跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭家豪
研究生(外文):Jia-hao Guo
論文名稱:微流體在光纖感測器之研究和應用
論文名稱(外文):Microfluidics for Fiber-sensor Application
指導教授:張允崇
指導教授(外文):Yun-chong Jhang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:光纖感測器微流體
外文關鍵詞:fibermicrofluidics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:1
本論文中,結合光纖感測器和微流體系統,利用氫氟酸蝕刻暴露纖核的光纖。討論不同長度和不同纖核直徑的感測能力。將奈米金粒子利用共價鍵修飾在光纖纖核表面。如果利用綠光雷射當光源會引發表面電漿共振增強感測能力。此外,加入微流體系統,可以減少貴重流體的使用量。本實驗利用聚二甲基矽氧烷為微流體系統的材料。使用微幫浦系統將流體注入微流道內。一些微流道的製程參數會在本論文中討論。最後將表面電漿光纖感測器整合在微流體系統內,希望未來能將光纖感測器應用在生物感測上。
In this dissertation, a fiber-base sensor integrated in a microfluidic system is investigated. The fiber sensor is able to detect the refractive index change at the exposed fiber core created by a time-controlled HF etch of the fiber. Effects of the etch time and exposed length to the sensitivity are also studied. The fiber sensor is also modified by covalent bonding of colloid gold nanoparticles to the exposed fiber core surface. The strong localized surface plasmon resonance scattering from the gold nanoparticles is able to enhance the sensitivity of the fiber sensor when the resonant green laser light is used. In addition, a microfluidic channel system is also developed to minimize the cost of the precious material that this system is design to detect. The microfluidic is made from using PDMS as the fabrication materials. Microfluidic channels with tens of micrometers in height and hundreds of micrometers in width are successfully fabricated. A syringe pump system that can pump the fluid into the system is able developed. Several fabrication parameters are also investigated to understand the performance of the microfluidic system. In conclusion, a plasmon-enhanced fiber sensor integrated in a microfluidic system is investigated. Further detailed studies of this system will be beneficial for future bio-sensing application.
中文摘要......................................................................I
英文摘要…………………………………………………………………………….II
第一章 緒論..............................................................................................1
1-1 研究動機與目的.................................................................................1
1-1-1 生化感測器簡介......................................................................1
1-1-2 研究目的與展望......................................................................3
1-2 金屬奈米粒子.....................................................................................4
1-2-1 金屬奈米粒子的研究..............................................................4
1-2-2 奈米粒子之光譜特性..............................................................4
1-2-3 薄膜表面電漿共振..................................................................5
1-2-4 定點化表面電漿共振( Localized Surface Plasmon Resonance簡稱LSPR )..........................................................9
1-2-5 圓球型金奈米粒子 (gold nanoparticles)...........................10
1-2-6 自我組裝奈米粒子薄層........................................................11
1-3 光纖...................................................................................................12
1-3-1 光纖簡介................................................................................12
1-3-2 光纖的構造............................................................................13
1-3-3光纖的種類.............................................................................13
1-3-4 光在光纖內的傳播................................................................16
1-3-5 逐漸消失場(Evanescent Filed)............................................18
1-4 微流體生物晶片...............................................................................20
1-4-1 親水性與疏水性的討論........................................................21
第二章 實驗設備與實驗方法................................................................24
2-1 實驗設備...........................................................................................24
2-1-1 UV/VIS/NIR 光譜儀.............................................................24
2-1-2掃描式電子顯微鏡.................................................................25
2-1-3 橢圓偏光儀............................................................................26
2-1-4鎖相放大器(Lock-in-Amplifier)...........................................27
2-1-5 氧電漿機(O2 Plasma)...........................................................27
2-1-6 光罩對準儀............................................................................28
2-2 金奈米粒子修飾在基板上之原理與方法.......................................29
2-2-1 試片製備................................................................................29
2-3 光纖感測器的製備...........................................................................31
2-3-1 感測系統初步的架設............................................................33
2-3-2 改良感測系統的架設............................................................33
2-4 微流體系統.......................................................................................35
2-4-1微流體應用在光纖感測器.....................................................35
2-4-2 微流體技術應用在封裝高電子遷移率電晶體...................38
2-4-3 PDMS流道晶片製作.............................................................44
2-4-4 晶片接合(bonding)技術.......................................................45
第三章 光纖感測器結果與討論............................................................48
3-1化學吸附方法之表面型態................................................................48
3-1-1不同浸泡時間對於金粒子密度之影響................................48
3-1-2製作奈米金grating之間所遇到的問題................................49
3-2奈米粒子表面光學特性....................................................................52
3-2-1浸泡時間對吸收光譜的影響.................................................52
3-2-2浸泡時間對於金奈米粒子表面光學特性............................53
3-3 討論自組裝奈米金光纖表面電漿共振性質...................................55
3-3-1利用不同濃度奈米金粒子浸泡改質過的光纖纖核對於時間和強度的變化探討................................................................55
3-3-2奈米金粒子吸附理論和分析.................................................56
3-3-3比較不同的光纖纖核直徑之吸收光譜圖............................57
3-3-4比較不同長度光纖纖核之吸收光譜....................................58
3-3-5在不同的光源下,自我組裝上奈米金粒子的光纖分別對不同濃度的蔗糖水溶液進行偵測的結果與討論....................59
3-3-6在不同的折射率下探討光纖光強度的變化的數學分析及說明.............................................................................................61
3-4結論....................................................................................................62
第四章 微流道測試與實驗....................................................................64
4-1微流道測試實驗平台建立................................................................64
4-1-1 針筒式微量注入幫浦............................................................64
4-1-2 光學監測裝置........................................................................65
4-2表面疏水性與親水性的討論............................................................66
4-3 加熱溫度對於微流道變形的影響...................................................67
4-4加熱溫度對於微流道接合情形的影響............................................68
4-5 張力對於PDMS接合技術的影響....................................................69
4-6 壓力對於流道流速的測試...............................................................71
4-7 結論...................................................................................................73
第五章 結論與未來展望........................................................................74
5-1 結論...................................................................................................74
5-1-1光纖感測器.............................................................................74
5-1-2 微流體系統............................................................................74
5-2 未來展望...........................................................................................75
5-2-1 光纖感測器............................................................................75
5-2-2 微流體系統............................................................................75
參考文獻..................................................................................................77
1.謝政傑, 光纖生物感測器,物理雙月刊(廿八卷四期)2006年8月
2. M. Bawendi, M. L. Stierderwald, L. E. Brus, Ann. Rev. Phys. Chem. 1990, 4, 447.
3. Y. Wang, N. J. Herron, J. Phys. Chem. 1991, 95, 525.
4. R. Siegel, Nanostructured Mater. 1993, 3, 1.
5. J. A. Creighton, D. G. J. Eadon, Chem. Soc. Faraday. Trans. 1991,87, 3881.
6. 張仕欣、王崇人,化學 1998, 56, 209.
7. D. S. Wang, M. Ketxer, Phys. Rev. B. 1981, 24, 1777.
8. 金屬表面電漿簡介, 邱國斌、蔡定平,物理雙月刊(廿八卷二期)2006年4月
9. K. Matsubara, S. Kawata, S. Minami, Appl. Spectrosc., 1988, 42,1375-1379.
10. B. Liedberg, I. Lundstrom, E. Stenberg, Sens. Actuators B, 1993, 11,63-72.
11.楊正義、陳吉峰、葉怡均、陳正龍、陳家俊, 物理雙月刊2001, 23.
12. L. Kang, R. E. Dessy, Anal. Chem., 1990, 21, 377-388.
13. J. M. Senior, Optical Fiber Communications: Principles and Pracetice, Prentice/Hall International, 1985, 10-12.
14. J. M. Senior, Optical Fiber Communications: Principles and Pracetice, Prentice/Hall International, 1985, 32-34.
15.林愷, 光纖通訊系統, 全華科技出版, 1990.
16. Total Internal Reflection Fluorescence Microscopy, Daniel Axelrod - Department of Biophysics, University of Michigan, 930 North University Ave., Ann Arbor, Michigan 48109, John C. Long and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310(http://www.micro.magnet.fsu.edu/)
17.林啟明, “親水性與厭水性聚二甲基矽氧烷表面特性差異",國立台灣大學碩士論文, 2001
18.楊啟榮, 羅國軒, 黃奇聲, 強玲英, “SU-8 厚膜光阻於微系統UV-LIGA 製程的應用,” 科儀新知, 20, 5, pp. 45-56, 1999
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top