跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 13:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昱麃
研究生(外文):Yu-Biaw Wu
論文名稱:應用壓電微噴射系統於奈毫升等級之活體細胞射出
論文名稱(外文):Application of piezoelectric micro-ejector system to spraying pico-liter living cells
指導教授:王清正李澤民李澤民引用關係
指導教授(外文):Chin-Cheng WangTzer-Min Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:製造工程研究所碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:54
中文關鍵詞:細胞射出組織工程壓電噴射
外文關鍵詞:piezoelectric ejectorcell sprayingtissue engineer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中將應用兩種不同設備之射出制動方式噴射出微量細胞懸浮液,一為噴墨印表機之噴發模式,改裝內部承載之油墨以細胞溶液取代,在噴出之基材中,使用薄型玻璃片之材料黏滯於紙張之上,軟體則使用Photo shop來達到使用者控制流量及相對定位之目標。另一方法則為開發壓電微噴射系統來射出活體細胞,此系統包含一壓電噴射裝置及二維定位平台。為提高細胞射出後之存活率,研究中發現許多關鍵因素,其中包含降低射出細胞懸浮液流速、降低剪應力及尋找適合細胞尺寸之噴頭及DMEM揮發控制。這些關鍵因素若未掌握將使細胞破裂、死亡。流量越低勢必可估測其流速亦相對降低。實驗中將估測溶液量及內含細胞數,降低流速、流量及單位溶液中之細胞數目,並以Trypan blue染色測試細胞存活率,並使細胞噴發於使用者預設之位置,達到細胞轉移之目標。
對於體外醫學及再生醫學研究而言,骨頭及表皮之植入及重建較其他內部組織容易以人工生醫材料來取代,因此,更具必要性建立體外系統模擬材料植入人體後,模擬各種細胞及材料間之反應,傳統在種植細胞於生醫材料時皆使用定微量吸管。但定微量吸管的射出量皆為micro liter等級,單一次射出量過大,且手工種植細胞之方式難以在材料表面進行相對定位,細胞亦會隨著DMEM漂移,加深其位置的不確定性,有鑑於此,此系統能有pico liter等級射出量,提供體外醫學研究者能同時射出微量多樣之活體細胞於人工材料,應用於多孔性材料時,亦能以定位之性能,直接將細胞射入材料孔洞內,在未來製造出活體生醫組織之研究上亦提供其相關技術與應用。
Two different kinds of actuator ejector instruments are applied to spraying micro cell suspension in this research. The method is ink-jet printing mode. The thin glass combined with A4 size paper that is used to substrate ,Adobe Photoshop software is used to control spraying cell suspension fluid volume and relative positioning. The other method is spraying cell suspension fluid by created piezoelectric spraying system. This system associate X-Y two dimensions automatic positioning system and spraying component. In order to increase cells viability after spraying ,we find out some primary factors that including reduce spraying cell suspension fluid velocity, shear stress ,nozzle size suit cells and control DMEM evaporating. Cells will be dissolution and death without handling these key factors. Estimating the cell numbers and cell suspension fluid volume will be procedure in experiment.
In regeneration medical and in vitro medical field, skin and bone tissues implant rebuilding is much easy replace by biomaterial. Hence, it’s necessary to build a in vitro human tissue system to simulate that the reaction between biomaterial and cell. Pipei is the classic tool to transfer cell suspension fluid, but the spraying volume is micro litter degree. Also, process done by hand could not make excellent precision position control, further, cells drift with DMEM make it more uncertain. According to this phenomenon, we create a system that including precision position performance and spraying pico litter degree fluid. This system offer to medical researcher a new technology that spraying multi living cells on Biomaterial surface or spraying cells into the aperture of biomaterial. This technology could apply to fabricate living tissue and organ in the future.
摘要 I
誌謝 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1前言 1
1.2研究動機 3
1.3研究目的 6
1.4文獻回顧與建構基礎 8
第二章 儀器製作與實驗方法 11
2.1細胞備置 11
2.1.1細胞備置方法 11
2.1.2評估細胞尺寸 12
2.1.3評估細胞存活率與篩選 13
2.2改裝印表機 13
2.2.1印表機硬體選用 13
2.2.2.將油墨改製為細胞溶液 15
2.2.3 改製噴發基材 15
2.2.4微噴頭觀測 15
2.3印表機細胞射出測試 17
2.3.1印表機細胞射出測試階段一 17
2.3.2印表機細胞射出測試階段二 19
2.3.3印表機測試結果分析 23
2.3.4印表機射出實驗改善設計 26
2.4 定位壓電微射出系統設計與製造 28
2.4.1 雙軸定位平台 28
2.4.2 微噴射系統設計與製造 28
2.5 定位壓電微射出系統測試 32
第三章 實驗結果 34
3.1改裝後印表機射出細胞 34
3.1.1細胞貼附狀況 34
3.1.2細胞染色與生存率 35
3.2定位壓電微噴射系統射出細胞 36
3.2.1射出之細胞液滴狀況 36
3.2.2細胞貼附狀況 38
3.2.3射出之單位液滴內細胞數量 40
3.2.4細胞染色與生存率 42
3.2.5不同振動頻率下細胞生存率 43
第四章 研究成果及討論 45
4.1 細胞存活率之討論 45
4.2 不同頻率下細胞存活率之討論 46
4.3 印表機射出污染問題 47
4.4 印表機射出與定位壓電微射出系統比較 47
4.5 成果與貢獻 48
參考文獻 50
[1]Vladimir Mironov, T. B., Thomas Trusk, Gabor Forgacs , Roger R. Markwald (2003). "Organ printing: computer-aided jet-based 3D tissue engineering."Biotechnology: 157-161.

[2]W. CRIS WILSON, J., THOMAS BOLAND (2003). "Cell and Organ Printing 1: Protein and Cell Printers." The Anatomical Record: 491-493.

[3]Christopher Lausted, T. D., CharlesWarren, Kimberly King,Kimberly Smith, Michael Johnson, Ramsey Saleem, John Aitchison,Lee Hood and Stephen R Lasky (2004). "POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer." Genome Biology 5(8)-5(13).

[4]Neville E. Sanjana , S. B. F. (2004). "A fast flexible ink-jet printing method for patterning dissociated neurons in culture." Neuroscience Method: 151-163.

[5]Andrew Roberts, B. E. W., Lawrence Bonassar (2005). "Aerosol Delivery of Mammalian Cells for Tissue Engineering." BIotechnology and Bioengineering: 802-807.

[6]M.B. Groot Wassink , F. Z., O.H. Bosgra , S. Koekebakker (2005). "Improving the drop-consistency of an inkjet printhead using meniscus-based Iterative Learning Control." Control Appilication: 2830-2835.

[7]Tao Xu, J. J., Cassie Gregory, James J. Hickman, Thomas Boland (2005). "Inkjet printing of viable mammalian cells." Biomaterials: 93-99.

[8]S. N. Jayasinghe , A. T.-N. (2006). "Stable electric-field driven cone-jetting of concentrated biosuspensions." The Royal Society of Chemistry: 1086-1090.

[9]Suwan N. Jayasinghe, A. N. Q., Peter A. M. Eagles (2006). "Electrohydrodynamic Jet Processing: An Advanced Electric-Field-Driven Jetting Phenomenon for Processing Living Cells." small: 216-219.

[10]Tao Xu, C. A. G., Peter Molnar, Xiaofeng Cui, Sahil Jalota,Sarit B. Bhaduri, Thomas Boland, (2006). "Viability and electrophysiology of neural cell structures generated by the inkjet printing method." Biomaterials: 3580-3588.

[11]Thomas Boland, T. X., Brook Damon , Xiaofeng Cui (2006). "Application of inkjet printing to tissue engineering." Biotechnology: 910-917.

[12]WITHERS, G. S. (2006). "New ways to print living cells promise breakthroughs for engineering complex tissues in vitro." Biochem: 394e1-e2.

[13]Jack Merrin, S. L., John S. Chuang (2007). "Printing Multistrain Bacterial Patterns with a Piezoelectric Inkjet Printer." plos one:14-19.

[14]Karoly Jakab, C. N., Brook Damon, Frarancoisemarg, Adrian Neagu, Cynthia L. Besch-Willford, Anatoly Kachurin, (2007). "Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures." Tissue Engineering:142-148.

[15]Shinako Masuda, T. S., Masayuki Yamato, Teruo Okano (2007). "Cell sheet engineering for heart tissue repair." Advanced Drug Delivery Reviews: 277-285.

[16]Shirin Ilkhanizadeh, A. I. T., Ola Hermanson (2007). "Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation." Biomaterials: 3936-3943.

[17]Jayasinghe, S. N. (2008). "Cell engineering: spearheading the next generation in healthcare." Biomedical Materials.255-265

[18]Jie Cheng, F. L., Haixia Liu,Yongnian Yan,Xiaohong Wang,Renji Zhang,Zhuo Xiong (2008). "Rheological Properties of Cell-Hydrogel Composites Extruding Through Small-Diameter Tips." Manufacturing Science and Engineering: 021014.1-021014.5.

[19]Rachel E. Saunders, J. E. G., Brian Derby (2008). "Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing." Biomaterials: 193-203.

[20]Cheryl A. Parzel1, M. E. P., Timothy Burg, Richard E. Groff, Karen J.,L. Burg (2009). "EDTA enhances high-throughput two-dimensional bioprinting by inhibiting salt scaling and cell aggregation at the nozzle surface." Tissue Engineer And Regenerative Medicine: 260-268.

[21]Tao Xu, J. R., Weixin Zhao., Emily C. Moorefield, and J. J. Y. Anthony Atala (2009). "Inkjet-Mediated Gene Transfection into Living Cells Combined with Targeted Delivery." Tissue Engineering: 95-101.

[22]Vladimir Mironov, R. P. V., Vladimir Kasyanov , Gabor Forgacs ,Christopher J. Drake , Roger R. Markwald (2009). "Organ printing: Tissue spheroids as building blocks." Biomaterials: 1-11.

[23]Wonhye Lee, J. P., Vivian Lee, Jong-Hwan Lee, and S. P. Krisztina Fischer, Je-Kyun Park and Seung-Schik Yoo (2009). "Three-dimensional bioprinting of rat embryonic neural cells." NeuroReport: 798-803.

[24]Wonhye Lee , J. C. D., Vivian Kim Lee , Jong-Hwan Lee , Krisztina Fischer , and J.-K. P. Karl Edminster , Seung-Schik Yoo (2009). "Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication." Biomaterials: 1587-1595

[25]江俊偉、李雄略,et al(2003)靜態液滴與氣泡形狀之分析.

[26]吳永奇、李雄略,et al.(2004)微流道內流體的自由液面形狀及流態之模擬.

[27]林建樺、呂宗行,et al(2005)study of dynamic droplet ejection behavior in a squeeze mode piezoelectric inkjet device.
[28]龔育諄、 蔡坤諭,et al(2006) Design and Implementation of a Single-Cell Printing System.

[29]吳永蓁、賴維祥,et al.(2007)studies on shear mode piezoelectric print head design.

[30] 蔡妙智、張元豪,et al.(2008) ,“纖維母細胞:再生反應的領航員”,科學人雜誌:50-52

[31]��峯學苑,et al,(2004)Photoshop CS 導引教學

[32]www.microfab.com
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top