] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cell”Adv. Funct. Mater. 13, p.85, 2003.

[12] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang,“High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”Nat. Mater. 4, p.864, 2005.

[13] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Hegger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology”Adv. Funct. Mater. 15, p.1617, 2005.

[14] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger,“Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing” Science. 317, p.222, 2007.

[15] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”Nat. Photonics 3, p.297, 2009.

[16] J. J. Dittmer, E. A. Marseglia, and R. H. Friend, “Electron Trapping in Dye/Polymer Blend Photovoltaic Cells”Adv. Mater. 17, p.1270, 2002.

[17] Photovoltaics CDROM, (http://pvcdrom.pveducation.org/index.html)

[18] K. Sim, Y. Choi, H. Kim, S. Cho, S. C. Yoon and S. Pyo,“Soluble pentacene thin-film transistor using a high solvent and heat resistive polymeric dielectric with low-temperature processability and its long-term stability” Org. Electron. 10, p.506, 2009.

[19] M. Al-Ibrahim, H.-K. Roth, U. Zhokhavets, G. Gobsch and S. Sensfuss,“Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene”Sol. Energy Mater. Sol. Cells 85, p.13, 2005.

[20] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics”Adv. Mater. 14, p.99, 2002.

[21] C. Mezler, E. J. Koop, V. D. Mihailetchi and P. W. M. Blom, Hole Transport in Poly(phenylene vinylene)/ Methanofullerene Bulk- heterojunction Solar Cells”Adv. Funct. Mater.14, p.865, 2004.

[22] K. Vandewal, A. Gadisa, W. D. Oosterbaan, S. Bertho, F. Banishoeib, I. V. Severen, L. Lutsen, T. J. Cleij, D. Vanderzande and J. V. Manca,“The Relation Between Open-Circuit Voltage and the Onset of Photocurrent Generation by Charge-Transfer Absorption in Polymer : Fullerene Bulk Heterojunction Solar Cells”Adv. Funct. Mater. 18, p.2064, 2008.

[23] P. Schilinsky, C. Waldauf and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors”Appl. Phys. Lett. 81, p.3885, 2002.

[24] D. Chirvase, J. Parisi, J.C. Hummelen and V. Dyakonov,“Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites”Nanotechnology 15, p.1317, 2004.

[25] J. Huang, G. Li and Y. Yang,“Influence of composition and heat-treatment on the charge transport properties of poly (3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends”Appl. Phys. Lett. 87, p.112105, 2005.

[26] V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li and Y. Yang,“Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films”Chem. Phys. Lett. 411, p.138, 2005.

[27] R. D. Bettignies, J. Leroy, M. Firon and C. Sentein, “Study of P3HT:PCBM bulk heterojunction solar cells : influence of components ratio and of the nature of electrodes on performances and lifetime”Proc. of SPIE 5938, p.59380C, 2005.

[28] L. H. Nguyen, H. Hoppe, T. Erb, S. Günes, G. Gobsch and N. S. Sariciftci,“Effects of annealing on the nanomorphology and performance of poly (alkylthiophene): fullerene bulk-heterojunction solar cells”Adv. Funct. Mater. 17, p.1071, 2007.

[29] M. Dante, J. Peet and T.-Q. Nguyen,“Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer /fullerene solar cells by scanning probe microscopy”J. Phys. Chem. C 112, p.7241, 2008.

[30] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec,“Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells”Adv. Funct. Mater. 15, p.1193, 2005.

[31] A. Swinnen, I. Haeldermans, P. Vanlaeke, J. D’Haen, J. Poortmans, M. D. ’Olieslaeger and J. V. Manca,“Dual crystallization behavour of polythiophene/fullerene blends”Eur. Phys. J.: Appl. Phys. 36, p.251, 2007.

[32] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha and M. Ree,“A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells”Nat. Mater. 5, p.197, 2006.

[33] E. Klimov, W. Li, X. Yang, G. G. Hoffmann and J. Loos, “Scanning near-field and confocal Raman microscopic investigation of P3HT-PCBM systems for solar cell applications” Macromolecules 39, p.4493, 2006.

[34] J.-J. Yun, J. Peet, N.-S. Cho, G. C. Bazan, S. J. Lee and M. Moskovits,“Insight into the Raman shifts and optical absorption changes upon annealing polymer/ fullerene solar cells”Appl. Phys. Lett. 92, p.251912, 2008.

[35] M.-Y. Chiu, U-S. Jeng, C.-H. Su, K. S. Liang and K.-H. Wei,“Simultaneous Use of Small- and Wide-Angle X-ray Techniques to Analyze Nanometerscale Phase Separation in Polymer Heterojunction Solar Cells”Adv. Mater. 20, p.2573, 2008.

[36] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, “Composition and annealing effects in polythiophene/ fullerene solar cells”J. Mater. Sci. 40, p.1371, 2005.

[37] R. Chang, J. H. Hsu, W. S. Fann, J. Yu, S. H. Lin, Y. Z. Lee and S. A. Chen,“Aggregated states of luminescent conjugated polymers in solutions”Chem. Phys. Lett. 317, p.153, 2000.

[38] G. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly(3-hexylthiophene) field effect transistor”J. Appl. Phys. 93, p.6137, 2003.

[39] M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant and I. Baltog,“SERS spectra of poly(3-hexylthiophene) in oxidized and unoxidized states”J. Raman. Spectrosc. 29, p.825, 1998.

[40] T. Erb, U. Zhokhavets, H. Hoppe, G. Gobsch, M. Al-Ibrahim, O. Ambacher,“Absorption and crystallinity of poly(3-hexylthiophene)/ fullerene blends in dependence on annealing temperature”Thin Solid Film 511-512, p.483, 2006.

[41] H. Sirringhaus , P. J. Brown , R. H. Friend , M. M. Nielsen , K. Bechgaard , B. M. W. Langeveld-Voss , A. J. H. Spiering , R. A. J. Janssen , E. W. Meijer, P. Herwing and D. M. de Leeuw,“Two- dimensional charge transport in self-organized, high-mobility conjugated polymers”Nature 401, p.685, 1999.

[42] R. Österbacka, C. P. An, X. M. Jiang and Z. V. Vardeny,“Two- dimensional electronic excitations in self-assembled conjugated polymer nanocrystals”Science 287, p.839, 2000.

[43] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. A. Pettersson, O. Inganäs, R. Feidenhans’l and S. Ferrer, “Structural anisotropy of poly(alkylthiophene) films” Macromolecules 33, p.3120, 2000.

[44] J.-H. Huang, Z.-Y. Ho, D. Kekuda, Y. Chang, C.-W. Chu and K.-C. Ho,“Effects of nanomorphological changes on the performance of solar cells with blends of poly[9,9’-dioctyl-fluorene-co-bithiophene] and a soluble fullerene” Nanotechnology 20, p.025202, 2009.

[45] M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang and T. J. Marks,“p-Type semiconducting nickel oxide as an efficiency- enhancing anode interfacial layer in polymer bulk-heterojunction solar cells”PNAS 105, p.2783, 2008.

[46] Y. Kim, S. A. Choulis, J. Nelson, and D. D. C. Bradley,“Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene”Appl. Phys. Lett. 86, p.063502, 2005.

[47] Y. Ding, P. Lu and Q. Chen, “Optimizing material properties of bulk-heterojunction polymer films for photovoltaic applications”Proc. of SPIE 7099, p.709919, 2008.

[48] S.-H. Jin, B. V. K. Naidu, H.-S. Jeon, S.-M. Park, J.-S. Park, S. C. Kim, J. W. Lee and Y.-S. Gal,“Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system”Sol. Energy Mater. Sol. Cells 91, p.1187, 2007.

[49] K. Kawano, J. Sakai, M. Yahiro and C. Adachi, “Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene) and fullerene derivatives”Sol. Energy Mater. Sol. Cells 93, p.514, 2009.

[50] R. S. Ruoff, D. S. Tse, R. Malhotra and D. C. Lorents,“Solubility of fullerene (C60) in a variety of solvents” J. Phys. Chem. 97, p.3379, 1993.

[51] M. Urien, L. Bailly, L. Vignau, E. Cloutet, A. D. Cuendias, G. Wantz, H. Cramail, L. Hirsch and J.-P. Parneix,“Effect of the regioregularity of poly(3-hexylthiophene) on the performances of organic photovoltaic devices”Polym. Int. 57, p.764, 2008.

[52] X. Yang, J. K. J. V. Duren, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, M. A. J. Michels and J. Loos, “Crystalline organization of a methanofullerene as use for plastic solar-cell applications”Adv. Mater. 16, p.802, 2004.

[53] N. Vukmirovic and L.-W. Wang,“Electronic structure of disordered conjugated polymers: polythiophenes”J. Phys. Chem. B 113, p.409, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊