跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:879a:e16d:38fe:36d8) 您好!臺灣時間:2024/12/13 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許登鈞
研究生(外文):Teng-chun Hsu
論文名稱:以功率分配和折疊光正交編碼實現光分碼多重接取網路之差異性服務
論文名稱(外文):Power Assignment and Folded Optical Orthogonal Coding for Differential Services in Optical CDMA Networks
指導教授:黃振發黃振發引用關係楊朝欽楊朝欽引用關係
指導教授(外文):Jen-fa HuangChao-chin Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:75
中文關鍵詞:延長的折疊光正交碼多媒體折疊光正交碼不同群的折疊光正交碼功率分配
外文關鍵詞:multimediaextended FOOCsfold optical orthogonal codes (FOOCs)FOOCs of different lengthspower assignment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
此研究的目的是研究在光分碼多重接取(optical code-division multiple-access, OCDMA)網路上的差異性服務。為了因應多種的服務品質,我們提出了兩種架構,一個是針對有差別的位元錯誤率(bit-error-rates, BERs),另一個是針對多重碼長的編碼。此外,我們也對所提出的兩種架構個別分析效能。
針對提供有差別的位元錯誤率,我們提出一個在頻域振幅編碼(spectral-amplitude-coding, SAC)光分碼多重接取系統中,利用功率分配(power assignment)的技術,以提供差異性服務的簡單架構。這個架構主要有三個優點:1)理論上可以消除來自於其他使用者的干擾。2)相較於先前被提出的功率控制技術的架構中,此架構的解碼器比較簡單。3)在網路中,此架構簡化了因應多種服務品質需求的設計過程。此外,我們也提出一組基數(cardinality)與碼長相等的碼,驗證此功率分配的架構。
針對提供多重速率的服務,我們應用折疊光正交碼(folded optical orthogonal codes, FOOCs)產生多重碼長的碼於多速率傳輸的光分碼多重接取網路,此碼稱為延長的折疊光正交碼 (extended FOOCs)。折疊光正交碼的建立方式適用於所有的光正交碼,這個優點也簡化了多重碼長的建立過程。所以延長的折疊光正交碼的生成方式相較於其它二維多重碼長的碼來的簡單,而且對於碼長的選擇也更有彈性。最後,以支援兩個速率的系統前提下,分析延長的折疊光正交碼的效能,也嘗試去分析不同長度的折疊光正交碼之間的效能,並秀出其結果。
The purpose of this study is to investigate the differential services in optical code-division multiple-access (OCDMA) networks. In order to accommodate various quality of service (QOS), there were two schemes to be proposed, one for differential bit-error-rates (BERs) and one for multi-length coding. Moreover, the performances of these two schemes were analyzed, respectively.
For providing differential BERs, one simple scheme to use power assignment was proposed for spectral-amplitude-coding (SAC) OCDMA network. The main advantages of this scheme were: 1) Interference from other users could be eliminated theoretically. 2) The decoder with simple configuration could be used as compared to that in previous power control scheme. 3) The design procedure of various service requirements in one network was simplified. Moreover, one new code family with cardinality equal to code length was used to demonstrate the proposed power assignment scheme.
For providing multi-rate services, one simple generation of multi-length coding that applied folded optical orthogonal codes (FOOCs) was proposed for multi-rate transmission in OCDMA network, and be called extended FOOCs. The construction of FOOCs was applicable to any existing optical orthogonal code, which would simplify the generation of multi-length coding. Therefore, the generation of extended FOOCs was relatively simple among other 2-D multi-length codes for the multi-rate system and flexible to choose the code length by the extended factor. Finally, the performance of extended FOOCs with two rate services was analyzed, and we attempted to analyze the performance of FOOCs of different lengths and show the result.
Chapter 1. Introduction 1
1.1 Introduction to Fiber-Optic Communication 1
1.2 Basic Optical CDMA Concepts 5
1.2.1 Incoherent OCDMA 7
1.2.1.1 Basic Incoherent OCDMA 8
1.2.1.2 Spectral-Amplitude-coded (SAC) OCDMA 9
1.2.2 Coherent OCDMA 12
1.2.2.1 Spectrally Phase Coded (SPC) OCDMA 14
1.2.2.2 Temporally Phase Coded (TPC) OCDMA 16
1.3 Multimedia OCDMA Network 18
Chapter 2. Overview on Optical CDMA Codes 20
2.1 One-Dimensional Optical Orthogonal Coding 21
2.2 Two-Dimensional Folded OOC 27
Chapter 3. Differentiated Services with Power Assignment for SAC-OCDMA 32
3.1 Modified Stuffed Shifted Prime Code 32
3.2 The Network Using Power Assignment Scheme 36
3.3 System Performance Analysis 40
Chapter 4. Differentiated Services with FOOCs for Multi-rate OCDMA 43
4.1 Folded Optical Orthogonal Codes 43
4.2 The Generation of Extended FOOCs 46
4.3 Performance Analysis 50
4.3.1 Analyzing the Same Group of Extended FOOCs 50
4.3.2 Analyzing the Different Group of Extended FOOCs 60
Chapter 5. Conclusions 67
References 69
[1] G. P. Agrawal, Fiber-Optic Communication Systems, Second ed. New York: John Wiley &Sons, 1997.
[2] J. A. Salehi, "Code division multiple-access techniques in optical fiber networks. I. Fundamental principles," IEEE Transactions on Communications, vol. 37, no. 8, pp. 824-833, 1989.
[3] D. B. Crosbie, "The new space race: satellite mobile communications," IEE Review, vol. 39, pp. 111-114, 1993.
[4] D. Zaccarin and M. Kavehrad, "An optical CDMA system based on spectral encoding of LED," IEEE Photonics Technology Letters, vol. 5, no. 4, pp. 479-482, 1993.
[5] M. Kavehrad and D. Zaccarin, "Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources," IEEE Journal of Lightwave Technology, vol. 13, no. 3, pp. 534-545, 1995.
[6] Z. Xiang, H. H. M. Shalaby, L. Chao, and C. Teehiang, "Code for spectral amplitude coding optical CDMA systems," Electronics Letters, vol. 36, no. 8, pp. 728-729, 2000.
[7] W. Zou, H. M. H. Shalaby, and H. Ghafouri-Shiraz, "Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems," IEEE Journal of Lightwave Technology, vol. 19, no. 9, pp. 1274-1281, 2001.
[8] W. Zou and H. Ghafouri-Shiraz, "Proposal of a novel code for spectral amplitude-coding optical CDMA systems," IEEE Photonics Technology Letters, vol. 14, no. 3, pp. 414-416, 2002.
[9] I. B. Djordjevic and B. Vasic, "Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems," IEEE Journal of Lightwave Technology, vol. 21, no. 9, pp. 1869-1875, 2003.
[10] R. A. Griffin, D. D. Sampson, and D. A. Jackson, "Coherence coding for photonic code-division multiple-access networks," IEEE Journal of Lightwave Technology, vol. 13, no. 9, pp. 1826-1837, Sep 1995.
[11] M. E. Marhic, "Coherent optical CDMA networks," IEEE Journal of Lightwave Technology, vol. 11, no. 5/6, pp. 854-864, 1993.
[12] N. Wada and K. Kitayama, "A 10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection," IEEE Journal of Lightwave Technology, vol. 17, no. 10, pp. 1758-1765, Oct 1999.
[13] J. A. Salehi and C. A. Brackett, "Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis," IEEE Transactions on Communications, vol. 37, no. 8, pp. 834-842, 1989.
[14] K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," IEEE Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, 1997.
[15] K. Kitayama, "Novel spatial spread spectrum based fiber optic CDMA networks for image transmission," IEEE Journal on Selected Areas in Communications, vol. 12, no. 4, pp. 762-772, 1994.
[16] W. C. Kwong and G. C. Yang, "Image transmission in multicore-fiber code-division multiple-access networks," IEEE Communications Letters, vol. 2, no. 10, pp. 285-287, 1998.
[17] L. Tancevski, I. Andonovic, M. Tur, and J. Budin, "Hybrid wavelength hopping/time spreading code division multiple access systems," IEE Proceedings- Optoelectronics, vol. 143, no. 3, pp. 161-166, 1996.
[18] G. C. Yang and W. C. Kwong, "Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks," IEEE Transactions on Communications, vol. 45, no. 11, pp. 1426-1434, Nov 1997.
[19] L. Tancevski and L. A. Rusch, "Impact of the beat noise on the performance of 2-D optical CDMA systems," IEEE Communications Letters, vol. 4, no. 8, pp. 264-266, Aug 2000.
[20] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, "Transmission characteristics of arrayed waveguide N x N wavelength multiplexer," IEEE Journal of Lightwave Technology, vol. 13, no. 3,pp. 447-455, 1995.
[21] K. P. Jackson, G. Xiao, and H. J. Shaw, "Coherent optical fibre delay-line processor," Electronics Letters, vol. 22, no. 25, pp. 1335-1337, 1986.
[22] D. D. Sampson and D. A. Jackson, "Spread-spectrum optical fibre network based on pulsed coherent correlation," Electronics Letters, vol. 26, no. 19, pp. 1550-1552, 1990.
[23] R. A. Griffin, D. D. Sampson, and D. A. Jackson, "Optical phase coding for code-division multiple access networks," IEEE Photonics Technology Letters, vol. 4, no. 12, pp. 1401-1404, 1992.
[24] D. D. Sampson, R. A. Griffin, and D. A. Jackson, "Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks," IEEE Journal of Lightwave Technology, vol. 12, no. 11, pp. 2001-2010, 1994.
[25] M. Brandt-Pearce and B. Aazhang, "Multiuser detection for optical code division multiple access systems," IEEE Transactions on Communications, vol. 42, no. 2/3/4, pp. 1801-1810, 1994.
[26] V. J. Hernandez, Y. X. Du, W. Cong, R. P. Scott, K. B. Li, J. P. Heritage, Z. Ding, B. H. Kolner, and S. J. B. Yoo, "Spectral phase-encoded time-spreading (SPECTS) optical code-division multiple access for terabit optical access networks," IEEE Journal of Lightwave Technology, vol. 22, no. 11, pp. 2671-2679, Nov 2004.
[27] P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings," IEEE Journal of Lightwave Technology, vol. 19, no. 9, pp. 1352-1365, Sep 2001.
[28] X. Wang, K. Matsushima, A. Nishiki, N. Wada, and K. Kitayama, "High reflectivity superstructured FBG for coherent optical code generation and recognition," Optics Express, vol. 12, no. 22, pp. 5457-5468, Nov 2004.
[29] G. Cincotti, "Design of optical full encoders/decoders for code-based photonic routers," IEEE Journal of Lightwave Technology, vol. 22, no. 7, pp. 1642-1650, 2004.
[30] A. M. Weiner, J. P. Heritage, and J. A. Salehi, "Encoding and decoding of femtosecond pulses," Optics Letters, vol. 13, no. 4, pp. 300-302, Apr 1988.
[31] H. P. Sardesai, C. C. Chang, and A. M. Weiner, "A femtosecond code-division multiple-access communication system test bed," IEEE Journal of Lightwave Technology, vol. 16, no. 11, pp. 1953-1964, Nov 1998.
[32] J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light-pulse code-division multiple access communication-systems," IEEE Journal of Lightwave Technology, vol. 8, no. 3, pp. 478-491, Mar 1990.
[33] X. Wang, N. Wada, G. Cincotti, T. Miyazaki, and K. I. Kitayama, "Demonstration of over 128-Gb/s-capacity (12-user x 10.71-Gb/s/user) asynchronous OCDMA using FEC and AWG-based multiport optical encoder/decoders," IEEE Photonics Technology Letters, vol. 18, no. 15, pp. 1603-1605, Aug 2006.
[34] J. A. Salehi, "Emerging OCDMA communication systems and data networks [Invited]," Journal of Optical Networking, vol. 6, no. 9, pp. 1138-1178, Sep 2007.
[35] G. Cincotti, N. Wada, and K. I. Kitayama, "Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers - Part I. Modeling and design," IEEE Journal of Lightwave Technology, vol. 24, no. 1, pp. 103-112, Jan 2006.
[36] H. Yashima and T. Kobayashi, "Optical CDMA with time hopping and power control for multimedia networks," IEEE Journal of Lightwave Technology, vol. 21, no. 3, pp. 695-702, 2003.
[37] L. Seung Joon, L. Hyeon Woo, and S. Dan Keun, "Capacities of single-code and multicode DS-CDMA systems accommodating multiclass services," IEEE Transactions on Vehicular Technology, vol. 48, no. 2, pp. 376-384, 1999.
[38] F. Adachi, M. Sawahashi, and K. Okawa, "Tree-structured generation of orthogonal spreading codes with different lengths for forward link of DS-CDMA mobile radio," Electronics Letters, vol. 33, no. 1, pp. 27-28, 1997.
[39] T. Ottosson and A. Svensson, "Multi-rate schemes in DS/CDMA systems," in Vehicular Technology Conference, 1995 IEEE 45th, 1995, pp. 1006-1010 vol.2.
[40] S. V. Maric, O. Moreno, and C. J. Corrada, "Multimedia transmission in fiber-optic LANs using optical CDMA," IEEE Journal of Lightwave Technology, vol. 14, no. 10, pp. 2149-2153, 1996.
[41] G. C. Yang and W. C. Kwong, "Design of frequency-hopping codes for mobile communication systems with multimedia services," in Wireless Communications and Networking Conference, 1999. WCNC. 1999 IEEE, vol. 1, pp. 442-446, 1999.
[42] W. C. Kwong and G. C. Yang, "Frequency-hopping codes for multimedia services in mobile telecommunications," IEEE Transactions on Vehicular Technology, vol. 48, no. 6, pp. 1906-1915, Nov 1999.
[43] W. C. Kwong and G. C. Yang, "Wavelength-time codes for multimedia optical CDMA systems with fiber-Bragg-grating arrays," in Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE, vol. 3, pp. 2813-2817, 2002.
[44] W. C. Kwong and G. C. Yang, "Design of multilength optical orthogonal codes for optical CDMA multimedia networks," IEEE Transactions on Communications, vol. 50, no. 8, pp. 1258-1265, 2002.
[45] T. Pu, Y. Q. Li, and S. W. Yang, "Research of algebra congruent codes used in two-dimensional OCDMA system," IEEE Journal of Lightwave Technology, vol. 21, no. 11, pp. 2557-2564, Nov 2003.
[46] W. C. Kwong and G. C. Yang, "Multiple-length multiple-wavelength optical orthogonal codes for optical CDMA systems supporting multirate multimedia services," IEEE Journal on Selected Areas in Communications, vol. 22, no. 9, pp. 1640-1647, 2004.
[47] C. K. Lee, J. Kim, S. W. Seo, and Ieee, "Multi-length time-and-frequency-hopping codes for multimedia service differentiation," in IEEE International Conference on Communications (ICC 2005), Seoul, SOUTH KOREA, vol. 3, pp. 1603-1607, 2005,.
[48] W. C. Kwong and G. C. Yang, "Multiple-length extended carrier-hopping prime codes for optical CDMA systems supporting multirate multimedia services," IEEE Journal of Lightwave Technology, vol. 23, no. 11, pp. 3653-3662, 2005.
[49] N. G. Tarhuni, T. O. Korhonen, E. Mutafungwa, and M. S. Elmusrati, "Multiclass optical orthogonal codes for multiservice optical CDMA networks," IEEE Journal of Lightwave Technology, vol. 24, no. 2, pp. 694-704, 2006.
[50] J. Y. Lin, J. S. Jhou, and J. H. Wen, "Variable-length code construction for incoherent optical CDMA systems," Optical Fiber Technology, vol. 13, no. 2, pp. 180-190, Apr 2007.
[51] E. Inaty, H. M. H. Shalaby, P. Fortier, and L. A. Rusch, "Multirate optical fast frequency hopping CDMA system using power control," IEEE Journal of Lightwave Technology, vol. 20, no. 2, pp. 166-177, 2002.
[52] C. C. Yang, J. F. Huang, and Y. H. Wang, "Multipulse-per-row codes for high-speed optical wavelength/time CDMA networks," IEEE Photonics Technology Letters, vol. 19, no. 21, pp. 1756-1758, Nov-Dec 2007.
[53] L. Tancevski and I. Andonovic, "Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security," IEEE Journal of Lightwave Technology, vol. 14, no. 12, pp. 2636-2647, Dec 1996.
[54] M. Azizoglu, J. A. Salehi, and Y. Li, "Optical CDMA via temporal codes," IEEE Transactions on Communications, vol. 40, no. 7, pp. 1162-1170, 1992.
[55] F. R. K. Chung, J. A. Salehi, and V. K. Wei, "Optical orthogonal codes: design, analysis and applications," IEEE Transactions on Information Theory, vol. 35, no. 3, pp. 595-604, 1989.
[56] W. Zou and H. Ghafouri-Shiraz, "Unipolar codes with ideal in-phase cross-correlation for spectral amplitude-coding optical CDMA systems," IEEE Transactions on Communications, vol. 50, no. 8, pp. 1209-1212, 2002.
[57] C. C. Yang, "Optical CDMA passive optical network using prime code with interference elimination," IEEE Photonics Technology Letters, vol. 19, no. 7, pp. 516-518, Mar-Apr 2007.
[58] C. C. Yang, "Hybrid wavelength-division-multiplexing/spectral-amplitude-coding optical CDMA system," IEEE Photonics Technology Letters, vol. 17, no. 6, pp. 1343-1345, 2005.
[59] R. Davey, J. Kani, F. Bourgart, and K. McCammon, "Options for future optical access networks," Communications Magazine, IEEE, vol. 44, no. 10, pp. 50-56, 2006.
[60] S. V. Maric, "New family of algebraically designed optical orthogonal codes for use in CDMA fiberoptic networks," Electronics Letters, vol. 29, no. 6, pp. 538-539, Mar 1993.
[61] S. V. Maric and V. K. N. Lau, "Multirate fiber-optic CDMA: System design and performance analysis," IEEE Journal of Lightwave Technology, vol. 16, no. 1, pp. 9-17, Jan 1998.
[62] H. M. Kwon, "Optical orthogonal code-division multiple-access system .II. Multibits/sequence-period OOCDMA," IEEE Transactions on Communications, vol. 42, no. 8, pp. 2592-2599, 1994.
[63] S. V. Maric, Z. I. Kostic, and E. L. Titlebaum, "A new family of optical code sequences for use in spread-spectrum fiberoptic local-area networks," IEEE Transactions on Communications, vol. 41, no. 8, pp. 1217-1221, Aug 1993.
[64] W. C. Kwong, P. A. Perrier, and P. R. Prucnal, "Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks," IEEE Transactions on Communications, vol. 39, no. 11, pp. 1625-1634, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top