(54.236.58.220) 您好!臺灣時間:2021/02/27 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭博仁
研究生(外文):Po-jen Hsiao
論文名稱:探究教育程度與學校素質對薪資所得之影響-以台灣的高等教育為例
論文名稱(外文):The Impact of Schooling and School Quality on Wage Income: The Case of Higher Education in Taiwan
指導教授:謝文真謝文真引用關係
指導教授(外文):Wen-jen Hsieh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:政治經濟學研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:高等教育薪資所得學校素質分量迴歸法
外文關鍵詞:quantile regressionschool qualitywagehigher education
相關次數:
  • 被引用被引用:17
  • 點閱點閱:2248
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
台灣的高等教育於80年代中期後快速擴充而趨向全民化、普及化。然而大學教育內部卻出現資源投入不均、發展失衡與學校素質良莠不齊的窘況,並展現在一般、技職教育系統差異與公、私立別等層面上。本研究將焦點置於台灣的高等教育,從教育程度與學校素質之觀點將高等教育分為研究所、公立一般大學院校、私立一般大學院校、公立技職大學院校、私立技職大學院校與專科等六類,同時探究教育程度與學校素質差異對學生日後薪資的影響。實證樣本選自華人動態資料庫(Panel Study of Family Dynamics, PSFD)中年齡介於25歲至39歲的工作者樣本;實證分析先藉由Heckman兩階段模型考量樣本選擇性(sample selectivity)之問題後,分別採用修正變異數異質性(heteroskedasticity)的加權最小平方法(weighted least squares, WLS)與分量迴歸法(quantile regression, QR)進行迴歸分析。
實證結果顯示,教育、工作經驗、男性、已婚狀態、於公部門工作、管理與技術性職業相對於勞力型職業、服務業與製造業相對於初級產業、工作地區的都市化程度、工作場所規模等因素對薪資皆有顯著的正向影響;家務工作負擔對薪資則有顯著的負向影響,而各變數在不同分量下的影響程度亦各異。教育變數中,以研究所的教育報酬最高、大學次之、專科最低,可知教育程度在勞動市場中仍扮演著重要的角色。若從學校素質的角度觀之,公立院校的薪資顯著大於私立院校、一般系統顯著大於技職系統,顯示出在具有相同教育程度的條件下,學校素質是決定薪資水準的重要因素。然而公立與一般系統在薪資上的相對優勢,會隨著年資與薪資條件的增加而逐漸減少;反之,研究所對薪資的助益則隨著年資與薪資條件的提升而擴大,隱含著在大學教育愈趨普及化下,勞動市場升遷上相對重視研究所的學歷。綜合歸納實證結果,本文建議高等教育政策除了增加學校的「量」之外;更應該注重於學校「質」的提升;同時應更關注於私立與技職院校的發展,從勞動市場供需面作為政策規劃方向,提升整體高等教育人力資源發展與勞動市場之連結性。
Since the middle of 80’s, higher education in Taiwan has become much more prevailed. However, the input inequality of educational resources has resulted in school quality uneven among the institutes of higher education, especially between public/private and general/technical educational system of universities (or colleges). The study focuses on the higher education in Taiwan and classifies the levels of higher education into graduate schools, general public universities, general private universities, technical public universities, technical private universities and junior vocational colleges in order to investigate the impact of schooling and school quality on students’ wages. All empirical samples are sourced from the dataset of Panel Study of Family Dynamics (PSFD) funded by the National Science Council.
By applying weighted least squares and quantile regression after considering the problem of sample selectivity, the results reveal that schooling, school quality, working experience, gender (male), marriage, public sector, managerial occupation, service industry, urbanization of working area and firm size have significantly positive effects on wage, but house working has a significantly negative effect. Besides, every explanatory variable has different marginal effects in different quantiles. Among the higher education, graduate schools have the highest educational return, universities (or colleges) are the next and junior vocational colleges have the lowest. Moreover, the educational returns are also different within the universities (or colleges), the wage level of public schools is statistically significant higher than private and the wage level of general system schools is statistically significant higher than technical system. The findings indicate that schooling and school quality in higher education both play important roles in the wage differential of Taiwan’s labor market. However, the positive effects of public and general system schools decrease when the working experience or wage level increases.
Base on the empirical results, it is suggested that the government should put more attention on school quality instead of school numbers, especially on the development of private and technical system universities (or colleges). The policies of higher education are also suggested to consider the needs of labor market to raise the connection between labor market and the training of higher education.
第一章 緒論 1
第一節 研究動機 2
第二節 研究目的 5
第三節 研究流程與架構 9
第二章 理論與實證文獻回顧 11
第一節 人力資本與教育經濟學理論介紹 11
第二節 薪資差異研究之相關實證文獻 16
第三節 學校素質影響薪資之實證文獻 23
第三章 台灣高等教育發展概況 28
第一節 高等教育政策變遷與發展之回顧 28
第二節 高等教育內部學校素質之差異 34
第四章 研究方法 39
第一節 理論模型之介紹 39
第二節 實證模型、資料來源與變數說明 46
第三節 實證分析方法 57
第五章 實證分析結果 68
第一節 敘述統計 69
第二節 最小平方迴歸分析結果 79
第三節 分量迴歸分析結果 91
第六章 結論 102
第一節 研究發現與政策建議 102
第二節 研究貢獻與限制 107
參考文獻 109
附錄:以月收入衡量薪資所得之迴歸分析結果 118
一、中文部分
1.于若蓉與朱敬一(1998):〈台大惠我良多-論各大學畢業生初出校門的表現〉,《經濟論文叢刊》,第36卷第1期,頁65-89。
2.于若蓉與章英華(2005):〈華人家庭動態資料庫:台灣訪問計畫〉,2005年華人家庭動態資料庫學術研討會(中央研究院經濟研究所),網址:http://psfd.sinica.edu.tw/load/load019.pdf(瀏覽日期:2008年5月1日)。
3.羊憶蓉與林全(1994):《台灣的教育改革》,(台北市:前衛出版社,初版)。
4.羊憶蓉與吳慧林(1996):《分流教育與經濟發展:政策分析與實際效果》,(台北市:行政院教育改革審議委員會)。
5.行政院教育改革審議會(1996):《教育改革總報告書》,(台北市:行政院教育改革審議委員會編印)。
6.林金源與朱雲鵬(2000):〈台灣個人工作報酬不均度的長期變化〉,《台灣經濟學會年會論文集》,頁57-75。
7.吳慧林(1988):〈專上人力報酬的決定因素〉,《經濟論文叢刊》,第16卷第3期,頁357-369。
8.吳慧瑛(2003):〈二十年來教育發展之經濟評估〉,《台灣經濟預測與政策》,第33卷,頁97-130。
9.徐美、陳明郎與方俊德(2006):〈台灣產業結構變遷和性別歧視對男女薪資溢酬變動趨勢之影響〉,《經濟論文》,第34卷第4期,頁505-539。
10.許碧峰(2004):〈台灣大專教育溢酬、性別薪資差異與勞動者未能觀察到能力之變化〉,《經濟論文叢刊》,第32卷第2期,頁267-291。
11.郭為藩(1995):《教育改革的省思》,(台北市:天下文化出版社)。
12.教育部(2007):《中華民國教育統計》,(台北市:教育部)。
13.教育部(2001):《大學教育政策白皮書》,(台北市:教育部)。
14.黃台心(2005):《計量經濟學》,(台北市:雙葉書廊,初版)。
15.陳建良與管中閔(2006):〈台灣工資函數與工資性別歧視的分量迴歸分析〉,《經濟論文》,第34卷第4期,頁435-468。
16.陳建良(2007):〈台灣公私部門工資差異的擬真分解-分量迴歸分析〉,《經濟論文》,第35卷第4期,頁473-520。
17.陳德華(1994):〈我國高等教育改革之趨勢〉,《教育研究資訊》,第7卷第3期,頁1-12。
18.蓋浙生(1985):《教育經濟學》,(台北市:三民書局)。
19.蓋浙生(2004):〈台灣高等教育市場化政策導向之檢視〉,《教育研究集刊》,第50卷第2期,頁29-51。
20.顏秀如(2004):〈台灣與紐西蘭高等教育改革政策之比較〉,《教育資料與研究》,第63期,頁19-36。
21.謝小芩、張晉芬與黃淑玲(1996):《技職教育政策與職業學校的運作》,(台北市:行政院教育改革審議委員會,初版)。
22.駱明慶(2002):〈誰是台大學生-性別、省籍與城鄉差異〉,《經濟論文叢刊》,第30卷第1期,頁114-146。
23.駱明慶(2004):〈升學機會與家庭背景〉,《經濟論文叢刊》,第32卷第4期,頁417-445。
二、英文部分
1.Albrecht, James, Anders Bj�宁klund and Susan Vroman (2003), “Is There a Glass Ceiling in Sweden?” Journal of Labor Economics, Vol. 21, pp. 145-177.
2.Anders, B. and K. Christian (2002), “Estimating the Return to Investments in Education: How Useful is the Standard Mincer Equation?” Economics of Education Review, Vol. 21, pp. 195-210.
3.Ashenfelter, O. and C. Rouse (2000), “Schooling Intelligence and Income in American,” In Arrow et al., Meritocracy and Economic Inequality (Princeton: Princeton Univ. Press).
4.Baltagi, H. Badi (1998), Econometrics (New York: Springer).
5.Beaulieu, L. J. and D. Mulkey (1995), Investing in People: The Human Capital Needs of Rural America (Oxford: Westview Press).
6.Becker, G. S. (1993), Human Capital: A Theoretical and Empirical Analysis with Special Reference to Education (New York: National Bureau of Economic, 3rd Edition).
7.Betts, Julian R. (1995), “Does School Quality Matter? Evidence from the National Survey of Youth,” The Review of Economics and Statistics, Vol. 77, No. 2, pp. 231-250.
8.Borjas, George J. (2000), Labor Economics (New York: McGraw-Hill).
9.Buchinsky, Moshe (1994), “Changes in the U.S. Wage Structure during 1963-1987: Application of Quantile Regression,” Econometrica, Vol. 62, No.2, pp. 405-458.
10.Card, David and Alan B. Krueger (1992), “Does School Quality Matters? Returns to Education and the Characteristics of Public Schools in the United States,” The Journal of Political Economy, Vol. 100, No.1, pp. 1-40.
11.Chay, K. Y. and D. S. Lee (2000), “Changes in Relative Wages in the 1980s: Returns to Observed and Unobserved Skills,” Journal of Econometrics, Vol. 99, pp. 1-38.
12.Chiswick, Barry R. and Jacob Mincer (1972), “Time-series Changes in Personal Income Inequality in the United States from 1939, with Projections to 1985,” Journal of Political Economy, Vol. 80, No. 3, pp. S34-S66.
13.Cohn, Elchanan and Shahina P. Khan (1995), “The Wage Effects of Overschooling Revisited,” Labour Economics, Vol. 2, pp. pp. 67-76.
14.Corrado, A. (2007), “Returns to Education and Wage Equations: A Dynamic Approach,” Applied Economics Letters, Vol. 14, pp. 577-579.
15.Dolton, P. and A. Vignoles (2000), “The Incidence and Effects of Over-education in U.K. Graduate Labour Market,” Economic of Education Review, Vol. 19, pp. 179-198.
16.Eastough, Kristy and Paul W. Miller (2004), “The Gender Wage Gap in Paid- and Self-Employment in Australia,” Australian Economic Papers, Vol. 43, pp. 257-276.
17.Freeman, R. B. (1976), The Overeducated American (New York: Academic Press.)
18.Garc�朦, Jaume, Pedro J. Hern�鴨dez and Angel L�櫝ez-Nicol�龍 (2001), “How Wide Is the Gap? An Investigation of Gender Wage Differences Using Quantile Regression,” Empirical Economics, Vol. 26, pp. 149-168.
19.Gardeazabal, Javier and Arantza Ugidos (2005), “Gender Wage Discrimination at Quantiles,” Journal of Population Economics, Vol. 18, pp. 165-179.
20.Gindling, T. H., Marsha Goldfarb and C. C. Chang (1995), “Changing Returns to Education in Taiwan: 1978-1991,” World Development, Vol. 23, pp. 343-356.
21.Giorgio, Brunello and Simona Comi (2004), “Education and Earnings Growth: Evidence from 11 European Countries,” Economics of Education Review, Vol. 23, pp. 75-83.
22.Grogger, Jeff (1996), “Does School Quality Explain the Recent Black/White Wage Trend?” Journal of Labor Economics, Vol. 14, pp. 232-253.
23.Hanushek, Eric A. (1997), “Assessing the Effects of School Resources on Student Performance,” Educational Evaluation and Policy Analysis, Vol. 19, pp. 141-164.
24.Hamilton, Lawrence C. (2006), Statistics with STATA (Victoria, Australia: Thomson / BrooksCole).
25.Hartog, Joop (2000), “Over-education and Earnings: Where are We, Where Should We Go?” Economics Journal of Education Review, Vol. 19, pp. 131-147.
26.Hatrog, J. Pedro, T. Pereira and A. C. Vieira (2001), “Changing Returns to Education in Portugal during the 1980s and early 1990s: OLS and Quantile Regression Estimators,” Applied Economics, Vol. 33, p. 1022.
27.Heckman, J. (1979), “Sample Selection Bias as a Specification Error,” Econometrica, Vol. 47, pp. 153-162.
28.Heckman, J., A. Layne-Farrar and P. Todd (1996), “Human Capital Pricing Equations with An Application to Estimating The Effect of Schooling Quality on Earnings,” Review of Economics and Statistics, Vol. 78, pp. 562-610.
29.Hedges, Larry V., Richard D. Laine and Rob Greenwald (1994), “An Exchange: Part I: Does Money Matter? A Meta-Analysis of Studies of the Effects of Differential School Inputs on Student Outcomes,” Educational Researcher, Vol. 23, pp. 5-14.
30.Heij, Christiaan, Paul De Bore, Philips Hans Franses, Teun Kloek and Herman K. Dijk et al. (2004), Econometric Methods with Applications in Business and Economics (New York: Oxford University Press).
31.Hersch, Joni and Leslie S. Stratton (1997), “Housework, Fixed Effects and Wages of Married Workers,” The Journal of Human Resources, Vol. 32, pp. 285-307.
32.Hersch, Joni and Lesline S. Stratton (2002), “Housework and Wages,” The Journal of Human Resources, Vol. 37, pp. 218-229.
33.Hundley, Greg (2000), “Male/Female Earnings Differences in Self-Employment: The Effects of Marriage, Children, and the Household Division of Labor,” Industrial and Labor Relations Review, Vol. 54, pp. 95-114.
34.Keith, Kristen and Paula Malone (2005), “Housework and The Wages of Young, Middle-aged, and Older Workers,” Contemporary Economic Policy, Vol. 23, pp. 224-241.
35.Klein, Lawrence R. (1962), An Introduction to Econometrics (New Jersey: Prentice Hall).
36.Koenker, Roger and G. Basserr (1978), “Regression Quantiles,” Econometrica, Vol. 46, pp. 33-50.
37.Koenker, Roger and Kevin F. Hallock (2001), “Quantile Regression,”Journal of Economic Perspectives, Vol. 15, pp. 143-156.
38.Koenker, Roger (2005), Quantile Regression (New York: Cambridge University Press).
39.Lallemand, Thierry, Robert Plasman and Francois Rycx (2005), “Why Do Large Firms Pay Higher Wages? Evidence from Matched Worker Firm Data,” International Journal of Manpower, Vol. 26, pp. 705-723.
40.Lin, T. C. (2003), “Education, Technical Progress, and Economic Growth: the Case of Taiwan,” Economics Journal of Education Review, Vol. 22, pp. 213-220.
41.Lin, T. C. (2004), “The Role of Higher Education in Economic Development: An Empirical Study of Taiwan Case,” Journal of Asian Economic, Vol. 15, No. 2, pp. 355-371.
42.Maddala, G. S. (2001), Introduction to Econometrics (New York: Macmillian Publishing Company).
43.Main, Brian G. M. and Barry Reilly (1993), “The Employer Size-Wage Gap: Evidence for Britain,” Economica, Vol. 60, pp. 143-160.
44.Martins, S. and Pedro T. Pereira (2004), “Dose Education Reduce Wage Inequality? Quantile Regression Evidence from 16 Countries,” Labour Economics, Vol. 11, pp. 355-371.
45.McLennan, Michele (2000), “Does Household Labour Impact Market Wages?” Applied Economics, Vol. 32, pp. 1541-1597.
46.Melly, B. (2005), “Public-Private Sector Wage Differentials in Germany: Evidence from Quantile Regression,” Empirical Economics, Vol. 30, pp. 505-520.
47.Mincer, Jacob (1970), “The Distribution of Labor Incomes: A Survey with Special Reference to the Human Capital Approach,” Journal of Economic Literature, Vol. 8, No. 1, pp. 1-26.
48.Mincer, Jacob (1974), Schooling, Experience and Earnings (New York: National Bureau of Economic).
49.Murphy, Kevin M. and Sam Peltzman (2004), “School Performance and the Youth Labor Market,” Journal of Labor Economics, Vol. 22, pp. 299-327.
50.Nechyba, Thomas J. (1990), “The Southern Wage Gap, Human Capital, and the Quality of Education,” Southern Economic Journal, Vol. 57, pp. 308-322.
51.Psacharopoulous, G. (1981), “Returns to Education: An Update International Comparison,” Comparative Education, Vol. 17, pp. 321-341.
52.Psacharopoulous, G. (1994), “Returns to Investment in Education: A Global Update,” World Development, Vol. 22, pp. 1325-1344.
53.Rica, Sara de la, Juan J. Dolado and Vanesa Llorens (2008), “Ceilings or Floors? Gender Wage Gaps by Education in Spain,” Journal of Population Economics, Vol. 21, pp. 751-776.
54.Robert, D. Plotnick (1982), “Trends in Male Earnings Inequality,” Southern Economic Journal, Vol. 48, No. 3, pp. 724-732.
55.Robst, John (1995), “College Quality and Overeducation,” Economics of Education Review, Vol. 14, pp. 221-228.
56.Rubb, Stephen (2003), “Over-education: A Short or Long Run Phenomenon for Individuals?” Economics of Education Review, Vol. 22, pp. 389-394.
57.Schultz, T. W. (1961), “Investment in Human Capital,” American Economic Review, Vol. 51, pp. 1-17.
58.Shorrocks, Anthony F. (1982), “Inequality Decomposition by Factor Components,” Econometrica, Vol. 50, pp. 192-211.
59.Sorensn, Aage B. (1977), “The Structure of Inequality and the Process of Attainment,” American Sociological Review, Vol. 42, pp. 965-978.
60.Strayer, Wayne (2002), “The Returns to School Quality: College Choice and Earnings,” Journal of Labor Economics, Vol. 20, pp. 475-503.
61.Tallman, E. W. and P. Wang (1994), “Human Capital and Endogenous Growth: Evidence from Taiwan,” Journal of Monetary Economics, Vol. 34, pp. 101-124.
62.Torodo, Michael P. and Stephen C. Smith (2006), Economic Development (New York: Addison-Wesley).
63.Troske, K. R. (1999), “Evidence on the Employer-size Wage Premium From Worker-establishment Matched Data”, Review of Economics and Statistics, Vol. 81, pp. 1-12.
64.Verdugo, R. and N. T. Verdugo (1989), “The Impact of Surplus Schooling on Earnings,” Journal of Human Resources, Vol. 24, pp. 629-643.
65.Wilson, Kathryn (2002), “The Effects of School Quality on Income,” Economics of Education Review, Vol. 21, pp. 579-588.
66.Winter-Ebmer, Rudolf (2001), “Firm Size, Earnings and Displacement Risk,” Economic Inquiry, Vol. 39, pp. 474-86.
67.Zveglich, J. E., Y. M. Rodgers and W. M. Rodgers (1997), “The Persistence of Gender Earnings Inequality in Taiwan: 1978-1992,” Industrial and Labor Relations Review, Vol. 50, pp. 594-609.
三、網站資料
1.International Labour Organization, “Definitions of the topics-Wages.” Website: http://laborsta.ilo.org/definition_E.html (viewed on October 1, 2008).
2.中央研究院:《人文社會科學研究中心華人家庭動態計畫》,網址:http://psfd.sinica.edu.tw/check.htm(瀏覽日期:2008年9月30日)。
3.主計處:〈受雇員工薪資調查統計〉,《薪資及生產力統計》,網址:http://www.dgbas.gov.tw/ct.asp?xItem=1135&ctNode=3253(瀏覽日期:2008年10月14日)。
4.技職院校技術研發中心:《強化人才培育計畫》,網址:http://140.127.125.53
/ccshri/plan.htm (瀏覽日期:2009年1月7日)。
5.教育部全球資訊網:《十二年國教暨國教向下延伸計畫專案報告》,網址:http://www.edu.tw/content.aspx?site_content_sn=1325 (瀏覽日期:2008年9月27日)。
6.教育部統計處:《大專院校一覽表檢索系統》,網址:http://reg.aca.ntu.edu.tw/college/search/?open (瀏覽日期:2008年9月27日)。
7.教育部統計處:《大專院校學雜費徵收標準》,網址:http://www.edu.tw/statistics/conten t.aspx?site_content_sn=8138(瀏覽日期:2008年9月28日)。
8.教育部統計處:〈大專院校招生報考及錄取人數〉,《中華民國教育統計-民國97年版》,網址: http://www.edu.tw/files/site_content/B0013/97edu_114.xls(瀏覽日期:2008年9月7日)。
9.教育部全球資訊網:《公私立技專院校一覽表》,網址:http://tve.nkut.edu.tw/ (瀏覽日期:2009年1月4日)。
10.教育部統計處:〈各級教育簡況〉,《中華民國教育統計-民國97年版》網址:http://www.edu.tw/files/site_content/B0013/97edu_101.xls(瀏覽日期:2008年9月24日)。
11.教育部統計處:〈各級學生人數-公私立分別〉,《中華民國教育統計》網址:http://www.edu.tw/files/site_content/b0013/seriesdata.xls(瀏覽日期:2008年9月12日)。
12.教育部統計處:〈公私立各級學校經費支出總額〉,《中華民國教育統計》網址:http://www.edu.tw/statistics/content.aspx?site_content_sn=15868(瀏覽日期:2008年9月28日)。
13.教育部技職司:〈重要特色領域人才培育改進計畫〉,《教學卓越網》,網址:http://campusweb.yuntech.edu.tw/~eminent3/TE04/TE04_01.html(瀏覽日期:2009年1月7日)。
14.教育部統計處:〈教育簡況與教育經費〉,《教育部教育統計指標》,網址:http://www.edu.tw/statistics/publication.aspx?publication_sn=659(瀏覽日期:2008年9月21日)。
15.教育部高教司:〈獎勵大學教學卓越計畫〉,《教學卓越網》,網址:http://campusweb.yuntech.edu.tw/~eminent3/Point/TE01.pdf(瀏覽日期:2009年1月6日)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 8.吳慧瑛(2003):〈二十年來教育發展之經濟評估〉,《台灣經濟預測與政策》,第33卷,頁97-130。
2. 9.徐美、陳明郎與方俊德(2006):〈台灣產業結構變遷和性別歧視對男女薪資溢酬變動趨勢之影響〉,《經濟論文》,第34卷第4期,頁505-539。
3. 10.許碧峰(2004):〈台灣大專教育溢酬、性別薪資差異與勞動者未能觀察到能力之變化〉,《經濟論文叢刊》,第32卷第2期,頁267-291。
4. 16.陳建良(2007):〈台灣公私部門工資差異的擬真分解-分量迴歸分析〉,《經濟論文》,第35卷第4期,頁473-520。
5. 17.陳德華(1994):〈我國高等教育改革之趨勢〉,《教育研究資訊》,第7卷第3期,頁1-12。
6. 19.蓋浙生(2004):〈台灣高等教育市場化政策導向之檢視〉,《教育研究集刊》,第50卷第2期,頁29-51。
7. 20.顏秀如(2004):〈台灣與紐西蘭高等教育改革政策之比較〉,《教育資料與研究》,第63期,頁19-36。
8. 21.謝小芩、張晉芬與黃淑玲(1996):《技職教育政策與職業學校的運作》,(台北市:行政院教育改革審議委員會,初版)。
9. 22.駱明慶(2002):〈誰是台大學生-性別、省籍與城鄉差異〉,《經濟論文叢刊》,第30卷第1期,頁114-146。
10. 23.駱明慶(2004):〈升學機會與家庭背景〉,《經濟論文叢刊》,第32卷第4期,頁417-445。
 
系統版面圖檔 系統版面圖檔