跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃彥翔
研究生(外文):Yan-Shiang Huang
論文名稱:新式真空滲透法備製高品質PZT壓電厚膜與特性分析
論文名稱(外文):Preparation of High-Quality PZT Thick-Films by New Vacuum Infiltration Method and Its Characterization.
指導教授:李永春李永春引用關係
指導教授(外文):Yung-Chun Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:109
中文關鍵詞:真空滲透法溶膠凝膠法鋯鈦酸鉛快速退火
外文關鍵詞:vacuum infiltration methodrapid thermal annealingsol-gel methodPZT
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
壓電陶瓷因具有將能量形式互換的壓電性 (Piezoelectricity),應用的領域相當廣泛。壓電陶瓷厚膜材料兼顧了塊材與薄膜的優點,因此在許多工程應用上扮演非常重要的角色。

本論文研究目的在於針對1~20 μm膜厚的PZT壓電陶瓷膜進行材料的開發,使其具備高品質且穩定的性能,而能在未來應用於製作先進之超音波探頭。首先先就PZT壓電薄膜進行特性的最佳化,以PZT前驅溶液的調配為出發點,逐步探討環境變因、含鉛量、快速退火溫度參數與燒結條件等等製程參數,並探討透過快速退火次數的控制優化薄膜鐵電性能,同時以薄膜特性的確立為基礎製作PZT粉末。後續透過粉末與PZT前驅溶液混合製作PZT壓電陶瓷厚膜,最後引入真空滲透法(Vacuum infiltration method)的概念優化厚膜品質,進而做傳統厚膜製程與真空滲透技術的特性比較。

本研究成功透過快速退火次數的控制製備出約1μm厚的高品質的PZT壓電薄膜(殘留極化值Pr=48.67 μC/cm2,矯頑電場Ec=47.96 kV/cm),同時以真空滲透法讓厚達5 μm的PZT壓電陶瓷厚膜特性大量提升(殘留極化值Pr=37.66 μC/cm2,矯頑電場Ec=87.17 kV/cm)。
Piezo-ceramics have widely applications in many fields due to its piezoelectricity. In many applications of ultrasound engineering, medical acoustic transducers, sensors and actuators, thick piezo-ceramic films play an important role in achieving required engineering performance. This thesis focuses on the development of high-quality PZT thick film by sol-gel method with a thickness around 1 to 20 μm, which can be applied to acoustic transducers in the future.


First of all, this work investigates several important factors such as the environmental conditions, the content of lead, the temperature of rapid thermal annealing (RTA) and the sintering temperature, in preparing PZT precursor for the optimization of PZT thin film. The piezoelectricity of fabricated PZT thin films is optimized by controlling the RTA process times. Secondly, pure PZT powder is dried from the optimized PZT precursor and the PZT slurry is obtained by mixing the pure powder and the optimized precursor. The PZT thick film is then fabricated by the PZT slurry. Finally, the vacuum infiltration method is applied for the optimization of PZT thick films’ qualities.


We have successfully fabricated high-quality PZT thin films and the thickness is around 1 μm by controlling the RTA process times (the remanent polarization is 48.67 μC/cm2, and coercive field is 47.96 kV/cm). The high-quality thick film around 5 μm in thickness is spin-coated five times with PZT slurry and vacuum infiltration method. The material quality of the fabricated PZT thick films is highly improved when compared with traditional PZT thick film (remanent polarization is 37.66 μC/cm2, and coercive field is 87.17 kV/cm).
摘要.................................................................................................................I
Abstract ........................................................................................................ III
致謝...............................................................................................................V
目錄..............................................................................................................VI
表目錄....................................................................................................... VIII
符號............................................................................................................XVI
第一章 緒論..................................................................................................1
1.1 前言......................................................................................................1
1.2 文獻回顧..............................................................................................5
1.3 研究動機與目的..................................................................................7
第二章 理論基礎.........................................................................................9
2.1 鐵電性材料..........................................................................................9
2.2 鋯鈦酸鉛(PZT)特性....................................................................17
2.3 壓電陶瓷膜化學法製備技術...........................................................22
2.3.1 氣相鍍膜法(Chemical Vapor Deposition,CVD) ...........22
2.3.2 液相鍍膜法(Wet Chemical Method) ................................23
2.4 溶膠凝膠法(Sol-Gel Method)合成原理.....................................25
第三章 實驗方法.......................................................................................32
3.1 基材製備...........................................................................................32
3.2 PZT溶膠凝膠前驅溶液調配.............................................................33
3.3 PZT粉末的製備.................................................................................37
3.4 PZT壓電陶瓷膜的披覆與熱處理.....................................................39
3.5 分析儀器............................................................................................41
第四章 壓電薄膜製備與特性分析...........................................................44
4.1 環境與膜厚與壓電特性的關係.......................................................44
4.2 過量鉛多寡對薄膜特性之影響........................................................49
4.2.1 過量鉛含量之確立.................................................................49
4.2.2 快速退火溫度與壓電材料特性的關係.................................52
4.3 以燒結方式看壓電特性變化...........................................................55
4.4 熱處理參數調變對壓電特性的影響...............................................59
4.5 控制快速退火次數優化壓電薄膜特性.......................................63
第五章 壓電厚膜製備與特性分析...........................................................70
5.1 PZT粉末結晶相的確立.....................................................................70
5.2 以PZT泥漿(Slurry)製備PZT壓電陶瓷厚膜...............................73
5.3 以真空滲透法改良PZT壓電陶瓷厚膜............................................82
5.4 比較傳統厚膜製程與真空滲透法之特性.......................................90
第六章 結論................................................................................................97
第七章 未來展望.......................................................................................99
參考文獻....................................................................................................101
附錄............................................................................................................109
[1]. G. W. Pierce, Proc. Am. Acad. Sci., 63, 1 (1928).

[2]. W. P. Mason, “Piezoelectricity, Its History and Applications”, J. Acoust. Soc. Am.70(6), pp. 1561-1566, 1981.

[3]. Takaaki Tsurumi, Song-Min Num, Young-Bae Kil and Wada, “High Frequency Measurements of P-E Hysteresis Curves of PZT Thin Films”, Ferroelectrics 259:1, pp. 43-48, 2001.

[4]. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, S. B.Warner, “The science and design of engineering materials”, Richard D. Irwin. Inc., Chicago U.S.A., pp. 497-503, 1995.

[5]. Y.B. Jeon, R. Sood, J.-h. Jeong, S.G. Kim, “MEMS power generator with transverse mode thin film PZT ”, Sensors and Actuators 122, pp. 16-22, 2005.

[6]. Tatsuya Omori, Ken-ya Hashimoto and Masatsune Yamaguchi, “PZT Thin Films for SAW and BAW Devices”, International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, Chiba University, Japan, 5th ~ 7th March 2001.

[7]. Yang Jing, Jianbin Luo, Xiaoxing Yi, Xin Gu, “Design and Evaluation of PZT Thin-Film Micro-actuator for Hard Disk Drives”, Sensors and Actuators A 116, pp. 329-335, 2004.

[8]. Q.Q. Zhang, F.T. Djuth, Q.F. Zhou, C.H. Hu, J.H. Cha, K.K. Shung, “High Frequency Broadband PZT Thick Film Ultrasonic Transducers for Medical Imaging Applications”, Ultrasonics 44, pp. e711–e715, 2006.

[9]. H Sato, T. Fukuda,F. Arai,H. Iwata,K. Otoigawa, “Analysis of Parallel Beam Gyroscope”, International Conference on Robotics & Automation, pp. 1632-1637.

[10]. Xiao-Hui Xu, Yan Feng, Bao-Qing Li, Jia-Ru Chu, “Integration of Displacement Sensor into Bulk PZT Thick Film Actuator for MEMS Deformable Mirror”, Sensors and Actuators A 147,pp. 242–247, 2008.

[11]. N. Izyumskaya, V. Avrutin, X. Gu, B. Xiao, S. Chevtchenko, J.G. Yoon, and H. Morkoc, “Structural and Electrical Properties of Pb(Zr, Ti)O3 Films Grown by Molecular Beam Epitaxy”, Applied Physics Letters 91, pp. 182906, 2007.

[12]. P. S. Anderson, S. Guerin, B. E. Hayden, M. A. Khan, A. J. Bell, Y. Han, M. Pasha, K. R. Whittle, and I. M. Reaney, “Synthesis of The Ferroelectric Solid Solution, Pb(Zr1−xTix)O3 on A Single Substrate Using A Modified Molecular Beam Epitaxy Technique”, Applied Physics Letters 90, pp. 202907, 2007.

[13]. H. Kurogi, Y. Yamagata, K. Ebihara, and N. Inoue, “Preparation of PZT Thin Films on YBCO Electrodes by KrF Excimer Laser Ablation Technique”, Surface and Coatings Technology 100-101, pp. 424-427, 1998.

[14]. T. Garcia, E. de Posada, E. Jiménez, F. Calderón, P. Bartolo-Pérez, and J. L. Peña, “Study of PZT Thin Films Grown by Laser Ablation”, Proceedings of SPIE – The International Society for Optical Engineering 3572, pp. 74-77, 1999.

[15]. P. Verardi, M. Dinescu, and F. Craciun, “Pulsed Laser Deposition and Characterization of PZT Thin Films”, Applied Surface Science 154-155, pp. 514-518, 2000.

[16]. T. J. Zhu, L. Lu, M. O. Lai, and A. K. Soh, “Thickness Dependence of Electrical Properties in (0 0 1) Oriented Leas Zirconate Titanate Films by Laser Ablation”, Material Science and Engineering B 138, pp. 51-54, 2007.

[17]. Y. M. Kim, W. J. Lee, and H. H. Kim, “Deposition of PZT Films by MOCVD at Low Temperature and Their Change in Properties with Annealing Temperature and Zr/Ti Ratio”, Thin Solid Films 279, pp. 140-144, 1996.

[18]. C. Schmidt and E. P. Burte, “MOCVD of Ferroelectric Thin Films”, Microelectronics Reliability 39, pp. 257-260, 1999.

[19]. T. Masuda, M. Kajinuma, T. Yamada, H. Uchida, M. Uematsu, K. Suu, and M. Ishikawa, “Uniformity of PZT Thin Films Prepared by MOCVD on 8"φ Substrate”, Integrated Ferroelectrics 46, pp. 65-77, 2002.

[20]. M. Miyake, K. Lee, S. Kawasaki, Y. Ueda, S. Okamura, and T. Shiosaki, “Fabrication of Ferroelectric Pb(Zr,Ti)O3 Thin Films by Liquid Delivery Metalorganic Chemical Vapor Deposition”, Japanese Journal of Applied Physics 41, pp. 241-244, 2002.

[21]. X. S. Li, T. Tanaka, and Y. Suzuki, “Preferred Orientation and Ferroelectric Properties of Lead Zirconate Titanate Thin Films”, Thin Solid Films 375, pp. 91-94, 2000.

[22]. X. S. Li, K. Yamashita, T. Tanaka, Y. Suzuki, and M. Okuyama, “Structural and Electrical Properties of Highly Oriented Pb(Zr,Ti)O3 Thin Films Deposited by Facing Target Sputtering”, Sensors and Actuators 82, pp. 265-269, 2000.

[23]. R. Bouregba, G. Poullain, B. Vilquin, and H. Murray, “Orientation Control of Textured PZT Thin Films Sputtered on Silicon Substrate with TiOx Seeding”, Materials Research Bulletin 35, pp. 1381-1390, 2000.

[24]. H. Jacobsen, H. J. Quenzer, B. Wagner, K. Ortner, and Th. Jung, “Thick PZT Layers Deposited by Gas Flow Sputtering”, Sensors and Actuators A 135, pp. 23-27, 2007.

[25]. R. A. Lipeles, D. J. Coleman, and M. S. Leung, “Metallooragnic Solution Deposition of Ferroelectric PZT Films”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 38, pp. 684-689, 1991.

[26]. C. H. Lin, W. D. Hsu, and I. N. Lin, “Ferroelectric Properties of Pb(Zr0.52Ti0.48)O3 Thin Films Prepared by Metal-Organic Decomposition Process”, Applied Surface Science 142, pp. 418-421, 1999.

[27]. C. L. Dai, F. Y. Xiao, C. Y. Lee, Y. C. Cheng, P. Z. Chang, and S. H. Chang, “Thermal Effects in PZT: Diffusion of Titanium and Recrystallization of Platinum”, Materials Science and Engineering A 384, pp. 57-63, 2004.

[28]. K. D. Budd, S. K. Dey, and D. A. Payne, “Sol-Gel Processing of PbTiO3, PZT, and PLZT Thin Film”, British Ceramic Proceedings 36, 107-21 (1985).

[29]. G. Yi and M. Sayer, “Sol-gel Processing of Complex Oxide Films”, Ceramic Bulletin 70, pp. 1173-1179, 1991.

[30]. J. Mackenzie and Y. Xu, “Ferroelectric Materials by the Sol-gel Method”, Journal of Sol-gel Science and Technology 8, pp. 673-679, 1997.

[31]. O. Lev, Z. Wu, S. Bharathi, V. Glezer, A. Modestov, J. Gun, L. Rabinovich, and S. Sampath, “Sol-Gel Materials in Electrochemistry”, Chem. Mater. 9 , pp. 2354-2375, 1997.

[32]. K. D. Budd, S. K. Dey, and D. A. Payne, “Sol-Gel Processing of PbTiO3, PZT, and PLZT Thin Film”, British Ceramic Proceedings 36, 107-21 (1985).

[33]. C. D. E. Lakeman, J. F. Campion, and D. A. Payne, “Factors Affecting the Sol-Gel Processing of PZT Thin Layer”, pp.413-39 in Ceramic Transaction, Vol. 25, Ferroelectric Film. Edited by A. S. Bhalla and K. M. Nair , American Ceramic Society, Westerville , OH, 1992.

[34]. C. D. E. Lakeman, and D. A. Payne, ” Processing Effect in the Sol-Gel Preparation of PZT Dried Gels, Powders, and Ferroelectric Thin Layer”, J. Am. Ceram. Soc. , 75 [11] 3091-96(1992).


[35]. Toshihiko Tani and David A. Payne, “Lead Oxide Coatings on Sol-Gel-Derived Lead Lanthanum Zirconium Titanate Thin Layers for Enhanced Crystallization into the Perovskite Structure”, J. Am. Ceram. Soc., 77[5]1242-48 (1994).

[36]. Y. L. TU, and S. J. MILNE, “A Study of The Effects of Process Variables on The Properties of PZT Films Produced by A Single-Layer Sol-Gel Technique”, Journal of Materials Science 30, pp. 2507 2516,1995.

[37]. F. Xu and S. Trolier-Mckinstry, “Properties of Sol-Gel-Derived Lead Zirconate Titanate (PZT) Thin Films on Platinum-Coated Silicon Substrates”, IEEE International Symposium on Applications of Ferroelectrics 1, pp. 511-514,1996.

[38]. Gunaghua Yi and Michael Sayer, ”Sol Gel Processing of Thick PZT Films” In Proceeding of 8th IEEE International symposium on Application of Ferroelectrics, pp. 289,1992.

[39]. D. A. Barrow, T. E. Petroff, R. P. Tandon, and M. Sayer, “Characterization of Thick Lead Zirconate Titanate Films Fabricated Using a New Sol Gel Based Process”, Journal of Applied Physics 81, pp. 876 (1997).

[40]. M. Lukaces, M. Sayer, and S. Foster, “Single Element High Frequency (<50 MHz) PZT Sol Gel Composite Ultrasound Transducers”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 47, pp. 148-159, 2000.

[41] Q. F. Zhou, H. L. W. Chan, and C. L. Choy, “PZT Ceramic/Ceramic 0-3 Composite Thick Films for Ultrasonic Transducer Applications”, Thin Solid Films 375, pp. 95-99, 2000.

[42]. Q. F. Zhou, K. K. Shung, and Y. Huang, “Fabrication of Sol-Gel Modified Piezoelectric Thick Films for High Frequency Ultrasonic Applications”, 2004 IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference, pp. 1958-1961, 2004.

[43]. Q. F. Zhou, K. K. Shung and Y. Huang, “Improvement Electrical Properties of Sol-gel Derived Lead Zirconate Titanate Thick Films for Ultrasonic Transducer Application”, Journal of Material Science 42, pp. 4480-4484, 2007.

[44]. T. Ohno, M. Kunieda, H. Suzuki, and T. Hayashi, “Low-Temperature Processing of Pb(Zr0.53,Ti0.43)O3 Thin Films by Sol-Gel Casting”, Japanese of Journal Applied Physics 39, pp. 5429-5433, 2000.

[45]. Q. F. Zhou, K. K. Shung, Q. Zhang, and F. T. Djuth, “High Frequency Piezoelectric Micromachined Ultrasonic Transducers for Imaging Applications”, Proceedings of SPIE 6223, 62230H, 2006.

[46]. G. Lippmann, An. Chim. Phys. Ser., 5, 24, 145 (1881).

[47]. Finlay D. Morrison, Derek C. Sinclair, and Anthony R. “WestElectrical and structural characteristics of lanthanum-doped barium titanate ceramics”, JOURNAL OF APPLIED PHYSICS 86, pp. 6355-6366, 1999.

[48]. L. E. Cross, “Encyclopedia of Chemical Technology ,” 10, edited by
Kirk Othmer, 3rd Edition, John Wiley and Sons Inc., (1986)

[49]. Gene H. Haertling, “Ferroelectric Ceramics: History and Technology”, J. Am. Ceram. Soc., 82 [4] 797–818 (1999).

[50]. Dragan Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics.”, Rep. Prog. Phys. 61, pp. 1267–1324 (1998).

[51]. Jaffe B, Cook W R and Jaffe H 1971 Piezoelectric Ceramics (New York: Academic)

[52]. Takashi Yamamoto, and Kiyoshi Okazaki, “Microstructure and Dielectric Properties at the Morphotropic Phase Boundary of PbTiO3-PbZrO3 System”, Ferroelectrics, 81, 331-334 (1988).

[53]. S. Stotz, ”Shift of the Morphotropic Phase Boundary in the PZT System
under the Influence of Electric Fields and Uniaxial Stress”, Ferroelectrics,76, 132-132 (1987).

[54]. P. G. Lucuta, and F. Vasiliu, “SEM, SAED and TEM Investigation of
Domain Structure in PZT Ceramics at Morphotropic Phase Boundary”,App. Phys., A37, 237-242 (1985).

[55].http://www.americanpiezo.com/piezo_theory/index.html,APC International, Ltd.

[56]. T. Cui, D. Markus, S. Zurn, D. L., “PollaPiezoelectric thin films formed by MOD on cantilever beams for micro sensors and actuators”, Microsystem Technologies 10,pp. 137–141(2004).

[57]. J.-M. Liu,a_ Y. Wang, C. Zhu, G. L. Yuan, and S. T. Zhang, “Temperature-dependent fatigue behaviors of ferroelectric Pb(Zr0.52Ti0.48)O3 and Pb0.75La0.25TiO3 thin films”, APPLIED PHYSICS LETTERS 87, 042904 , 2005.

[58]. L.J. Gauckler, T. Graule, F. Baader, Ceramic forming using enzyme catalysed reactions Materials Chemistry and Physics 61, (1999) 78 - 102.

[59]. http://www.chemat.com/, CHEMAT Technology, Inc.

[60]. H. Schmidt, ”Chemical Processing of Advanced Materials”, Edited by L.L. Hench, and J. K. West, John Wiley & Sons, New York, p.727 (1992).

[61]. A. D. Polli, F. F. Lange, and C. G. Levi, “Metastability of the Fluorite,Pyrochlore, and Perovskite Structures in the PbO–ZrO2–TiO2 System”,J. Am. Ceram. Soc., 83 [4], 873-881 (2000).

[62]. Fei Xu, Susan Trolier-McKinstry, “Properties of Sol-Gel-Derived Lead Zirconate Titanate (PZT) Thin Filmson Platinum-coated Silicon Substrates”, IEEE, pp. 511-514,1996.

[63]. Zhitang Song, Chenglu Lin, “Microstructure and electrical properties of PbZr0.48Ti0.52O3 ferroelectric films on different Pt bottom electrodes.”, Applied Surface Science, 158, 21-27,2000.

[64]. http://www.icdd.com/, The International Centre for Diffraction Data.

[65]. C. Sangsubun, A. Watcharapasorn, S. Jiansirisomboon, “Densification and microstructure of lead zirconate titanate ceramics fabricated from a triol sol–gel powder”, Current Applied Physics, 8, 61–65,2008.

[66]. Piyachon Ketsuwan, Yongyut Laosiritaworn, Supon Ananta and Rattikorn Yimnirun, “Electrical properties of Nb-doped Pb(Zr0.52Ti0.48)O3 ceramics”, International Journal of Modern Physics B 23, 1, 105–111,2009.

[67]. A. M. Bratkovsky, A. P. Levanyuk, “Ferroelectric Phase Transitions in Films with Depletion Charge”, PHYSICAL REVIEW B 61, 22, 15042-15049,2000.

[68]. Premi Chandra and Peter B. Littlewood, “A Landau Primer for Ferroelectrics”, Physics of Ferroelectrics: A Modern Perspective, Topics Appl. Physics 105, 69–116, 2007.

[69]. Han-Chang Pan, Chen-Chia Chou, and Hsien-Lung Tsai, “ Low-temperature processing of sol-gel derived La0.5Sr0.5MnO3 bufferelectrode and PbZr0.52Ti0.48O3 films using CO2 laser annealing.”, APPLIED PHYSICS LETTERS 83, 15,pp. 3156-3158, 2003.

[70]. Shen-Da Tsai, M B Suresh and Chen-Chia Cho, “Improvement in ferroelectric properties of PZT thick films prepared by a modified sol–gel technique using low temperature laser annealing”, Phys. Scr. T129, 175-179 , 2007.

[71]. Chun-Hsien Chen, Jay Shieh, ”Ferroelectric and Fatigue Characterizations of PZT Thin and Thick Films Prepared by Sol-Gel Method”,九十七年中國材料科學學會年會, 國立台北科技大學, 2008。

[72].Moulson, B. J., Cook, W. R., and Jaffe, H., “Piezoelectric Ceramics”, Academic Press, New York, 1971.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊