|
參考文獻 [1] Carlsson S L, Rouslund T R, Albrektsson B, Albrektsson T, and Branemark P I. Osseointergration of titanium implant. Acta Orthop. Scand. 1986; 57(4): 285-289. [2] Kokubo T, Kim H M, and Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials 2003; 24(13): 2161-2175. [3] Yan W Q, Takashi N. Keiichi K, Shigeru N, Masanori O, and Tadashi K. Apatite layer-coated titanium for use as bone bonding implants. Biomaterials 1997; 18(17): 1185-1190. [4] Sennerby L, Thomsem P, and Ericson L E. Ultrastructure of the bone-titanium interface in rabbits. J. Mater. Sci., Mater. Med. 1992; 3(4): 262-271. [5] Kim H M, Teruyuki H, Tadashi K, and Takashi N. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 2005; 26(21): 4366-4373. [6] Lee T M and Chang E. Surface characteristis of Ti6Al4V alloy: effect of materials, passivation and autoclaving. J. Mater. Sci., Mater. Med. 1998; 9(8): 439-448. [7] Lee T M and Chang E. Effect of passivation on the dissolution behavior of Ti6Al4V and vacuum-brazed Ti6Al4V in Hank’s ethylene diamine tetra-acetic acid solution: Part I Ion release. J. Mater. Sci., Mater. Med. 1999; 10(9): 541-548. [8] Chang E and Lee T M. Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank’s ethylene diamine tetra-acetic acid solution. Biomaterials 2002; 23(14): 2917-2925. [9] Lee T M, Chang E, and Yang C Y. Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy. Biomaterials 2004; 25(1): 23-32. [10] Lee T M. Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4V in Hank/EDTA solution. J. Mater. Sci., Mater. Med. 2006; 17(1): 15-27. [11] Lee J W, Kim Y H, Park K D, Jee K S, Shin J W, and Hahn S. Importance of integrin β1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes. Biomaterials 2004; 25(10): 1901-1909. [12] Kim Y J, Shin J W, Park K, Lee J W, Yui N, Park S A , Jee K S, and Kim J K. A study of compatibility between cells and biopolymeric surfaces through quantitative measurements of adhesive forces. J. Biomater. Sci. Polymer. Edn. 2003; 14(12): 1311-1321. [13] Dalby M J, Riehle M O, Johnstone H J H, Affrossman S, and Curtis A. Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. Tissue Eng. 2002; 8(6): 1099-1108. [14] Reyes C D and Garcia A J. A centrifugation cell adhesion assay for high-throughput screening of biomaterials surfaces. J. Biomed. Mater. Res. A 2003; 67(1): 328-333. [15] Volger E A and Bussian R W. Short-term cell-attachment rates: A surface-sensitive test of cell-substrate compatibility. J. Biomed. Mater. Res 1987; 21(10): 1197-1211. [16] Richards R G. The effects of surface roughness on fibroblast adhesion in vitro. Injury 1996; 27(3): SC38-SC43. [17] Grinnell F and Feld M K. Initial adhesion human fibroblast in serum-free medium: possible role of secreted fibronectin. Cell 1979; 17(1): 117-129. [18] Siebers M C, ter Brugge P J, Walboomers X F, and Jansen J A. Integrins as linker proteins between osteoblast and bone replacing materials. Biomaterials 2005; 26(2): 137-146. [19] Oates T W, Maller S C, West J, and Steffensen B. Human gingival fibroblast integrin subunit expression on titanium implant surfaces. J. Periodontol. 2005; 76(10): 1743-1750. [20] Schwartz Z and Boyan B D. Underlying mechanisms at the bone-biomaterial interface. J. Cell Biochem. 1994; 56(3): 340-347. [21] Ogawa T, Saruwatari L, Takeuchi K, Aita H, and Ohno N. Ti nano-nodular structuring for bone integration and regeneration. J. Dent. Res. 2008; 87(8): 751-756. [22] Webster T J and Ejiofor J U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004; 25(19): 4731-4739. [23] Popat K C, Daniels R H, Dubrow R S, Hardev V, and Desai T A. Nanostructured surfaces for bone biotemplating applications. J. Orthop. Res. 2006; 24(4): 619-627. [24] Puckett S, Pareta R, and Webster T J. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int. J. Nanomedicine 2008; 3(2): 229-241. [25] Tan J and Saltzman W M. Biomaterials with hierarchically defined micro- and nanoscale structure. Biomaterials 2004; 25(17): 3593-3601. [26] Woo K M, Jun J-H, Chen V J, Seo J, Back J-H, Ryoo H-M, Kim G-S, Somerman M J, and Ma P X. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 2007; 28(2): 335-343. [27] Ma P X. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 2008; 60: 184-198. [28] Das K, Bose S, and Bandyopadhyay A. Surface modifications and cell–materials interactions with anodized Ti. Acta Biomater. 2007; 3(4): 573-585. [29] Yao C and Webster T J. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. J. Nanosci. Nanotechnol. 2006; 6 (9-10): 2682-2692. [30] Kim K H, Kwon T Y, Kim S Y, Kang I K, Kim S, Yang Y, and Ong J L. Preparation and characterization of anodized titanium surfaces and their effect on osteoblast responses. J. Oral Implantol. 2006; 32(1): 8-13. [31] Nayab S N, Jones F H, and Olsen I. Effects of calcium ion implantation on human bone cell interaction with titanium. Biomaterials 2005; 26(23): 4717-4727. [32] Krupa D, Baszkiewicz J, Kozubowski JA, Lewandowska-Szumieł M, Barcz A, Sobczak JW, Biliński A, and Rajchel A. Effect of calcium and phosphorus ion implantation on the corrosion resistance and biocompatibility of titanium. Biomed. Mater. Eng. 2004; 14(4): 525-536. [33] Nayab S, Shinawi L, Hobkirk J, Tate T J, Olsen I, and Jones F H. Adhesion of bone cells to ion-implanted titanium. J. Mater. Sci., Mater. Med. 2003; 14(11): 991-997. [34] Faria A C, Beloti M M, and Rosa A L. Nitric acid passivation does not affect in vitro biocompatibility of titanium. Int. J. Oral Maxillofac. Implants 2003; 18(6): 820-825. [35] Protiv�瀋ský J, Appleford M, Strnad J, Helebrant A, and Ong J L. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. Int. J. Oral Maxillofac. Implants 2007; 22(4): 542-550. [36] Nakagawa M, Zhang L, Udoh K, Matsuya S, and Ishikawa K. Effects of hydrothermal treatment with CaCl2 solution on surface property and cell response of titanium implants. J. Mater. Sci., Mater. Med. 2005; 16(11): 985-991. [37] de Groot K, Geesink R, Klein CP, and Serekian P. Plasma sprayed coatings of hydroxylapatite. J. Biomed. Mater. Res. 1987; 21(12): 1375-1381. [38] Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, and Nakamura T. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 2005; 26(30): 6014-6123. [39] Darimont G L, Cloots R, Heinen E, Seidel L, and Legrand R. In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 2002; 23(12): 2569-2575. [40] Palka V, Ivan J, Postrkov�� E, Kolenclak V, Krsek A, Infner I, and Koerten H K.The effect of biological environment on the surface of titanium and plasma-sprayed layer of hydroxylapatite.J. Mater. Sci., Mater. Med. 1998; 9(7): 369-373. [41] Schliephake H, Scharnweber D, Roesseler S, Dard M, Sewing A, and Aref A. Biomimetic calcium phosphate composite coating of dental implants. Int. J. Oral Maxillofac. Implants 2006; 21(5):738-746. [42] Le Gu�縿ennec L, Soueidan A, Layrolle P, and Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 2007; 23(7): 844-854. [43] Park Y J, Song H J, Kim I, and Yang H S. Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation. J. Mater. Sci., Mater. Med. 2007; 18(4): 565-575. [44] Kilpadi D V, Lemons J E, Liu J, Raikar G N, Weimer J J, and Vohra Y. Cleaning and heat-treatment effects on unalloyed titanium implant surfaces. Int. J. Oral Maxillofac. Implants 2000; 15(2): 219-230. [45] Salda�狒 L, Vilaboa N, Vall�臃 G, Gonz�鴣ez-Cabrero J, and Munuera L. Osteoblast response to thermally oxidized Ti6Al4V alloy. J. Biomed. Mater. Res. A 2005; 73(1): 97-107. [46] Nishiguchi S, Kato H, Fujita H, Oka M, Kim H M, Kokubo T, and Nakamura T. Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 2001; 22(18): 2525-33. [47] Kato H, Nakamura T, Nishiguchi S, Matsusue Y, Kobayashi M, Miyazaki T, Kim H M, and Kokubo T. Bonding of alkali- and heat-treated tantalum implants to bone. J. Biomed. Mater. Res. 2000; 53(1): 28-35. [48] Nishiguchi S, Fujibayashi S, Kim H M, Kokubo T, and Nakamura T. Biology of alkali- and heat-treated titanium implants. J. Biomed. Mater. Res. A 2003; 67(1): 26-35. [49] Sukenik C N, Balachander N, Culp L A, Lewandowska K, and Merritt K. Modulation of cell adhesion by modification of titanium surfaces with covalently attached self-assembled monolayers. J. Biomed. Mater. Res. 1990; 24(10): 1307-1323. [50] Culp L A and Sukenik C N. Cell type-specific modulation of fibronectin adhesion functions on chemically-derivatized self-assembled monolayers. J. Biomater. Sci. Polym. Ed. 1998; 9(11): 1161-1176. [51] Gnauck M, Jaehne E, Blaettler T, Tosatti S, Textor M, and Adler H J. Carboxy-terminated oligo(ethylene glycol)-alkane phosphate: synthesis and self-assembly on titanium oxide surfaces. Langmuir. 2007; 23(2): 377-381. [52] Morra M. Biomolecular modification of implant surfaces. Expert. Rev. Med. Devices 2007; 4(3): 361-372. [53] Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, and Roessler S. Functionalization of dental implant surfaces using adhesion molecules. J. Biomed. Mater. Res. B, Appl. Biomater. 2005; 73(1): 88-96. [54] Pham M T, Reuther H, and Maitz M F. Native extracellular matrix coating on Ti surfaces. J. Biomed. Mater. Res. A 2003; 66(2): 310-316. [55] Cutler S M and Garc�朦 A J. Engineering cell adhesive surfaces that direct integrin alpha5beta1 binding using a recombinant fragment of fibronectin. Biomaterials 2003; 24(10): 1759-1770. [56] Huang H, Zhao Y, Liu Z, Zhang Y, Zhang H, Fu T, and Ma X. Enhanced osteoblast functions on RGD immobilized surface. J. Oral. Implantol. 2003; 29(2):73-79. [57] Rammelt S, Schulze E, Bernhardt R, Hanisch U, Scharnweber D, Worch H, Zwipp H, and Biewener A. Coating of titanium implants with type-I collagen. J. Orthop. Res. 2004; 22(5): 1025-1034 [58] Garc�朦 AJ. Get a grip: integrins in cell-biomaterial interactions. Biomaterials 2005; 26(36):7525-7529. [59] Linder L, Albrektsson T, Br�熡emark PI, Hansson HA, Ivarsson B, J�圢sson U, and Lundstr�卌 I. Electron microscopic analysis of the bone-titanium interface. Acta Orthop. Scand. 1983; 54(1): 45-52. [60] Yan W Q, Nakamura T, Kobayashi M, Kim H M, Miyaji F, and Kokubo T. Bonding of chemically treated titanium implants to bone. J. Biomed. Mater. Res. 1997; 37(2): 267-275. [61] Healy K E and Ducheyne P. Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 1992; 13(8):553-61. [62] Takadama H, Kim H M, Kokubo T, and Nakamura T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J. Biomed. Mater. Res. 2001; 57(3): 441-448. [63] Lu X, and Leng Y. TEM study of calcium phosphate precipitation on bioactive titanium surfaces. Biomaterials 2004; 25(10): 1779-1786. [64] Mao C, Li H, Cui F, Ma C, and Feng Q. Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization. J. Cryst. Growth 1999; 206(4): 308-321. [65] Feng B, Chen J Y, Qi S K, He L, Zhao J Z, and Zhang X D. Characterization of surface oxide films on titanium and bioactivity. J. Mater. Sci., Mater. Med. 2002; 13(5): 457-464. [66] Takadama H, Kim H-M, Kokubo T, and Nakamura T. XPS study of the process of apatite formation on bioactive Ti-6Al-4V alloy in simulated body fluid. Sci. Technol. Adv. Mater. 2001; 2(2): 389-396. [67] Xie Y, Liu X, Huang A, Ding C, and Chu P. K. Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials 2005; 26(31): 6129-6135. [68] Black J. Biological Performance of Materials. Marcel Dekker, New York, 1992. [69] Andrade J D. Surface and Interfacial Aspects of Biomedical Polymers. Plenum Press, New York, pp. 1-80, 1985. [70] Horbett T A and Brash J L. Proteins at Interfaces: Physiochemical and Biochemical Studies. American Chemical Society, Washington, DC, pp. 1-33, 1987. [71] Kasemo B and Lausmaa J. Surface science aspects on inorganic biomaterials. CRC Crit. Rev. Biocomp. 1986; 2: 335-380. [72] Kasemo B and Lausmaa J. Material-tissue: the role of surface properties and process. Environ. Health Perspect. 1994; 102(5): 41-45. [73] Deligianni D D, Katsala N, Ladas S, Sotiropoulou D, Amedee J, and Missirlis Y F. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 2001; 22(11): 1241-1251. [74] Brett P M, Harle J, Salih V, Mihoc R, Olsen I, Jones F H, and Tonetti M. Roughness response genes in osteoblasts. Bone 2004; 35(1): 124-133. [75] Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, and Kern D. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs 2004; 178(1): 13-22. [76] Huang H-H, Ho C-T, Lee T-H, Lee T-L, Liao K-K and Chen F-L. Effect of surface roughness of ground titanium on initial cell adhesion. Biomol. Eng. 2004; 21(3-5): 93–97. [77] Kim M J, Kim C W, Lim Y J, and Heo S J. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J. Biomed. Mater. Res. A 2006; 79(4): 1023-1032. [78] Marinucci L, Balloni S, Becchetti E, Belcastro S, Guerra M, Calvitti M, Lilli C, Calvi E M, and Locci P. Effect of titanium surface roughness on human osteoblast proliferation and gene expression in vitro. Int. J. Oral Maxillofac. Implants 2006; 21(5): 719-725. [79] Keselowsky B G, Wang L, Schwartz Z, Garcia A J, and Boyan B D. Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J. Biomed. Mater. Res. A 2007; 80(3): 700-710. [80] Dongwoo K, Jing L, Chang Y, Karen M H, and Thomas J W. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 2008; 29(8): 970-983. [81] Nasatzky E, Gultchin J, and Schwartz Z. The role of surface roughness in promoting osteointegration. Refuat. Hapeh. Vehashinayim. 2003; 20(3): 8-19. [82] Zhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, and Boyan B D. Osteoblast-like cells are sensitive to submicron-scale surface structure. Clin. Oral Implants Res. 2006; 17(3): 258-264. [83] Cai K, Bossert J, and Jandt K D. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation. Colloids Surf. B, Biointerfaces. 2006; 49(2): 136-144. [84] Wirth C, Comte V, Lagneau C, Exbrayat P, Lissac M, Jaffrezic-Renault N, and L Ponsonnet. Nitinol surface roughness modulates in vitro cell responses: a comparison between fibroblast and osteoblast. Mater. Sci. Eng. C 2005; 25(1): 51-60. [85] Kooten T G, Schakenraad J M, van der Mei H C, and Busscher H J. Influence of substratum wettability on the strength of adhesion of human fibroblasts. Biomaterials 1992; 13(13): 897–904. [86] Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, and Cochran D L. High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res. A 2005; 74(1): 49–58. [87] Hao L and Lawrence J. Wettability modification and the subsequent manipulation of protein adsorption on a Ti6Al4V alloy by means of CO2 laser. J. Mater. Sci., Mater. Med. 2007; 18(5): 807-817. [88] Lim J Y, Taylor A F, Li Z, Vogler E A, and Donahue H J. Integrin expression and osteopontin regulation in human fetal osteoblastic cells mediated by substratum surface characteristics. Tissue Eng. 2005; 11(1-2): 19–29. [89] Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, and Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J. Biomed. Mater. Res. A 2006; 76(2): 323-334. [90] Lim J Y, Shaughnessy M C, Zhou Z, Noh H, Vogler E A, and Donahue H J. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 2008; 29(12): 1776-1784. [91] Feng B, Weng J, Yang B C, Qu S X, and Zhang X D. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 2003; 24(25): 4663-4670. [92] Suska F, Emanuelsson L, Johansson A, Tengvall P, and Thomsen P. Fibrous capsule formation around titanium and copper. J. Biomed. Mater. Res. A 2008; 85(4): 888-896. [93] Le Guehennec L, Lopez-Heredia M A, Enkel B, Weiss P, Amouriq Y, and Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2008; 4(3): 535-543. [94] Lincks J, Boyan B D, Blanchard C R, Lohmann C H, Liu Y, Cochran D L, Dean DD, and Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998; 19(23): 2219-2232. [95] Zhao G, Raines A L, Wieland M, Schwartz Z, and Boyan B D. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials 2007; 28(18): 2821-2829. [96] Khang D, Lu J, Yao C, Haberstroh K M, and Webster T J. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium Biomaterials 2008; 29(8): 970-983. [97] Chen J, Mwenifumbo S, Langhammer C, McGovern J P, Li M, Beye A, and Soboyejo W O. Cell/surface interactions and adhesion on Ti-6Al-4V: effects of surface texture. J. Biomed. Mater. Res. B, Appl. Biomater. 2007; 82(2): 360-373. [98] J�讚er M, Zilkens C, Zanger K, and Krauspe R. Significance of nano- and microtopography for cell-surface interactions in orthopaedic implants. J. Biomed. Biotechnol. 2007; 2007(8): 69036. [99] Grinnell F, Milam M, and Srere P A. Attachement of normal and transformed hamster kidney cells to substrata varying in chemical composition. Biochem. Med. 1973; 7: 87-90. [100] van Wachem P B, Beugeling T, Feijen J, Bantjes A, Detmers J P, and van Aken W G. Interaction of cultured human endothelial cells with polymeric surfaces with different wettabilities. Biomaterials 1985; 6: 403-408. [101] Sharefkin J B and Watkins M T. Techniques of Biocompatibility Testing. CRC Press, Boca Raton, pp. 96-104, 1986. [102] van der Valk P, van Pelt W J, Busscher H J, de Jong H P, Wildevuur C R H, and Arends J. Interaction of fibroblast and polymer surfaces: relationship between surface energy and fibroblast spreading. J. Biomed. Mater. Res. 1983; 17(5): 807-817. [103] Lydon M J, Minett T W, and Tighe B J. Cellular interactions with synthetic surfaces in culture. Biomaterials 1985; 6(6): 396-402. [104] Takayama H, Tanigawa T, Takagi A, and Hatada K. Polymers of methacrylate available for obtaining varieties of cell-substratum adhesivity. Biomaterials 1986; 7: 11-18. [105] Reich S, Rosin H, Levy M , Karkash R, and Raz A. Cell-substrate interaction: a method for evaluating the possible correlation between metastatic phenotype and cell surface energy.. Exp. Cell Res. 1984; 153(2): 556-560. [106] Gerson D F. Cell surface energy, contact angles and phase partition. I. Lymphocytic cell lines in biphasic mixtures. Biochim. Biophys. Acta 1980; 602(2): 269-280. [107] Kataoka K. Molecular design of polymer surface having ability to control cell adhesion. Hyomen 1983; 21: 385-396. [108] Weiss L and Blumenson L E. Dynamic adhesion and separation in vitro. I. interactions of cell with hydrophilic and hydrophobic surfaces. J Cell Physiol. 1967; 70(1): 23-32. [109] Corry W D and Defendi V. Centrifugal assessment of cell adhesion. J. Biochem. Biophys. Methods 1981; 4(1): 29-38. [110] Crouch C F, Fowler H W, and Spare R E. The adhesion of animal cells to surfaces: the measurement of crtical surface shear stress permitting attachment or causing detachement. J. Chem. Tech. Biotech. 1985; 35: 273-281. [111] Hertl W, Ramsey W S, and Nowlan E D. Assessment of cell-substrate adhesion by a centrifugal method. In Vitro 1984; 20(10): 796-801. [112] Garcia A J, Ducheyne P, and Boettiger D. Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials 1997; 18(6): 1091-1098. [113] Furukawa K S, Ushida T, Nagase T, Nakamigawa H, Noguchi T, Tamaki T, Tanaka J, and Tateishi T. Quantitative analysis of cell detachment by shear stress. Mater. Sci. Eng. C 2001; 17(1-2): 55–58. [114] Lu H, Koo L Y, Wang W M, Lauffenburger D A, Griffith L G, and Jensen K F. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 2004; 76(18): 5257-5264. [115] Gutierrez E, and Groisman A. Quantitative measurements of the strength of adhesion of human neutrophils to a substratum in a microfluidic device. Anal. Chem. 2007; 79(6): 2249-2258. [116] Truskey G A and Pirone J S. The effect of fluid shear stress upon cell adhesion to fibronectin- treated surfaces. J. Biomed. Mater. Res. 1990; 24(10): 1333-1353. [117] Usami S, Chen H H, Zhao Y, Chien S, and Skalak R. Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 1993; 21(1): 77-83. [118] Nauman E A, Risic K J, Keaveny T M, and Satcher R L. Quantitative assessment of steady and pulsatile flow fields in a parallel plate flow chamber. Ann. Biomed. Eng. 1999; 27(2): 194-199. [119] Chesla S E, Selvaraj P, and Zhu C. Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys. J. 1998; 75(3): 1553-1572. [120] Nugiel D J, Wood D J, and Paul Sung K-L. Quantification of adhesiveness of osetoblasts to titanium surfaces in vitro by the micropipette aspiration technique. Tissue Eng. 1996; 2: 127-140. [121] Evans E, Berk D, and Leung A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys. J. 1991; 59(4): 838-848. [122] Tozeren A, Sung K L, and Chien S. Theoretical and experimental studies on cross-bridge migration during cell disaggregation, Biophys. J. 1989; 55(3): 479-487. [123] Hagerman E, Shim J, Gupta V, and Wu B. Evaluation of laser spallation as a technique for measurement of cell adhesion strength. J. Biomed. Mater. Res. A 2007; 82(4): 852-860. [124] Myrdycz A, Lefebvre F, Ouaftouh M, Monchau F, Callens D, and Hildebrand H F. Potentialities of ultrasounds for the nondestructive evaluation of cell adhesion. Bone 1999; 25(2): 75-79. [125] Debavelaere-Callens D, Peyre L, Campistron P, and Hildebrand H F. On the use of ultrasounds to quantify the longitudinal threshold force to detach osteoblastic cells from a conditioned glass substrate. Biomol. Eng. 2007; 24(5): 521-525. [126] Yamamoto A, Mishima S, Maruyama N, and Sumita M. A new technique for direct measurement of the shear force necessary to detach a cell from a material. Biomaterials 1998; 19(7-9): 871-879. [127] Yamamoto A, Mishima S, Maruyama N, and Sumita M. Quantitative evaluation of cell attachment to glass, polystyrene, and fibronectin- or collagen-coated polystyrene by measurement of cell adhesive shear force and cell detachment energy. J. Biomed. Mater. Res. 2000; 50(2): 114-124. [128] Hoben G, Huang W, Thoma B S, LeBaron R G, and Athanasiou K A. Quantification of varying adhesion levels in chondrocytes using the cytodetacher. Ann. Biomed. Eng. 2002; 30(5): 703-712. [129] Athanasiou K A, Thoma B S, Lanctot D R, Shin D, Agrawal C M, and LeBaron R G. Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell. Biomaterials 1999; 20(23-24): 2405-2415. [130] Wang C C, Hsu Y C, Su F C, Lu S C, and Lee T M. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher. J. Biomed. Mater. Res. A 2008; in press. [131] Wang C C, Hsu Y C, Hsieh M C, Yang S P, Su F C, and Lee T M. Effects of nano-surface properties on initial osteoblast adhesion and Ca/P adsorption ability for titanium alloys. Nanotechnology 2008; 19(33): 335709. [132] Technical Documents Department. NanoScop�� Command Reference Manual. Digital Instruments, Inc., CA, USA, chapter 12, pp. 87-88, 1996. [133] Lim Y J and Oshida Y. Initial contact angle measurements on variously treated dental/medical titanium materials. Biomed. Mater. Eng. 2001; 11(4): 325-341. [134] Moulder J F, Stickle W F, Sohol P E, and Bomben K D. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Minnesota, p. 40, 1995. [135] Jain R and von Recum A F. Fibroblast attachment to smooth and microtextured PET and thin cp-Ti films. J. Biomed. Mater. Res. A 2004; 68(2): 296-304. [136] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983; 65(2): 55-63. [137] Montgomery D C. Design and Analysis of Experiments, John Wiley & Sons, NewYork, 1976. [138] Callen B W, Lowenberg B F, Lugowski S, Sodhi R N, and Davies J E. Nitric acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace element release. J. Biomed. Mater Res. 1995; 29(3): 279-290. [139] Bredow T and Jug K. Theoretical investigation of water adsorption at rutile and anatase surfaces. Surf. Sci. 1995; 327(3): 398-408. [140] Browne M and Gregson P J. Surface modification of titanium alloys implants. Biomaterials 1994; 15(11): 894-898. [141] Wisbey A, Gregson P J, Peter L M, and Tuke M. Effect of surface treatment on the dissolution of titanium-based implant materials. Biomaterials 1991; 12(5): 470-473. [142] Browne M and Gregson P J. Effect of mechanical surface pretreatment on metal ion release. Biomaterials 2000; 21(4): 385-392. [143] Aziz Q, Cargerine A D, Gregory B, Bernard N, and Sabine S. Reactivity of titanium in physiological medium. J. Electrochem. Soc. 2007; 154(10): 593-601. [144] Jeong S H, Park Y J, Kim B S, and Song H J. Effects of oxygen content on bioactivity of titanium oxide films fabricated on titanium by electron beam evaporation. J. Nanosci. Nanotechnol. 2007; 7(11): 3815-3818. [145] Textor M, Sitting C, Frauchiger V, Tosatti S, and Brunette D M. Titanium in Medicine. Springer, New York, pp 183-184, 2001. [146] Shibli J A, Grassi S, de Figueiredo L C, Feres M, Marcantonio E Jr, Jezzi G, and Piattelli A. Influence of implant surface topography on early osseointegration: a histological study in human jaws. J. Biomed. Mater. Res. B, Appl. Biomater. 2007; 80(2): 377–385. [147] Kim H, Choi S H, Ryu J J, Koh S Y, Park J H, and Lee I S. The biocompatibility of SLA-treated titanium implants. Biomed. Mater. 2008; 3(2): 25011. [148] Ball M, Grant D M, Lo W J, and Scotchford C A. The effect of different surface morphology and roughness on osteoblast. J Biomed. Mater. Res. A 2008; 86(3): 637-647. [149] Tzoneva R, Faucheux N, and Groth T. Wettability of substrata controls cell-substrate and cell-cell adhesions. Biochim. Biophys. Acta 2007; 1770(11): 1538-1547. [150] Rupp F, Scheideler L, Rehbein D, Axmann D, and Geis-Gerstorfer J. Roughness induced dynamic chnages of wettability of acid etched titanium implant modifications. Biomaterials 2004; 25(7-8); 1429-1438. [151] Xu L C and Siedlecki C A. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 2007; 28(22): 3273-3283. [152] Eisenbarth E, Linez P, Biehl V, Velten D, Breme J, and Hildebrand H F. Cell orientation and cytoskeleton organization on ground titanium surfaces. Biomol. Eng. 2002; 19(2-6): 233–237. [153] Pilliar R M. Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dent. 1998; 7(4): 305–312. [154] Chehroudi B, Gould T R, and Brunette D M. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently. J. Biomed. Mater. Res. 1990; 24(9): 1203–1219. [155] Meyle J, Gulting K, Wolburg H, and von Recum A F. Fibroblast anchorage to microtextured surfaces. J. Biomed. Mater. Res. 1993; 27(12): 1553–1557. [156] Kim H M, Miyaji F, Kokubo T, and Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 1996; 32(3): 409-417. [157] Takamori E R, Cruz R, Gon�岬lvez F, Zanetti R V, Zanetti A, and Granjeiro J M. Effect of roughness of zirconia and titanium on fibroblast adhesion. Artif. Organs 2008; 32(4): 305-309. [158] L�厎hen F, Lange R, Becker P, Rychly J, Beck U, and Nebe J G. The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells. Biomaterials 2005; 26(15): 2423-2440. [159] Perizzolo D, LacefieldW R, and Brunette D M. Interaction between topography and coating in the formation of bone nodules in culture for hydroxyapatite- and titanium-coated micromachined surfaces. J. Biomed. Mater. Res. 2001; 56(4): 494–503. [160] Thian E S, Ahmad Z, Huang J, Edirisinghe M J, Jayasinghe S N, Ireland D C, Brooks R A, Rushton N, Bonfield W, and Best S M. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials 2008; 29(12): 1833–1843. [161] Lu X and Leng Y. Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. J. Biomed. Mater. Res. A 2003; 66(3): 677–687. [162] Brunette D M and Chehroudi B. The effects of the surface topography of micromachined titanium substrate on cell behavior in vitro and in vivo. J. Biomech. Eng. 1999; 121(1): 49-55. [163] Galli C, Coen M C, Hauert R, and Katanaev V L. Creation of nanostructure to study the topographical dependency of protein adsorption. Colloids Surf. B, Biointerfaces 2002; 26(3): 255–267. [164] Ruardy T G, Schakenraad J M, van der Mei H C, and Busscher H J. Adhesion and spreading of human skin fibroblasts on physiochemically characterized gradient surfaces. J. Biomed. Mater. Res. 1995; 29(11): 1415-1423. [165] Juliano D J, Saavedra S S, and Truskey GA. Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. J. Biomed. Mater. Res. 1993; 27(8): 1103-1113. [166] Wei J, Yoshinari M, Takemoto S, Hattori M, Kawada E, Liu B, and Oda Y. Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. J. Biomed. Mater. Res. B, Appl. Biomater. 2007; 81(1): 66-75. [167] Kim S H, Ha H J, Ko Y K, Yoon S J, Rhee J M, Kim M S, Lee H B, and Khang G. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. J. Biomater. Sci. Polym. Ed. 2007; 18(5): 609-622. [168] Webb K, Hlady V, and Tresco P A. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J. Biomed. Mater. Res. 2000; 49(3): 362-368. [169] Chusuei C C and Goodman D W. Calcium phosphate phase identification using XPS and time-of flight cluster SIMS. Anal. Chem. 1999; 71(1): 149-153. [170] Gil F J, Padros A, Manero J M, Aparicio C, Nilsson M, and Planell J A. Growth of bioactive surfaces on titanium and its alloys for orthopaedic and dental implants. Mater. Sci. Eng. C 2002; 22(1): 53-60. [171] Yang Y, Bumgardner J D, Cavin R, Carnes D L, and Ong J L. Osteoblast precursor cell attachment on heat-treated calcium phosphate coatings. J. Dent. Res. 2003; 82(6): 449-453. [172] Chen C S, Alonso J L, Ostuni E, Whitesides G M, and Ingber D E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 2003; 307(2): 355-361. [173] Anselme K. Review: osteoblast adhesion on biomaterials. Biomaterials 2000; 21(17): 667-681. [174] Gallant N D, Michael K E, and Carcia A J. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 2005; 16(9): 4329-4340. [175] Ward M D, Dembo M, and Hammer D A. Kinetics of cell detachment: peeling of discrete clusters. Biophys. J. 1994; 67(6): 2522-2534. [176] Kuo S C and Lauffenburger D A. Relationship between receptor/ligand binding affinity and adhesion strength. Biophys. J. 1993; 65(5): 2191-2200.
|