跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林嘉德
研究生(外文):Jia-De Lin
論文名稱:結構對染料摻雜膽固醇所產生之彩色錐角雷射之影響
論文名稱(外文):Structural influence on the color cone lasing emission in dye-doped cholesteric liquid crystals
指導教授:李佳榮
指導教授(外文):Chia-rong Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:彩色錐角雷射輸出結構影響膽固醇液晶
外文關鍵詞:cholesteric liquid crystalscolor cone lasing emissionstructural influence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室(Lee et. al.)在不久之前發現了染料摻雜膽固醇液晶中奇特的彩色錐角雷射輸出現象。為了了解引致此雷射行為的關鍵,本論文著重在探討染料摻雜膽固醇液晶結構對於其所產生之彩色錐角雷射光學效率(包含雷射臨界能量及相對斜率效率)的影響。本論文中包含了四種不同樣品的實驗結果,樣品條件分為有無表面水平配向處理以及有無經過快速熱按壓過程。其中一些重要的實驗結果條列如下:
(1)經過表面水平配向但未經過快速熱按壓處理的樣品(樣品A),其所產生的彩色錐角雷射光學效率會隨時間增加而增加。因為隨著時間增加,膽固醇液晶分子會受到表面錨定力作用自我調整,造成樣品內multi-domain間的油紋減少,所以由這些缺陷引致的散射也跟著變少。
(2)當樣品A製備完成並放置216小時後,可得到最佳的彩色錐角雷射效率。然而,經過表面水平配向且快速熱壓按處裡的樣品(樣品C),只要放置36小時就可得到和樣品A放置216小時相同的最佳彩色錐角雷射效率。這可證明快速熱按壓處理能有效縮短得到最佳化條件的時間,而且,根據觀察,此時的膽固醇液晶呈現完美的single-domain結構。
(3)在沒有表面配向的樣品中,不論有經過快速熱按壓處理(樣品B)或沒有(樣品D),彩色錐角雷射的光學效率都遠比樣品A和樣品C來的差很多。因為樣品沒有表面配向提供的錨定力,樣品內充滿許多不明顯,但是類似focal conic的缺陷,這會造成強烈的散射,也因此無法量測到彩色錐角雷射訊號。
根據實驗的結果,也可將彩色錐角雷射光學效率應用在檢驗膽固醇液晶planar結構是否良好這方面。
Novel color cone lasing emission (CCLE) in the dye-doped cholesteric liquid crystal (DDCLC) was discovered by Lee et. al. very recently. To understand the key to induce such a new lasing action, this thesis focuses on the investigation on the influence of the CLC structure on the optical efficiency (energy threshold and relative slope efficiency) of the CCLE in DDCLC cells. Four different cells with and without surface alignment and treatment of a rapid thermal-pressing processing (RTPP) are fabricated. Some important experimental results are obtained and explained as follows:
1)The optical efficiency of the obtained CCLE increases with increasing the preservation time after completing the preparation of the DDCLC cell with surface alignment and without the treatment of the RTPP (cell A). This is because the number of the oily steak in the multi-domain texture and thus the induced scattering decrease with increasing the preservation time due to the self-adjustment of CLC texture under the anchoring effect of the surface alignment.
2)An optimum efficiency of the CCLE based on cell A can be obtained if the preservation time is increased to 216 hrs. However, based on the cell with surface alignment and the treatment of the RTPP (cell C), the CCLE with a same optimum efficiency as that using cell A can be obtained when the preservation time is reduced to 36 hrs. The RTPP markedly reduce the preservation time needed to obtain an optimum efficiency of CCLE, in which a perfect single-domain planar texture can be correspondingly observed.
3)The optical efficiencies of the CCLE obtained based on the cells without surface alignment and with/without the treatment of the RTPP (cells B and D) are much poor than those based on cells A and C. This is because the fact that, without the anchoring effect of the surface alignment, the cells are always full of unapparent and small focal-conic-like defects; thus no CCLE can be measured due to strong scattering.
The optical efficiency of the CCLE can be regarded as a useful referable parameter for the quality of the CLC planar texture.
摘要......................................................I
Abstract................................................III
致謝......................................................V
緒論......................................................1
第一章 簡介..............................................3
1-1 液晶定義..........................................3
1-2 液晶分類..........................................4
1-2-1 圓盤狀分子..................................5
1-2-2 棒狀分子....................................6
1-3 液晶特性.........................................12
1-3-1 光學異向性.................................13
1-3-2 介電異向性.................................19
1-3-3 溫度對液晶的影響...........................22
1-3-4 連續彈性體理論.............................23
第二章 相關理論與機制...................................25
2-1 膽固醇液晶的光學特性.............................25
2-1-1 波方程的矩陣推導...........................25
2-1-2 色散關係式.................................30
2-1-3 布拉格反射.................................32
2-2 影響螺距的因素...................................33
2-2-1 溫度.......................................33
2-2-2 壓力.......................................33
2-2-3 摻雜濃度...................................34
2-2-4 外加場.....................................34
2-3 雷射原理.........................................36
2-3-1 輻射理論...................................37
2-3-2 粒子數反轉分布.............................40
2-3-3 雷射工作過程...............................43
2-4 分布反饋雷射機制.................................44
2-5 染料摻雜膽固醇液晶之雷射機制.....................48
2-6 染料摻雜膽固醇液晶之彩色錐角雷射機制.............50
第三章 實驗方法與過程...................................55
3-1 材料介紹.........................................55
3-2 樣品製作.........................................57
3-2-1 調配適當比例之摻雜染料膽固醇液晶...........58
3-2-2 空樣品製作.................................59
3-2-3 藥品注入與染料摻雜膽固醇液晶樣品之製作完成.60
3-2-4 樣品特定處理過程...........................60
3-3 樣品觀察與光路架設...............................62
3-3-1 樣品觀察...................................62
3-3-2 膽固醇液晶於不同角度之反射頻譜量測.........62
3-3-3 彩色錐角雷射輸出訊號量測...................63
第四章 實驗結果與討論...................................65
4-1 不同放置時間下水平配向DDCLC的雷射表現............66
4-2 不同放置時間下無配向DDCLC的雷射表現..............81
4-3 經過快速熱壓處理之水平配向DDCLC雷射表現..........89
4-4 經過快速熱壓處理之無配向DDCLC雷射表現............91
4-5 四種DDCLC樣品之雷射表現比較......................94
第五章 總結與未來展望...................................99
5-1 總結.............................................99
5-2 未來展望........................................100
參考文獻................................................101
1. E. Fern�鴨dez, M. Ortu�瓨, S. Gallego, C. Garc�朦, A. M�黔quez, A. Bel�聲dez, and I. Pascual, Proc. SPIE 7358, 73581C (2009).
2. M. Soellner, U. Vieth, K. Y. Hsu, S. H. Lin, and M. Gruber, Proc. SPIE 7358, 73580Y (2009).
3. L. O. Palomares, P. Castro-Garay, and J. A. Reyes, Appl. Phys. Lett. 94, 181903 (2009).
4. X.-J. Wang, Z.-D. Huang, J. Feng, X.-F. Chen, X. Liang, and Y.-Q. Lu, Opt. Exp. 16, 13168 (2008).
5. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, and S. John, Phys. Rev. B 61, R2389 (2000).
6. Ch. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, Appl. Phys. Lett. 87, 121105 (2005).
7. J. Martz, R. Ferrini, F. N�佘sch, and L. Zuppiroli, J. Appl. Phys. 99, 103105 (2006).
8. G. Alagappan, X. W. Sun, and P. Shum, J. Opt. Soc. Am. B 23, 1478 (2006).
9. V. A. Tolmachev, T. S. Perova, S. A. Grudinkin, and V. A. Melnikov, Appl. Phys. Lett. 90, 011908 (2007).
10. V. I. Kopp, Opt. Lett. 23, 1707 (1998).
11. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 82, 3593 (2003)
12. T. Matsui, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 83, 422 (2003).
13. Y. J. Liu, X. W. Sun, and P. Shum, Appl. Phys. Lett. 88, 061107 (2006).
14. L. M. Blinov, G. Cipparrone, and P. Pagliusi, Appl. Phys. Lett. 89, 031114 (2006).
15. L. M. Blinov, Appl. Phys. Lett. 90, 131103 (2007).
16. H. Kogelnik, and C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
17. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).
18. P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, Liquid Crystals 30, 1391 (2003).
19. T.-H. Lin, and H.-C. Jau, Appl. Phys. Lett. 88, 061122 (2006).
20. Y. Matsuhisa, R. Ozaki, Y. Takao, and M. Ozaki, J. Appl. Phys. 101, 033120 (2007).
21. Y. Matsuhisa, Y. Huang, Y. Zhou, and S.-T. Wu, Appl. Phys. Lett. 90, 091114 (2007).
22. L. M. Blinov, J. Appl. Phys. 101, 053104 (2007).
23. S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, Appl. Phys. Lett. 90, 261108 (2007).
24. Y. Wang, T. Manabe, Y. Takanishi, K. Ishikawa, Opt. Commun. 280, 408 (2007).
25. C.-R. Lee, S.-H. Lin, H.-C. Yeh, T.-D. Ji, K.-L. Lin, T.-S. Mo, C.-T. Kuo, K.-Y.Lo, S.-H. Chang, Andy Y.-G. Fuh, and S.-Y. Huang, “Novel color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Exp. (to be published).
26. 松本正一,角田示良 合著,劉瑞祥 譯,液晶之基礎與應用 (國立編譯館出版,1996).
27. B. Bahoadur, Liquid Crystals-Applications and Uses (World Scientific Press, Singapore, 1990).
28. 趙中興,顯示器原理與技術 (全華圖書,2001).
29. 小林駿介,e世代液晶顯示器 (全華圖書,2002).
30. M. Blinov, and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
31. S. Chandrasekhar, Contemp. Phys. 29, 527 (1988).
32. F. Reintzer, O. Lehmann, and H. Keller, Mol. Cryst. Liq. Cryst. 21, 1 (1973).
33. G. W. Gray, Thermotropic Liquid Crystals (the Society of Chemical Industry, 1987).
34. P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc. New York, 2006).
35. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (University of Utah, New York, 1975).
36. I.-C. Khoo, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons Press, New York, 1995).
37. S. Teitler and B. W. Henvis, J. Opt. Soc. Am. 60, 830 (1970).
38. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).
39. C. W. Oseen, Trans. Faraday Soc. 29, 833 (1933).
40. A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze, and N. Goto, J. Jpn. Appl. Phys. 21, 1543 (1982).
41. 沈柯, 雷射原理教程 (亞東書局, 1990).
42. A. Yariv, and P. Yeh, Photonics, 6th ed. (Oxford University Press, New York, 2007).
43. C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, Appl. Phys. Lett. 18, 395 (1971).
44. H. Kogelnik, and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
45. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
46. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
47. S. John, Phys. Rev. Lett. 58, 2846 (1987).
48. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).
49. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Progress in Quantum Electronics 27, 369 (2003).
50. R. Ozaki, T. Shinpo, M. Ozaki, and H. Moritake, J. Jpn. Appl. Phys. 47, 1363 (2008).
51. R. Ozaki, T. Shinpo, and H. Moritake, Appl. Phys. Lett. 92, 163304 (2008).
52. Y. Huang, Y. Zhou, and S.-T. Wu, Appl. Phys.Lett. 88, 011107 (2006).
53. F. Zhang, and D.-K. Yang, Phy. Rev. E 66, 041701 (2002).
54. S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Handeler, and H. J. Coles, Phy. Rev. E 74, 061709 (2006).
55. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, J. Appl. Phys. 97, 023103 (2005).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top