跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林立鎧
研究生(外文):Li-kai Lin
論文名稱:以三角錐奈米壓痕來增加表面增顯拉曼散射效果之研究
論文名稱(外文):Study of surface-enhanced Raman scattering(SERS) effect by triangular pyramid nano indented array
指導教授:廖峻德廖峻德引用關係
指導教授(外文):Jiunn-Der Liao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:表面增顯拉曼散射奈米壓痕壓痕深度間距電磁化學
外文關鍵詞:chemicalintervalelectro-magneticsurface-enhenced Raman scattering (SERS)indentation depthnano-indentation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
SERS活性基板經常使用金屬奈米顆粒或在金屬表面以電子束微影來製備;然而,奈米顆粒通常不易被分散,導致拉曼散射訊號的再現性低;電子束的製造程序尤其繁瑣,需增加廢液處理的耗費。使用奈米壓痕方法,則可經由控制微小負荷與Z軸移動距離,對特定區域進行重複性的奈微米結構的製作。本研究使用奈米壓痕之三角錐探針,在鍍金基材表面製作奈微米尺度的陣列。藉由控制壓痕深度、調整壓痕間距、均勻表面高低差變化、選擇適當雷射波長及檢測吸附在金屬表面的化學物質成份,可製備具表面增顯拉曼散射(SERS)之活性基板。
實驗中,藉由探針壓入Au面50、70和90 nm三種深度及500和1000 nm兩種壓痕間距,製作六種不同表面形貌微結構。之後將分子探針5,5’-二硫基-雙(2-硝基苯甲酸)(DTNB)及羅丹明(R6G)置於奈微米結構之Au表面,使用顯微拉曼光譜儀進行SERS增顯效應檢測。檢測時,分子探針以物理或化學吸附或以液態懸浮於奈微米結構之Au表面方式進行。經分子探針檢測分析顯示,對相同壓痕深度,但壓痕間距較小的500 nm結構基板有較明顯的訊號增顯,具有「熱區效應」;另一方面,對相同壓痕間距,但壓痕深度較大的90 nm結構有較明顯的訊號增顯,形成具壓痕深度及熱區的複合效應。將訊號增顯與壓痕後的高低差變化進行比較,經分析後顯示,此高低差變化對誘導電磁效應相當敏銳。
除了電磁效應外, DTNB化學吸附於奈微米結構之Au表面可以產生化學效應,對整體訊號增顯有額外的貢獻。因此,對DTNB與R6G的檢測極限有不同,其值分別為10-8和10-6 M。
SERS-active substrate can be frequently made based on metallic nano-particles or electron beam lithography (EBL) on a metal surface. However, the dispersity of metallic nano-particles is usually inefficient, which leads to low reproducibility of Raman signals. The procedures of EBL are complicated, which also increase the costs for waste liquid treatment. Using the nano-indentation method, one may control the infinitesimal load and Z-direction displacement to construct a repeatable nano/micro structure on a specified region. In this study, nano-indented cavities in array on Au were fabricated by the use of Berkovich tip. By modulating the indentation depth, adjusting the interval of the indented marks, managing the surface roughness, choosing the laser with proper wavelength, and testing the chemicals of the adsorbed species, SERS-active substrates were preliminarily produced.
In the experiments, six types of samples were prepared by the variation of the indentation depths, 50, 70, and 90 nm and the intervals between two indentations, 500 and 1000 nm. Subsequently, two molecular probes, Raman-active DTNB and R6G, were employed on the nano/micro-structured Au samples, followed by the evaluation of SERS. The molecular probes were either chemically or physically adsorbed or suspended by a solution on the nano/micro-structured Au sample.
In summary, for the comparable indentation depth, the closer interval between two indentations (i.e., 500 nm) results in a relatively obvious enhancement of Raman signal, related to so-called “ hot spot effect”. On the other hand, for the comparable interval, the higher indentation depth (i.e., 90 nm) results in a relatively obvious enhancement of Raman signal, related to a combined indentation depth and hot spot effect. When analyzing the signal intensity with respect to high-low surface roughness, the result also exhibits that high-low surface roughness is very responsive to the induction of electro-magnetic (EM) effect.
In addition to EM effect, the chemically adsorbed DTNB on the nano/micro-structured Au sample was competent to generate chemical (CHEM) effect, which is an additional contribution to overall SERS. Therefore, the detection limits for DTNB and R6G were different, e.g., the values are 10-8 and 10-6 M, respectively.
摘要 I
Abstract II
誌謝 IV
表目錄 VIII
圖目錄 IX
第一章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 奈米週期性結構對SERS之影響 3
1.3.2 表面粗糙度對SERS之影響 6
1.3.3 表面高低起伏及熱區(hot-spot)對SERS之影響 8
1.3.4 分子探針進行SERS檢測 10
1.3.5 奈米壓痕對金屬薄膜產生的效應 11
1.4 研究目的及架構 12
第二章 理論基礎 14
2.1 拉曼光譜 14
2.2 表面增顯拉曼光譜 17
2.2.1 電磁增顯機制 18
2.2.2 化學增顯機制 23
2.2.3 表面增顯拉曼光譜的條件 24
第三章 實驗材料與方法 26
3.1 實驗材料與準備 26
3.1.1 鍍金基材的製程 26
3.1.2 SERS-active substrate的製作 26
3.1.3 分子探針溶液 27
3.2 製備儀器 28
3.3 分析儀器 30
3.3.1 拉曼光譜儀 30
3.3.2 原子力顯微鏡 31
3.3.3 掃描式電子顯微鏡 32
3.4 SERS-active substrate檢測分子探針之方法 32
3.5 拉曼光譜的量測及訊號處理方法 34
3.5.1 聚焦位置的調整 34
3.5.2 訊號處理 35
3.6 實驗流程 36
第四章 實驗結果與討論 37
4.1 表面形貌的探討 37
4.1.1 SEM 鑑定SERS-avtive substrate表面形貌 37
4.1.2 AFM 鑑定SERS-avtive substrate表面形貌 39
4.2 表面增顯拉曼光譜的探討 43
4.2.1 矽晶圓與鍍金薄膜之拉曼光譜圖 43
4.2.2 對SERS-active substrate進行雷射波長評估 44
4.2.3 以SERS-active substrate進行mapping及有效區域的評估 47
4.2.4 以分子探針對SERS-active substrate進行感測性的評估 49
4.2.5 微結構檢測分子探針光譜圖 53
4.3 綜合分析 55
4.3.1 SERS-active substrate檢測範圍及定量 55
4.3.2 電磁效應分析 57
4.3.3 分子探針差異性及化學效應的探討 62
4.3.4 綜合討論 64
結論 66
附錄 74
一、 拉曼有效散射截面 74
二、 奈米壓痕試驗機探針的選用對熱區效應的影響 74
三、 壓深對壓痕區域內hot-spot效應分析 75
四、 Hot-spot效應的細節驗證 75
五、 表面積增加的觀點進行分析 76
自述 77
[1]K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, ”Surface-enhanced Raman scattering and biophysics,” Journal of Physics: Condensed Matter,Vol. 14, 597-624, 2002.
[2]M. Moskovits, K. Kneipp and H. Kneipp, ”Surface-Enhanced Raman Scattering: Physics and Applications” Springer , 2-40, 2006.
[3]陳永芳,「是誰最先觀測到拉曼散射」,物理雙月刊,21期5卷,600,1999。
[4]謝雲生,「雷射拉曼光譜簡介」,物理雙月刊,7期1卷,25,1985。
[5]邱國斌,蔡定平,「金屬表面電漿簡介」,物理雙月刊,28期2卷,472,2006。
[6]S. W. Lee, Y. B. Shin, “Electron beam lithography-assisted fabrication of Au nano-dot array as a substrate of a correlated AFM and confocal Raman spectroscopy,” Ultramicroscopy, Vol. 108, 1302-1306, 2008.
[7]K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, “Ultrasensitive Chemical Analysis by Raman Spectroscopy,” Chemical Reviews, Vol. 99, 2957-2975, 1999.
[8]R. W. Wood, “On a remarkable case of uneven distribution of Light in a Diffraction Grating Spectrum,” Proceedings of the Physical Society of London, Vol. 18, 269-275, 1902.
[9]U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (sommerfeld’s waves)” Journal of the Optical Society of America, Vol. 31, 213-222, 1942.
[10]A. Hessel, A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings” Applied Optics, Vol. 4, 1275-1297, 1965.
[11]A. G. Brolo, D. E. Irish and B. D. Smith, “Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions,” Journal of Molecular Structure, Vol. 405, 29-44, 1997.
[12]A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews, Vol. 27, 241-243, 1998.
[13]Y. Chen, Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochimica Acta part A:Molecular and Biomolecular Spectroscopy, Vol. 69, 733-737, 2008.
[14]H. Zhou, L. Jin and W. Xu, “New approach to fabricate nanoporous gold film,” Chinese Chemical Letters, Vol. 18, 365-368, 2007.
[15]Y. Wang, S. Guo, H. Chen and E. Weng, “Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering,” Journal of Colloid and Interface Science , Vol. 318, 82-87, 2008.
[16]D. Philip, K. G. Gopchandran, C. Unni and K. M. Nissamudeen, “Synthesis, characterization and SERS activity of Au-Ag nanorods,” Spectrochimica Acta Part A, Vol. 70, 780-784, 2007.
[17]J. Zhou, J. An, B. Tang, S. Xu, Y. Cao, B. Zhao, W. Xu, J. Chang and J. R. Lombardi, “Growth of Tetrahedral Silver Nanocrystals in Aqueous Solution and Their SERS Enhancement,” Langmuir, Vol. 24, 10407-10413, 2008.
[18]Z. Li, W. M. Tong, W. F. Stickle, D. L. Neiman and R. S. Williams, “Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates,” Langmuir, Vol. 23, 5135-5138, 2007.
[19]R. Z. Tan, A. Agarwal, N. Balasubramanian, D. L. Kwong, Y. Jiang, E. Widjaja and M. Garland, “3D arrays of SERS substrate for ultrasensitive molecular detection,” Sensors and Actuators A, Vol. 139, 36-41, 2007.
[20]E. C. Le Ru, P. G. Etchegoin, J. Grand, N. Fe´lidj, J. Aubard, G.. Le´vi, A. Hohenau and J. R. Krenn, “Surface enhanced Raman spectroscopy on nanolithography-prepared substrates,” Current Applied Physics, Vol. 8, 467-470, 2008.
[21]U. Huebner, R. Boucher, H. Schneidewind, D. Cialla and J. Popp, “Microfabricated SERS-arrays with sharp-edged metallic nanostructures,” Microelectronic Engineering, Vol. 85, 1792-1794, 2008.
[22]L. He, Y. Liu, M. Lin , J. Awika, D. R. Ledoux, H. Li and A. Mustapha, “A new approach to measure melamine, cyanuric acid,and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates,” Sensing and Instrumentation for Food Quality and Safety, Vol. 2, 66-71(6) , 2008.
[23]M. Lin, L. He, J. Awika, L. Yang, D. R. Ledoux, H. Li and A. Mustapha, “Detection of Melamine in gluten, chicken feed,and processed foods using surface enhanced Raman spectroscopy and HPLC,” Journal of Food Science, Vol. 73, T129-T134, 2008.
[24]S. Kruszewski, “Dependence of SERS Signal on surface roughness,” Surface and Interface Analysis, Vol. 21, 830-838, 1994.
[25]M. Baibarac, M. Cochet, M. Lapkowski, L. Mihut , S. Lefrant and I. Baltog, “SERS spectra of polyaniline thin films deposited on rough Ag, Au and Cu. Polymer film thickness and roughness parameter dependence of SERS spectra,” Synthetic Metals, Vol. 96, 63-70, 1998.
[26]A. G. Brolo, D. E. Irish, G. Szymanski and J. Lipkowski, “Relationship between SERS intensity and both surface coverage and morphology for pyrazine adsorbed on a polycrystalline gold electrode,” Langmuir, Vol. 14, 517-527, 1998.
[27]S. Kruszewski, T. Kobiela, “AFM and optical methods in determining of roughness of SERS-active silver,” Proceedings of SPIE, Vol. 4517, 115-119, 2001.
[28]W. C. Liu, “High sensitivity of surface plasmon of weakly-distorted metallic surfaces,” Optics Express, Vol. 13, 9766-9773, 2005
[29]J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Applied Physics Letters, Vol. 92, 131115, 2008.
[30]Z. Lu, Y. Gu, J. Yang, Z. Li, W. Ruan, W. Xu, C. Zhao and B. Zhao “SERS-active Ag substrate from the photo-active decomposition of electrodeposited divalent silver oxide,” Vibrational Spectroscopy, Vol. 47, 99-104, 2008.
[31]M. Mandal, N. R. Jana, S. Kundu, S. K. Ghosh, M. Panigrahi and T. Pal, “Synthesis of Aucore-Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method,” Journal of Nanoparticle, Vol. 6, 53-61, 2004.
[32]R. M. Liu, Y. P. Kang, X. F. Zi, M. J. Feng, M. Cheng and M. Z. Si, “The ultratrace detection of crystal violet using surface enhanced Raman scattering on colloidal Ag nanoparticles prepared by electrolysis,” Chinese Chemical Letters , Vol. 20, 711-715 , 2009.
[33]R. Sanc, M. Volkan, “Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates,” Sensors and Actuators B, Vol. 139, 150-155, 2009.
[34]D. G. Yu, W. C. Lin, C. H. Lin, L. M. Chang and M. C. Yang, “An in situ reduction method for preparing silver/poly(vinyl alcohol)nanocomposite as surface-enhanced Raman scattering(SERS)-active substrates,” Materials Chemistry and Physics, Vol. 101, 93-98, 2007.
[35]X. Lili, F. Yan, “Raman and surface Raman spectroscopy with ultraviolet excitation,” Spectrochimica Acta Part A, Vol. 61, 1991-1995, 2005.
[36]S. Xu, B. Zhao, W. Xu and Y. Fan, “Preparation of Au–Ag coreshell nanoparticles and application of bimetallic sandwich in surface-enhanced Raman scattering (SERS),” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 257-258, 313-317, 2005.
[37]Y. Fleger, Y. Mastai, M. Rosenbluh and D. H. Dressler, “Surface enhanced Raman spectroscopy of aromatic compounds on silver nanoclusters,” Surface Science, Vol. 603, 788-793, 2009.
[38]M. M. Miranda, B. Pergolese and A. Bigotto “SERS monitoring of Pd-catalysed reduction processes of nitroarenes adsorbed on Ag/Pd colloidal nanoparticles,” Chemical Physics Letters, Vol. 423, 35-38, 2006.
[39]T. Wadayama, M. Oishi and A. Hatta, “Surface enhanced Raman scattering of organic sample powders spread over vacuum-evaporated silver thin film,” Applied Surface Science, Vol. 253, 2713-2717, 2006.
[40]G. Grundmeier, M. Stratmann, “Adhesion and de-adhesion mechanisms at polymer/metal interfaces: mechanistic understanding based on in situ studies of buried interfaces,” Annual Review of Materials Research, Vol. 35, 571-615, 2005.
[41]C. C. Lin, Y. M. Yang, Y. F. Chen, T. S. Yang and H. C. Chang, “A new protein A assay based on Raman reporter labeled immunogold nanoparticles,” Biosensors and Bioelectronics, Vol. 24, 178-183, 2008.
[42]P. L. Chazot, P. G. Strange, “Importance of thiol groups in ligand binding to D2 dopamine receptors from brain and anterior pituitary gland,” Biochemical Journal, Vol. 281, 377-380, 1992.
[43]A. R. MacDairmid, M. C. Gallagher and J. T. Banks, “Structure of dithiothreitol monolayers on Au (111),” Journal of Physical Chemistry B, Vol. 107, 9789-9792, 2003.
[44]D. C. Daniel, M. Thompson and N. W. Woodbury, “Fluorescence intensity fluctuations of individual labeled DNA fragments and a DNA binding protein in solution at the Single Molecule Level: A Comparison of Photobleaching, Diffusion, and Binding Dynamics,” Journal of Physical Chemistry B, Vol. 104, 1382-1390, 2000.
[45]T. Vosgrone , A. J. Meixner, “Surface and resonance enhanced micro-Raman spectroscopy of xanthene dyes at the single-molecule level,” Journal of Luminescence, Vol. 107, 13-20, 2004.
[46]W. Plieth, H. Dietz, A. Anders, G. Sandmann, A. Meixner, M. Weber and H. Kneppe, “Electrochemical preparation of silver and gold nanoparticles: Characterization by confocal and surface enhanced Raman microscopy,” Surface Science, Vol. 597, 119-126, 2005.
[47]X. Zhou, Z. Jiang, H. Wang and R. Yu, “Investigation on methods for dealing with pile-up errors in evaluating the mechanical properties of thin metal films at sub-micron scale on hard substrates by nanoindentation technique,” Materials Science and Engineering A, Vol. 488, 318-332, 2008.
[48]李冠卿,「表面強化拉曼散射」,物理雙月刊,5期4卷,185,1983。
[49]J. R. Ferraro, K. Nakamoto, “Introduction Raman spectroscopy,” Academic Press, 1-25, 1994.
[50]吳民耀,劉威志,「表面強化拉曼散射」,物理雙月刊,2期4卷,486-495,2006。
[51]陳彥夫,「修飾有分子探針之金奈米粒子的表面增顯拉曼散射技術進行Protein A免疫分析」,國立成功大學碩士論文,2007.
[52]L. Guo, X. Zhang, Z. Du, Y. Huang and Y. Mo, “The Charge Transferring between Silver Nanoparticles and R6G,” Spectroscopy and Spectral Analysis, Vol. 21, 16-18, 2001.
[53]Z. H. Zhou, L. Liu, F. R. Xiao, G. Y. Wang and Z. Z. Xu, “Probing R6G single molecule by surface enhance resonance raman scattering,” Spectroscopy and Spectral Analysis, Vol. 25, 1986-1990, 2005.
[54]J. D. Lorentzen, S. Guha, j. Men6ndez, P. Giannozzi and S. Baroni, “Raman cross section for the pentagonal-pinch mode in buckminsterfullerene C60,” Chemical Physics Letters, Vol. 207, 129-134, 1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top