跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 20:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂昆
研究生(外文):Kun Lu
論文名稱:一個基於局部紋理特徵空間分佈與支持向量機之人臉辨識系統
論文名稱(外文):A Face Recognition System Based on Spatial Distribution of Local Texture Feature and Support Vector Machine
指導教授:何裕琨
指導教授(外文):Yu-Keun Ho
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:紋理特徵局部二元化圖樣支持向量機人臉辨識系統
外文關鍵詞:SVMLocal Binary PatternTexture FeatureFace Recognition System
相關次數:
  • 被引用被引用:3
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來由於生物特徵識別系統的需求日增,使得人臉辨識之研究更受重視。雖然指紋、掌紋或虹膜掃瞄等生物特徵也常被應用於身份識別或驗證之依據,但由於人臉辨識屬於非接觸式的機制,因此可以預期的是以人臉作為身份識別基礎的工具將會被廣泛的應用。
在取得紋理特徵上,多解析度區塊局部二元化圖樣(Multi-Scale Block Local Binary Pattern)相較於傳統區域性二元化圖樣,是以子區域(sub-region)的平均值取代個別的像素值(individual pixel)來做計算以取得較大結構(macrostructure)的紋理資訊,因此可以達到抵抗影像雜訊的效果,也保留局部二元化圖樣的優點。支持向量機(Support Vector Machine)是具有高效能的分類器之一,可對大量的資料作處理,因此也常被用在做人臉辨識的分類器。
根據多解析度區塊局部二元化圖樣之特徵擷取方法,本論文提出了一個基於局部紋理特徵空間分布與支持向量機之人臉辨識系統,其中採用一高斯混合化模型(Gaussian Mixture Model)來取得這些特徵點分布的資訊,以建構出一組可以良好抵抗位移、尺寸變化、旋轉的特徵資訊。然後再利用支持向量機來做訓練產生分類器,配合投票的方式作為最後辨識結果的依據。
在實驗中,本論文以ORL人臉資料庫來實驗測試本論文所提出的方法,並且針對此人臉資料庫影像分別做位移、尺寸變化、旋轉的處理,實驗結果證實本論文所提出之方法對於這些被破壞的影像確實具有很好的辨識能力與效果。
Recently, the research of face recognition is more important in biometric authentication field. Though the biometric characteristic of finger print, palm, iris are commonly using in ID authentication, face recognition is non-contact mechanism. We expect that face recognition would be applied to identification extensively.
In Multi-Scale Block Local Binary Pattern (MB-LBP), the computation is done based on average values of block sub-regions, instead of individual pixels for extracting the texture feature. MB-LBP not only preserves the advantage of Local Binary pattern (LBP) but also encodes macrostructures of image patterns. Support Vector Machine(SVM) is one of the efficient classifiers and be applied to the classifier of face recognition popularly.
From the base of MB-LBP feature extraction. we propose a face recognition system based on spatial distribution of local texture feature and support vector machine. We extract the spatial distribution of feature from Gaussian Mixture Model(GMM). Using the parameters of GMM we get, we can construct good features which can robust against the distortion of face image like shift, resize, and rotation.
In the experiment on using ORL facial databases, the proposed system did against the image variation (shifting, resize and rotation).
摘要 I
ABSTRACT...............................................III
誌謝.....................................................V
目錄....................................................VI
圖目錄................................................VIII
表目錄...................................................X
第一章 緒論..............................................1
第二章 相關研究探討......................................6
2.1 人臉偵測............................................6
2.2 主成分分析(PRINCIPLE COMPONENT ANALYSIS, PCA)......12
2.3 線性鑑別分析(LINEAR DISCRIMINANT ANALYSIS, LDA)....12
2.4 局部二元化圖樣.....................................15
2.5 高斯混合模型.......................................20
2.6 支持向量機(SUPPORT VECTOR MACHINES,SVM)...........24
2.6.1 線性可分離......................................27
2.6.2 線性不可分離....................................29
2.6.3 非線性可分離....................................30
第三章 一個基於局部紋理特徵空間分佈與支持像量機之
人臉辨識系統....................................36
3.1 人臉辨識系統架構...................................36
3.2 人臉偵測與人臉影像正規化.......................38
3.2.1 人臉偵測........................................38
3.2.2 幾何正規化......................................42
3.3 紋理特徵擷取.......................................43
3.3 以高斯混合模型擷取紋理特徵空間分布資訊.............50
3.4 特徵分類辨識方法...................................54
第四章 實驗結果與分析...................................58
4.1 實驗環境...........................................58
4.2 實驗結果...........................................59
第五章 結論.............................................63
[1] M. A. Turk and A. P. Pentland. “Face Recognition Using Eigenfaces”. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pages 586 – 591, June 1991.
[2] P.N. Bellhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs.Fisherfaces: Recognition Using Class Specific Linear Projection”. IEEETransactions on Pattern Analysis ans Machine Intelligence, Vol.19, no.7, pp711-720, July 1997
[3] W. S. Yambor, B. A. Draper, and J. R. Beveridge, “Analyzing PCA-based Face Recognition Algorithm: Eigenvector Selection and Distance Measures”,July 2000
[4] J. Lu, K.N. Plataniotis, A.N. Venetsanopoulos, “Face Recognition Using LDA-Based Algorithms”, IEEE Trans. on Neural Networks, Vol. 14, No. 1, pp. 195-200, January 2003
[5] L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu, “A new LDA-based facerecognition system which can solve the small sample size problem”,Pattern Recognition, Vol.33, no.10, pp.1713-1726, 2000.
[6] H. Yu and J. Yang, “A direct LDA algorithm for high-dimensional data with application to face recognition”, Pattern Recognition, vol. 34, pp.2067-2070, 2001.
[7] G. Guo, S.Z. Li, K. Chan, “ Face Recognition by Support Vector Machines”, Proc. of the IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, pp. 196-201, 26-30 March 2000
[8] A.M. Martinez, A.C. Kak, “PCA versus LDA”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 23, No. 2, pp. 228-233, 2001
[9] A. J. Colmenarez and T. S. Huang, “Face detection with information based maximum discrimination,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 782-787, 1997.
[10] Viola, P., Jones, M.: “Rapid object detection using a boosted cascade of simple features”. In: Proc. Conf. Computer Vision and Pattern Recognition(CVPR). Volume 1.,Kauai, HI, USA (2001) 511–518
[11] L.-F. Chen, H.-Y.M. Liao, J.-C. Lin, C.-C. Han, “Why Recognition in a Statistics-based Face Recognition System Should be based on the Pure Face Portion: a Probabilistic Decision-based Proof”, Pattern Recognition, Vol.34, No.5, 2001, pp. 1393-1403
[12] Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol.55, pp. 119-139, 1997.
[13] R.L. Hsu, M. Abdel-Mottaleb, and AK. Jain, "Face Detection in Color Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 696-706, 2002.
[14] C. Garcia and G. Tziritas, “Face detection using quantized skin color regions merging and wavelet packet analysis,” IEEE Transactions on Multimedia, vol. MM-1, no. 3, pp. 264-277, Sept. 1999.
[15] K.C. Lee, J. Ho, M.H. Yang and D. Kriegman, “Video-Based Face Recognition Using Probabilistic Appearance Manifolds”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '03) - Volume 1, 2003, pp. 313
[16] H. A. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 23-38, Jan. 1998.
[17] H. A. Rowley, S. Baluja, and T. Kanade, “Rotation Invariant Neural Network-Based Face Detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 38-44, 1998.
[18] E. Lizama, D. Waldoestl, and B. Nickolay, “An Eigenfaces-Based Automatic Face Recognition System”, IEEE International Conference on Computational Cybernetics and Simulation, Vol. 1, pp. 174-177, 1997.
[19] K.K. Sung and T. Poggio, “Example-Based Learning for View-Based Human Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39-51, Jan. 1998.
[20] H. Wu, Q. Chen, and M. Yachida, “Face Detection From Color Images Using a Fuzzy Pattern Matching Method,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 6, pp. 557-563, June 1999.
[21] Christopher, and J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery,Vol.2 , Issue 2, pp.121 - 167, 1998
[22] M.H. Yang and N. Ahuja, “Detecting Human Faces in Color Images,” in Proceedings of the IEEE International Conference on Image Processing, pp. 127-139, Oct. 1998.
[23] D. Maio and D. Maltoni, “Real-time Face Location on Gray-scale Static Images,” Pattern Recognition, vol. 33, no. 9, pp. 1525-1539, Sept. 2000.
[24] K.C. Yow and R. Cipolla, “Feature-based Human Face Detection,” Image and Vision Computing, vol. 15, no. 9, pp. 713-735, Sept. 1997.
[25] Gonzalez, R. C. and R. E. Woods(2002) Digital Image Processing, 2nd Ed., Prentice Hall, New Jersey, NJ.
[26] Xiao-Guang Lv, Jie Zhou, and Chang-Shui Zhang , “A novel algorithm for rotated human face detection”, IEEE Conference on Computer Vision and Pattern Recognition, Vol.1, pp.760-765, 2000.
[27] C. Wong, D.Kortenkam, and M. Speich, “A mobile robot that recognizes people”, IEEE Conference on Tools with Artificial Intelligence, 1995.
[28] T. Ojala, M. Pietik¨ainen, and D. Harwood. “A comparative study of texture measures with classification based on feature distributions. Pattern Recognition”, 29:51–59, 1996.
[29] T. Ojala, M. Pietik¨ainen, and T. M¨aenp¨a¨a. “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987, Jul 2002.
[30] M. Lades, J.C. Vorbrüggen, J. Buhmann, J. Lange, C. van der Malsburg, R.P. Würtz, and W. Konen. “Distortion invariant object recognition in the dynamic link architecture”. IEEE Transactions on Computers, 42(3):300-311, 1993.
[31] J. G. Daugman, “Complete discrete 2D Gabor transform by neural networks for image analysis and compression”, IEEE Trans. on Acoustic Speech and Signal Proc., vol. 36, No. 7, pp. 1169-1179, July 1988.
[32] A. T. Gualberto, S. P. Gabriel, N. M. Mariko, and P. M. Hector, "Face Recognition Algorithm Using the Discrete Gabor Transform" IEEE International Conference on Electronics, Communications and Computers, 2007
[33] H.K. Ekenel, R. Stiefelhagen, "Local appearance-based face recognition using discrete cosine transform", EUSIPCO, Antalya, Turkey, 2005.
[34] H.K. Ekenel, R. Stiefelhagen, "Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization", CVPR Biometrics Workshop, NYC, USA, 2006.
[35] Jie Zou, Qiang Ji, Senior and George Nagy “A Comparative Study of Local Matching Approach for Face Recognition”, IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007
[36] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Z. Li, “Learning Multi-scale Block Local Binary Patterns for Face Recognition”, ICB 2007, LNCS 4642, pp. 828-837, 2007.
[37] S. Liao and C. S. Chung, “Texture Classification by Using Advanced Local Binary Patterns and Spatial Distribution of Dominant Patterns”, IEEE ICASSP 2007
[38] D. Reynolds, T. Quatieri and R. Dunn, Speaker verification using adapted Gaussian mixture models. Digital Signal Process. 10 (2000), pp. 19–41.
[39] J. Ilonen, J. k. Kamarainen, P. Paalanen, M. Hamouz, Josef Kittler, Member,IEEE,and H. Kalviainen,Member,IEEE, "Image Feature Localization by Multiple Hypothesis Testing of Gabor Feature", IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 3, MARCH 2008
[40] “The orl database offaces.” [Online]. Available: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
[41] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Boosting linear discriminant analysis for face recognition,” in Proc. IEEE Int. Conf. Image Process., Barcelona, Spain, Sep. 14–17, 2003, vol. 1, pp. 657–660.
[42] J. Choi, S. Kim, and P. Rhee, “Facial components segmentation for extraction facial feature”, Second International Conference on Audio- and Video-based Biometric Person Authentication, 1999.
[43] B.K. Low, ”Computer Extraction of Human Faces ”, Department of Electrical Engineering, De Montfort University, 1998.
[44] F. Smeraldi, O. Carmona, and J. Bigun, “Saccadic search with Garbor features applied to eye detection and real-time head tracking”, Image Vision Compit., Vol.18, pp.323-329, 2000.
[45] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance Models”, IEEE Trans. on PAMI, Vol. 23, No. 6, pp. 681-685, June, 2001.
[46] F. Smeraldi, O. Carmona, and J. Bigun, “Saccadic search with Garbor features applied to eye detection and real-time head tracking”, Image Vision Compit., Vol.18, pp.323-329, 2000.
[47] http://www.sourceforge.net/projects/opencvlibrary
[48] Ekenel, H.K.; Fischer, M.; Tekeli, E.; Stiefelhagen, R.; Ercil, A, “Local binary pattern domain local appearance face recognition”, Signal Processing, Communication and Applications Conference, 2008. SIU 2008. IEEE 16th 20-22 April 2008
[49] Hsu C. W., and C. J. Lin, A Comparison of Methods for Multi-class Support Vector Machines, IEEE Transactions on Neural Networks, pp.415-425, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊