跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張皓謙
研究生(外文):Hao-chien Chang
論文名稱:利用表面電位顯微鏡量測奈米線的電性特性
論文名稱(外文):Electro-Characterization Of Nanowires using Kelvin Probe Force Microscopy
指導教授:張允崇
指導教授(外文):Yun-chung Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:65
中文關鍵詞:表面電位顯微鏡
外文關鍵詞:Kelvin Probe Force Microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究簡便的奈米線製程,利用本實驗的黃光微影製程製作15微米寬度的光阻光柵,將樣品泡入液態氮中,因加熱冷卻的原因產生的熱應力造成光柵裂開,再利用真空熱蒸鍍的方法把適當的金屬鍍上去,舉離光阻後即可產生金屬性的奈米線,線寬約為八十奈米,長度為數十微米。實驗過程中可發現很多影響因素,如使用的基板、旋轉塗佈上基板光阻的厚度、加熱冷卻的溫差以及黃光製程的可調變參數等等來進行系統性的研究,找出最適當的龜裂參數。

另外本論文也利用表面電位顯微鏡測量金屬性奈米線的表面電位,其中包括在電極源極/汲極經由外加電壓時,觀測矽奈米線跟電極交接的情況以及矽奈米線的表面電位的分佈,再利用簡易的平行板電容器原理來說明量測到的表面電位所代表的物理意義。當樣品接地時量測到的數值為探針跟樣品間的功函數差,另外當樣品表面有外加偏壓時,得到的數值會受外加偏壓的影響,也說明量測到的數值不只是探針正下方樣品的表面電位,而是樣品離探針適當的距離內的表面電位都將量測到,為一個加權平均的效果。最後再改變探針跟樣品間的距離觀測數值的變化量,可看出數值會隨距離的變小而變大,原因可能出在電容作用力的變大以及受凡得瓦力的影響。
In this dissertation, a novel fabrication process to fabricate nanowires that only requires conventional lithography process is investigated. This method is based on the thermal cracking of pre-pattern photoresist induced by immersing the sample into liquid nitrogen. Nanowires with tens of nanometers in width and several micrometers in length are successfully fabricated. Several experimental parameters, such as photoresist thickness, are also discussed and analyzed. In addition, surface potential of silicon nanowires fabricated using different method are also studied by using a Kelvin Probe Force Microscopy (KFM). The spatial distribution of surface potential on a biased-nanowire is successfully measured and analyzed. It is observed that the capacitance between the tip and the metal surface will affect the distribution of the surface potential. A mathematical model to explain this effect is also proposed. In conclusion, the fabrication and characterization of nanowires are both investigated. The combined results from both studies will enhance our understanding of the behavior of nanowires.
中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅳ
目錄 Ⅴ
表目錄 Ⅸ
圖目錄 Ⅸ
第一章 簡介
1-1 奈米科技 1
1-2 奈米線的應用 2
1-2.1 矽奈米線及Microchip的製程與運用 2
1-2.2 金屬性奈米線的製程 4
1-3 金氧半導體場效電晶體
1-3.1 MOSFET操作原理 6
1-3.2 兩端點的的p-type MOS電容器 7
1-3.3 兩端點的的n-type MOS電容器 9
1-4 原子力顯微鏡與電性量測技術
1-4.1 原子力顯微鏡 11
1-4.2 電性量測技術 13
1-5 研究動機 17

第二章 實驗器材與實驗流程
2-1 儀器架設與量測
2-1.1 Microchip的製程          18
2-1.2 Conductive-AFM架設及運作 19
2-1.3 掃描式電子顯微鏡 22
2-1.4 表面粗度儀 22
2-2 製程儀器
2-2.1 光罩對準儀 23
2-2.2 真空熱蒸鍍機 24
2-2.3 氧電漿蝕刻機 24

第三章 金屬奈米線的製程
3-1黃光製程參數
3-1.1不同的基板與清洗方式 25
3-1.2黃光微影製程參數 28
3-1.3產生熱應力的方式 29
3-1.4光阻厚度的變化 30
3-1.5裂縫大小的影響 34
3-1.6 Grating寬度的影響 37
3-2光罩 38
3-3結論 39

第四章 矽奈米線的電性分析
4-1 矽奈米線分析
4-1.1 矽奈米線的I-V curve 40
4-1.2 Microchip的場效應 42
4-2 矽奈米線於Conductive-AFM的電性分析
4-2.1 矽奈米線於不同地外加偏壓 46
4-2.2 分析KFM數據 50
4-2.3 探針跟樣品間的不同距離對KFM的影響 54
4-3 結論 56

第五章 結論與未來展望
5-1 結論
5-1.1 金屬性奈米線 57
5-1.2 奈米線的電性分析 58
5-2 未來展望
5-2.1 金屬性奈米線 59
5-2.2 奈米線的電性分析 61

參考論文 62
[1] Wagner R. S. and Ellis W. C., “ NEW METHOD GROWTH CATALYSIS FROM IMPURITY WHISKER EPITAXIAL+LARGE CRYSTALS SI E “ Appl. Phys. Lett. 4, 89-&, 1964

[2] Iijima S., “Helical microtubules of graphitic carbon Nature” 354, 56-8, 1991

[3] Zheng G., Patolsky F., Cui Y., “Multiplexed electrical detection of cancer markers with nanowire sensor arrays” Nature Biotechnol 23, 1294-301, 2005

[4] Patolsky F., Timko B. P., Zheng G., “Nanowire-based nanoelectronic devices in the life sciences” MRS Bull. 32, 142-9, 2007

[5] Sang-Mo koo, Monica D. Edelstein, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors” Nanotechnology16, 1482-1485, 2005

[6] X. Zhou, S. A. Dayeh, D. Wang, and E. T. Yu, “ Scanning gate microscopy of InAs nanowires” Appl. Phys. Lett. 90, 233118, 2007

[7] Cheng G., Wang S., Cheng Ke, “ The current image of a single CuO nanowire studies by conductive atomic force microscopy” Appl. Phys. Lett. 92, 223116, 2008

[8] Fatolsky F., Zheng G., Lieber C., ” Fabrication of silicon nanowire devices for ultrasensitive, label-free, real –time detection of biological and chemical species” Nature protocols, 1, 1711, 2006

[9] Wang C. W., Pan C. Y., Wu H. C., “ In situ detection of chromogranin a released from living neurons with a single-walled carbon-nanotube field-effect transistor” Small, 3, 1350-5, 2007

[10] Adelung R., Ernst F., Scott A., “ Self-assembled nanowire networks by deposition of copper onto layered-crystal surfaces” Adv. Mater. 14, No.15, 2002

[11] B. Erdem Alaca, Huseyin Sehitoglu, “ Guided self-assembly of metallic nanowires and channels” Appl. Phys. Lett. 84, No. 23, 7, 2004

[12] Sathya Mani, Taher M. Saif “ Mechanism of controlled crack formation in thin-film dielectrics” Appl. Phys. Lett. 86, 201903, 2005

[13] Elbahri M., Shiva k. Rudra, Sebastian Wille, “ Employing thin-film delamination for the formation of shadow masks for nanostructure fabrication” Adv. Mater., 18, 1059-1062, 2006

[14] Jebril S., Elbahri M., Titazu G., “ Integration of thin-film-fracture-based nanowres into microchip fabrication” Small, 4, No. 12, 2214-2221, 2008
[15] 陳季汎、曾賢德、果尚志“掃描探針顯微術之奈米電性量測與原理”國立清華大學物理研究所
[16] 曾賢德、果尚志 “奈米電性之掃描探針量測技術” 物理雙月刊(廿五卷五期)2003年10月

[17] Krauss T. D. and Brus L. E., “ Charge, polarizability , and photoionization of single semiconductor nanocrystals” Phys. Rer. Lett. 83, 4840-3, 1999

[18] Vincenzo Palermo, Matteo Palma, Paolo Samori, “ Electronic characterization of organic thin film by Kelvin probe force microscopy” Adv. Mater., 18, 145-164, 2006

[19] Kim Y., Oh Y. M., Park J. Y. “ Mapping potential landscapes of semiconducting carbon nanotubes with scanning gate microscopy” Nanotechnology, 18, 2007

[20] Wilson N. R., Cobden D. H., “ Tip-modulation scanned gate microscopy” Nano Lett., 8, 2161-5, 2008

[21] Burke A. K., Aoki N., Akis R., Ochiai Y., “ Imaging classical and quantum structures in an open quantum dot using scanning gate microscopy” Journal of Vacuum Science & Technology B, 26, 1488-91, 2008

[22] K. Maknys, A. G. Ulkyashin, H. Stiebig, “ Analysis of ITO thin layers and interfaces in heterojunction solar cells structures by AFM, SCM and SSRM methods” K. Maknys et al./Thin Solid Films, 511-512, 98-102, 2006

[23] Masashi ARAKAWA, Shigeru KISHIMOTO, “ Kelvin probe force microscopy for potential distribution measurement of cleaved surface of GaAs Devices” Jpn. J. Appl. Phys., Vol. 36, No. 3B, 1997

[24] Xiaodong Cui, Freitag M., Richard Martel, “ Controlling energy-level alignments at carbon nanotube/Au contacts” Nano Lett., Vol.3, No.6, 2003

[25] Chikashi MAEDA, KISHIMOTO S., Takasi MIZUTANI, “ Contact potential measurement of carbon nanotube by Kelvin probe force microscopy” Jpn. J Appl. Phys., Vol. 42, No.4B, 2003

[26] Yuji MIYATO, Kei KOBAYASHI, Kazumi M., “ Local surface potential measurement of carbon nanotube FETs by Kelvin probe force microscopy” Jpn. J Appl. Phys., Vol.44, No.4A, 2005

[27] H. Sirringhaus, R. H. Friend, “ Noncontact potentiometry of polymer field-effect transistors” Appl. Phys. Lett., Vol. 80, No.16, 2002

[28] Kanan P. Puntambekar, Paul V. Pesavento, “ Surface potential profiling and contact resistance measurements on operating pentancene thin-film transistors by Kelvin probe force microscopy” Appl. Phys. Lett., Vol. 83, No.26, 2003

[29] Alexander Haussmann, Peter Milde, Christiane Erler, “ Ferroelectric lithography: Bottom-up assembly and electrical performance of a single metallic nanowire” Nano Lett., Vol. 9, No. 2, 2009

[30] H. O. Jacobs, H. F. Knapp, A. Stemmer, “Surface potential mapping: A qualitative material contrast in SPM” Ultramicroscopy, 69, 39-49, 1997

[31] H. O. Jacobs, P. Leuchtmann, O. J. Homan, “ Resolution and contrast in Kelvin Probe force microscopy” Journal of Applied Physics, Vol. 84, No. 3, 1998

[32] G. Koley, M. G. Spencer, “ Cantilever effects on the measurement of electrostatic potentials by scanning Kelvin probe microscopy” Appl. Phys. Lett., Vol. 79, No. 4, 2001

[33] Takuji, Takahashi, Shiano Ono, “ Tip-to-sample distance dependence of an electrostatic force in KFMmeasuremets” Ultramicroscopy, 100, 287-292, 2004

[34] NT-MDT
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top