跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭耀新
研究生(外文):Yao-Hsin Kuo
論文名稱:隨機指配載波跳頻質數碼以強化光分碼多重擷取網路之安全性
論文名稱(外文):Random Assignment of Shifted Carrier-Hopping Prime Codes to Enhance Confidentiality in Wavelength-Time Optical CDMA Networks
指導教授:黃振發黃振發引用關係張耀堂張耀堂引用關係
指導教授(外文):Jen-Fa HuangYao-Tang Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:63
中文關鍵詞:載波跳頻質數碼跳頻與展時編碼光分碼多重擷取私密性多碼調變技術
外文關鍵詞:wavelength-hopping time-spreadingshifted carrier-hopping prime codemulti-code keyingconfidentialityoptical code division multiple access
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
傳統光分碼多重擷取(optical code division multiple access)網路的安全性弱點已經被提出來研究並尋求解決方案。因此,本論文運用多碼調變技術於跳頻與展時(wavelength-hopping time-spreading)的光分碼多重擷取網路以克服開關調變技術(on-off-keying)易被竊聽的弱點,並提出變換指配碼機制 (code reconfiguration mechanism) 以強化傳輸資料的私密性。
本系統分配每個使用者一群專用的載波跳頻質數碼(shifted carrier-hopping prime codes),使用者可以任意地從所分配的碼族中選取傳送的碼型,藉此實現變換指配碼機制。再者,我們運用中央控制器監控網路的狀況以決定變換指配碼的時機並用來調變傳送端與接收端。另外,為了結合多碼調變技術與變換指配碼機制,我們運用光切換器(optical switch)選用不同的光輸出路徑來實現多位元數據調變(M-ary data modulation),光切換器並接收由中央控制器的變換指配碼指令來實現變換指配碼機制。因此其使用者傳送碼指配與變換機制更具靈活性。
在本論文我們亦分析系統的安全性效能。藉由計算在光纖網路傳送碼型被竊聽的機率,我們可以量化傳送資料的私密性。分析的結果顯示,多碼調變機制使得竊聽者能夠正確還原傳送的碼型的機會變的更加困難,因此資料的私密性因為多碼調變機制而能夠有效提升。再者,我們運用的載波跳頻質數碼具有龐大指配碼的數量(code space),能夠有效預防竊聽者對於所欲偵知的使用者進行暴力猜測法(brute force code search attack)。此外,運用快速變換指配碼的機制增加竊聽器實現的困難度卻也使得網路維護變得更加複雜。
Conventional optical code division multiple access (OCDMA) techniques suffer from inherent security disadvantages has been studied. In order to overcome vulnerability to eavesdropping of on-off-keying based OCDMA scheme, we propose a new scheme for confidentiality enhancement based on multi-code (M-code) keying approach of wavelength-hopping/time-spreading (WH/TS) OCDMA networks and applied to code reconfiguration mechanism.
The code reconfiguration is achieved by exclusively assigning to each user a set of M shifted carrier-hopping prime codes (CHPC) and randomly selecting code word among M codes to represent user’s data bits. In addition, a central controller monitors network condition and regulates transmitter/receiver to perform code word selection. To integrate M-code keying with code reconfiguration mechanism, we utilize an optical switch not only switches symbol-to-symbol performing M-ary data modulation but following central controller’s instruction performing code changing. Hence, the assignment of code word and changing code word mechanism is more flexibility and easy to implement.
In this thesis, we also analyze the security performance of proposed system. Evaluating the probability of code word interception is quantified the degree of data confidentiality. The result shows that the probability of error-free code detection gets worse when M increases and the eavesdropper processes code word detection more difficult, thus data confidentiality could be significantly increased. In addition, the proposed scheme using shifted CHPC appears to be a promising coding type for generating OCDMA code space that are large enough to prevent successful brute force code search attacks. Moreover, rapid code reconfiguration mechanism can increase the difficulty of interception but also makes the network management more difficult.
Chapter 1. Introduction 1
1.1 Optical Fiber Vulnerability to Eavesdropping 1
1.2 The Possible Secure Communication in Fiber Optic Systems 2
1.2.1 Chaos Based Signal Encryption Scheme 3
1.2.2 Quantum Key Distribution 3
1.2.3 Optical Code Division Multiple Access 4
1.3 Optical CDMA Network Security Issues 6
1.3.1 Secure Vulnerability of OCDMA Systems 7
1.3.2 Constant Envelope Modulation Technique 8
1.3.3 Change Code Frequently 9
1.3.4 Decrease Eavesdropper’s Signal-to-Noise Ratio 10
1.4 The Motive of Our Research 10
1.5 Thesis Preview 11
Chapter 2. Essential of OCDMA Techniques 13
2.1 Optical CDMA Codes 13
2.1.1 Wavelength-Hopping Time-Spreading Coding 15
2.1.2 Shifted Carrier-Hopping Prime codes Construction 16
2.2 Implementations of Wavelength-Time OCDMA System 19
2.2.1 Multiwavelength Source 20
2.2.2 Arrayed Waveguide Gratings 21
2.2.3 Encoder and Decoder Design 23
2.3 Multi-Code Keying Technique 25
Chapter 3. Random Assignment of Shifted Carrier- Hopping Prime Codes in OCDMA System 28
3.1 Code Reconfiguration Mechanism: System Architecture 29
3.2 Code Reconfiguration Coding Technique 31
3.2.1 Implementation of Code Reconfiguration Using Time-Shifted CHPC 31
3.2.2 Implementation of Code Reconfiguration Using Wavelength-Shifted CHPC 35
3.3 Central Controller 38
3.4 Integrated Multi-Code Keying with Code Reconfiguration Mechanism 39
Chapter 4. Confidentiality Performance Evaluation 42
4.1 Code Space Size 42
4.2 Confidentiality Performance against Code Detection Attack 44
4.2.1 Code Interception Probability 45
4.2.2 Confidentiality Enhancement over Multi-Code Keying 50
4.2.3 Multiple Code Combining Attack 52
4.3 Confidentiality Enhancement over Code Reconfiguration 57
Chapter 5. Conclusion 59
References 61
[1]K.S. Kim, "On the evolution of PON-based FTTH solutions," Inf. Sci., vol. 149, pp. 21-30, Jan. 2003.
[2]G. Kramer and G. Pesavento, "Ethernet passive optical network (EPON): Building a next-generation optical access network," IEEE Commun. Mag., vol. 40, pp. 66-73, Feb. 2002.
[3]M.D. Ma, Y.Q. Zhu, and T.H. Cheng, "A systematic scheme for multiple access in Ethernet passive optical access networks," J. Lightwave Technol., vol. 23, pp. 3671-3682, Nov. 2005.
[4]L. Tancevski, I. Andonovic, and J. Budin, "Secure optical network architectures utilizing wavelength hopping time spreading codes," IEEE Photonics Technol. Lett., vol. 7, pp. 573-575, May 1995.
[5]L. Tancevski and I. Andonovic, "Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security," J. Lightwave Technol., vol. 14, pp. 2636-2647, Dec. 1996.
[6]D.E. Leaird, Z. Jiang, and A.M. Weiner, "Experimental investigation of security issues in OCDMA: a code-switching scheme," Electron. Lett., vol. 41, pp. 817-819, July 2005.
[7]W. Shawbaki and A. Kamal, "Security for FTTx Optical access Networks," in 31st Annual IEEE Conference on Local Computer Networks, Tampa, FL, pp. 221-228, 2006.
[8]Y.T. Chang, C.C. Sue, and J.F. Huang, "Robust design for reconfigurable coder/decoders to protect against eavesdropping in spectral amplitude coding optical CDMA networks," J. Lightwave Technol., vol. 25, pp. 1931-1948, Aug. 2007.
[9]A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C.R. Mirasso, L. Pesquera, and K.A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature, vol. 438, pp. 343-346, Nov. 2005.
[10]N. Gisin, G.G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys., vol. 74, pp. 145-195, Jan. 2002.
[11]C. Gobby, Z.L. Yuan, and A.J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett., vol. 84, pp. 3762-3764, May 2004.
[12]Z.L. Yuan, A.R. Dixon, J.F. Dynes, A.W. Sharpe, and A.J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett., vol. 92, May 2008.
[13]J.P. Goedgebuer, L. Larger, and H. Porte, "Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode," Phys. Rev. Lett., vol. 80, pp. 2249-2252, Mar. 1998.
[14]L.M. Duan, M.D. Lukin, J.I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature, vol. 414, pp. 413-418, Nov. 2001.
[15]T.H. Shake, "Confidentiality performance of spectral-phase-encoded optical CDMA," J. Lightwave Technol., vol. 23, pp. 1652-1663, Apr. 2005.
[16]T.H. Shake, "Security performance of optical CDMA against eavesdropping," J. Lightwave Technol., vol. 23, pp. 655-670, Feb. 2005.
[17]E. Narimanov and B. Wu, "Advanced coding techniques for asynchronous fiber-optical CDMA," in QELS '05, pp. 1768-1770 vol. 3, May 2005.
[18]R.M.H. Yim, L.R. Chen, and J. Bajcsy, "Design and performance of 2-D codes for wavelength-time optical CDMA," IEEE Photonics Technol. Lett., vol. 14, pp. 714-716, May 2002.
[19]W.C. Kwong, G.C. Yang, V. Baby, C.S. Bres, and P.R. Prucnal, "Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA," IEEE Trans. Commun., vol. 53, pp. 117-123, Jan. 2005.
[20]G.-C. Yang and W.C. Kwong, Prime codes with applications to CDMA optical and wireless networks. Boston: Artech House, 2002.
[21]E. Narimanov, W.C. Kwong, G.C. Yang, and P.R. Prucnal, "Shifted carrier-hopping prime codes for multicode keying in wavelength-time O-CDMA," IEEE Trans. Commun., vol. 53, pp. 2150-2156, Dec. 2005.
[22]A. Stok and E.H. Sargent, "Lighting the local area: Optical code-division multiple access and quality of service provisioning," IEEE Netw., vol. 14, pp. 42-46, Nov.-Dec. 2000.
[23]T. Okuno, M. Onishi, and M. Nishimura, "Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber," IEEE Photonics Technol. Lett., vol. 10, pp. 72-74, Jan. 1998.
[24]C.S. Bres, I. Glesk, and P.R. Prucnal, "Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating," IEEE Photonics Technol. Lett., vol. 18, pp. 889-891, Mar.-Apr. 2006.
[25]S. Yegnanarayanan, A.S. Bhushan, and B. Jalali, "Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA," IEEE Photonics Technol. Lett., vol. 12, pp. 573-575, May 2000.
[26]K.S. Yu, J. Shin, and N. Park, "Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines," IEEE Photonics Technol. Lett., vol. 12, pp. 1278-1280, Sep. 2000.
[27]Y.K. Huang, V. Baby, P.R. Prucal, C.M. Greiner, D. Iazikov, and T.W. Mossberg, "Integrated holographic encoder for wavelength-hopping/time-spreading optical CDMA," IEEE Photonics Technol. Lett., vol. 17, pp. 825-827, Apr. 2005.
[28]Y.K. Huang, V. Baby, I. Glesk, C.S. Bres, C.M. Greiner, D. Iazikov, T.W. Mossberg, and P.R. Prucnal, "Novel multicode-proces sing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron., vol. 13, pp. 1471-1479, Sep.-Oct. 2007.
[29]C.W. Helstrom, Statistical theory of signal detection, 2d ed. Oxford, New York,: Pergamon Press, 1968.
[30]B.R. Mahafza, Radar systems analysis and design using MATLAB, 2nd ed. Boca Raton, FL: Chapman & Hall/CRC, 2005.
[31]P.A. Humblet and M. Azizoglu, "On the bit error rate of lightwave systems with optical amplifiers" J. Lightwave Technol., vol. 9, pp. 1576-1582, Nov. 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top