跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林含諭
研究生(外文):Han-Yu Lin
論文名稱:新型螢光粉體:釩酸鈣共摻雜鹼土族與稀土離子之合成與光學特性探討
論文名稱(外文):The Syntheses and Optical Investigations of New Phosphors: Calcium Vanadates Codoped with Alkaline Earth and Rare Earth Ions
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:123
中文關鍵詞:多晶矽太陽能電池光譜響應變化有機太陽能電池「螢光粉轉換」白光發光二極體晶格常數能量轉移螢光粉增感劑對稱性固態反應法
外文關鍵詞:Phosphorssite symmetryCuPc-based solar cellsSR''s variationpoly-Si solar cellslattice constantssolid-state reaction methodenergy transferphosphor-converted white LEDsensitizer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首度透過固態反應法合成(Ca, IIA)3(VO4)2: Eu3+ (IIA=Mg, Sr, Ba)紅色螢光粉,並由實驗得知最佳燒結條件為1050 ℃持溫6個小時。為了提升Ca2.82(VO4)2: 0.12Eu3+的發光強度,我們試著將鈣離子以其它二價鹼土族離子取代,並發現當激發波長為465 nm,鎂、鍶、鋇離子於不同濃度下均能提升Ca2.82(VO4)2: 0.12Eu3+的PL強度。根據晶格常數的變化,我們推斷PL強度的增強可能是因為非中心對稱的Eu3+離子之對稱性降低所致;我們也發現鎂、鍶、鋇離子中,鋇離子的取代能夠提升最多的PL強度,並在9.9 mol%達到最佳值。經過計算,(Ca0.901Ba0.099)2.82(VO4)2: 0.12Eu3+的PL積分強度與Ca2.82(VO4)2: 0.12Eu3+比較起來,提升了1.36倍。本研究合成出的(Ca, Ba)3(VO4)2: Eu3+螢光粉與商用之適用藍光激發的硫化物紅色螢光粉比較起來,具備高化學穩定性與無硫污染的優勢。
我們利用Sm3+離子作為增感劑,成功地提升了(Ca0.901Ba0.099)2.82(VO4)2: 0.12Eu3+的發光強度。從Sm3+發射峰的衰減與Eu3+發射峰的增長,以及當Eu3+濃度遞增時,Sm3+離子之4G5/2→6H9/2躍遷的衰減行為分析,我們發現Sm3+→Eu3+的能量轉移。我們透過實驗計算出能量轉移效率、能量轉移機率與臨界濃度,並證實Sm3+→Eu3+屬於偶極—四極的反應機制。由於波長為465 nm的藍光能夠有效地激發 (Ca0.89Ba0.099)2.82(VO4)2: 0.02Sm3+, 0.12Eu3+紅色螢光粉,故此最佳化的螢光粉配合波長為450-470 nm的藍光二極體晶片,具備應用於「螢光粉轉換」白光發光二極體的潛力。此外,因為(Ca0.89Ba0.099)2.82(VO4)2: 0.02Sm3+, 0.12Eu3+紅色螢光粉的PLE與PL光譜與CuPc的吸收光譜具備良好的重疊,所以將此紅色螢光粉作為有機太陽能電池的下轉換層之螢光粉材料,有機會提升太陽能電池的性能。
我們也合成出新的適用紫外光激發的紅外光螢光粉Ca3(VO4)2: Yb3+。當激發波長為310 nm,此螢光粉產生位於983 nm的發射峰,並在Yb3+離子為14 mol%時達到最佳發光強度。從多晶矽太陽能電池的光譜響應圖,我們可以發現Ca3(VO4)2: Yb3+螢光粉具備高達約0.6 A/W的光譜響應變化,故此紅外光螢光粉對於提升多晶矽太陽能電池的光電轉換效率,乃一值得考慮的螢光粉材料。
In this thesis, the (Ca, IIA)3(VO4)2: Eu3+ (IIA=Mg, Sr, Ba) red phosphors were prepared by the solid-state reaction method for the first time, and the preferable sintered condition was obtained at 1050 oC for 6 h. To improve the luminescence intensity of Ca2.82(VO4)2: 0.12Eu3+, an attempt was made to replace Ca2+ by (IIA)2+. It was found either of IIA substitution enhanced the PL intensity of Ca2.82(VO4)2: 0.12Eu3+ at different (IIA)2+ contents under 465 nm excitation. According to the changes of the lattice constants, this enhancement may originate from the lower site symmetry of the Eu3+ ion in the center with noninversion symmetry. It was noted Ba2+ was the best choice of (IIA)2+ ions (IIA=Mg, Sr, Ba) in partial substitution for Ca2+ to enhance the PL intensity. And the optimum value of the Ba2+ content (y) was at 9.9 mol% in (Ca1-yBay)2.82(VO4)2: 0.12Eu3+. The (Ca0.901Ba0.099)2.82(VO4)2: 0.12Eu3+ phosphor showed 136% improved integrated intensity than that of the Ca2.82(VO4)2: 0.12Eu3+ phosphor. Compared to commercial oxysulfide and sulfide red phosphors suitable for blue excitation, our synthesized phosphor (Ca, Ba)3(VO4)2: Eu3+ has the advantages of no chemical instability and sulfur pollution.
The luminescence intensity of (Ca0.901Ba0.099)2.82(VO4)2: 0.12Eu3+ phosphor has been successfully further enhanced by adding the sensitizer, Sm3+ ion. We have discovered the energy transfer from Sm3+ to Eu3+ through the relative decline and growth in emission peaks of Sm3+ and Eu3+, respectively, as well as the variation of the decay behaviors of the Sm3+ 4G5/2→6H9/2 transition with the increasing Eu3+ content. The mechanism of the energy transfer from Sm3+ to Eu3+ was investigated and determined as the dipole-quadrupole interaction. The energy transfer efficiency, probability and the critical concentration in our Sm3+→Eu3+ system were also estimated. The optimized red phosphor (Ca0.89Ba0.099)2.82(VO4)2: 0.02Sm3+, 0.12Eu3+ is well-excited by the 465 nm blue lights, so it gives a potential for this phosphor to be applied on the phosphor-converted white LED with a blue chip (450-470 nm). Besides, the good overlap of the PLE and PL spectrum of (Ca0.89Ba0.099)2.82(VO4)2: 0.02Sm3+, 0.12Eu3+ phosphor and the absorption spectrum of CuPc indicates the potential use of the down-conversion phosphor coating to increase the performances of CuPc-based solar cells.
We also synthesized the new infrared Ca3(VO4)2: Yb3+ phosphors suitable for UV excitation. The infrared emission peak at 983 nm under excitation of 310 nm was observed and the optimum Yb3+ content was 14 mol%. And the sufficiently large SR’s variation (~0.6 A/W) of a poly-Si solar cell for this phosphor indicates this phosphor can be used as a potential candidate to increase the power conversion efficiency of poly-Si solar cells.
Abstract I
中文摘要 III
誌謝 V
Article Contents VII
List of Tables XI
List of Figures XII

Chapter 1 Introduction 1
1.1 Background 1
1.2 The Motivation of This Research 3

Chapter 2 Theory 7
2.1 Principles of Radiative Transitions 7
2.1.1 What is luminescence? 7
2.1.2 Stokes shifts 9
2.1.3 The Franck-Condon principle and line-broadening mechanisms 11
2.2 Non-Radiative Transitions 15
2.2.1 Multiphonon emission 15
2.2.2 Energy transfer 19
2.3 Designations of Term Symbols and Selection Rules 24
2.3.1 Spin-orbit coupling 24
2.3.2 Total angular momentum 26
2.3.3 Term symbols 31
2.3.4 Spin selection rule 32
2.3.5 Laporte selection rule 33
2.4 The Introduction of Fluorescent Materials 35
2.4.1 The classification of fluorescent materials 35
2.4.2 The formation of inorganic fluorescent materials 36
2.4.3 The trivalent rare earth ions 39

Chapter 3 Experimental Procedures 43
3.1 Experimental Procedures 43
3.1.1 (Ca, Ba)3(VO4)2: Eu3+ phosphor 43
3.1.2 Y2O3: Eu3+ and YVO4: Eu3+ phosphor 43
3.1.3 (Ca, Mg)3(VO4)2: Eu3+ and (Ca, Sr)3(VO4)2: Eu3+ phosphor 44
3.1.4 (Ca, Ba)3(VO4)2: Sm3+, Eu3+ phosphor 45
3.1.5 Ca3(VO4)2: Yb3+ phosphor 46
3.2 Characteristics Analyses 46
3.2.1 X-ray patterns analysis 47
3.2.2 Photoluminescence (PL) and photoluminescence excitation (PLE) analyses 49
3.2.3 Decay time (lifetime) analysis 54
3.2.4 CIE chromaticity points 55

Chapter 4 Results and Discussion 60
4.1 Luminescence and Site Symmetry Studies of Red Phosphors (Ca, Ba)3(VO4)2: Eu3+ under Blue Excitation 60
4.1.1 The optimum Eu3+ content in Ca3(VO4)2 Eu3+ phosphors 60
4.1.2 The optimum sintered condition for Ca3(VO4)2: Eu3+ phosphors 62
4.1.3 Luminescence and site symmetry studies of (Ca, Ba)3(VO4)2: Eu3+ phosphors 64
4.1.4 XRD patterns analyses of (Ca, Ba)3(VO4)2: Eu3+ phosphors 70
4.1.5 The luminescence comparisons with well-known red phosphors, Y2O3: Eu3+ and YVO4: Eu3+ 73
4.2 Luminescence Studies of Red Phosphors (Ca, M)3(VO4)2: Eu3+ (M = Mg, Sr) under Blue Excitation 75
4.2.1 Luminescence studies of (Ca, M)3(VO4)2: Eu3+ (M = Mg, Sr) phosphors 75
4.2.2 XRD patterns analyses of (Ca, M)3(VO4)2: Eu3+ (M = Mg, Sr) phosphors 78
4.3 Luminescence and Energy Transfer Studies of Red Phosphors (Ca, Ba)3(VO4)2: Sm3+, Eu3+ under Blue Excitation 81
4.3.1 Why to choose Sm3+ as the sensitizer for Eu3+ 81
4.3.2 Luminescence studies of (Ca, Ba)3(VO4)2: Sm3+, Eu3+ phosphors 84
4.3.3 Calculation and analyses of the energy transfer efficiency/probability from the Sm3+ to Eu3+ ion 89
4.3.4 Analyses of the critical concentration and mechanism for the energy transfer from the Sm3+ to Eu3+ ion 96
4.3.5 Comparison of PLE and PL of the (Ca, Ba)3(VO4)2: Sm3+, Eu3+ phosphor with Abs. of CuPc 101
4.4 Luminescence Studies of Infrared Phosphors Ca3(VO4)2: Yb3+ under UV Excitation 103
4.4.1 Luminescence studies of Ca3(VO4)2: Yb3+ phosphors 103
4.4.2 XRD patterns analyses of Ca3(VO4)2: Yb3+ phosphors 108
4.4.3 The variation of the spectral response of a poly-Si solar cell for the Ca3(VO4)2: Yb3+ phosphor 109

Chapter 5 Conclusions and Future Prospect 111
5.1 Conclusions 111
5.2 Future Prospect 112
References 114
[1] W.J. Park, M.K. Jung and D.H. Yoon, “Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation,” Sensor. Actuat. B: Chem., 126, 324-327 (2007)
[2] B.S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells, 90, 1189-1207 (2006)
[3] A.K. Levine and F.C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett., 5, No. 6, 118–120 (1964)
[4] G. Blasse and B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin Heidelberg, pp. 134,135 (1994)
[5] M. Yu, J. Lin and S.B. Wang, “Effects of x and R3+ on the luminescent properties of Eu3+ in nanocrystalline YVxP1-xO4:Eu3+ and RVO4:Eu3+ thin-film phosphors,” Appl. Phys. A: Mater. Sci. Process., 80, No. 2, 353-360 (2005)
[6] K.S. Sohn, I.W. Zeon, H. Chang, S.K. Lee and H. D. Park, “Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4 (R = As, Nb, P, V) system,” Chem. Mater., 14, 2140-2148 (2002)
[7] C.C. Wu, K.B. Chen, C.S. Lee, T.M. Chen and B.M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater., 19, 3278-3285 (2007)
[8] H. Lai, B. Chen, W. Xu, Y. Xie, X. Wang and W. Di, “Fine particles (Y,Gd)PxV1-xO4:Eu3+ phosphor for PDP prepared by coprecipitation reaction,” Mater. Lett., 60, 1341-1343 (2006)
[9] C.H. Kim, I.E. Kwon, C.H. Park, Y.J. Hwang, H.S. Bae, B.Y. Yu, C.H. Pyun and G.Y. Hong, “Phosphors for plasma display panels,” J. Alloys Compd., 311, 33-39 (2000)
[10] C. K. Jörgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys., 8, 281–290 (1964)
[11] F.C. Palilla, A.K. Levine and M. Rinkevics, “Rare earth activated phosphors based on yttrium orthovanadate and related compounds,” J. Electrochem. Soc., 112, No. 8, 776–779 (1965)
[12] M.A. Aia, “Structure and luminescence of the phosphate-vanadates of Yttrium, Gadolinium, Lutetium, and Lanthanum,” J. Electrochem. Soc., 114, No. 4, 367–370 (1967)
[13] G. Blasse and A. Bril, “Luminescence of phosphors based on host lattices ABO4 (A is Sc, In; B is P, V, Nb),” J. Chem. Phys., 50, No. 7, 2974–2980 (1969)
[14] S. Neeraj, N. Kijima and A.K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn1-xVO4; Eu3+/Sm3+ (Ln = Y, Gd),” Solid State Commun., 131, 65–69 (2004)
[15] M. Nazarov, J.H. Kang, D.Y. Jeon, S. Bukesov and T. Akmaeva, “Synthesis and luminescent performances of some europium activated yttrium oxide based systems,” Opt. Mater., 27, 1587–1592 (2005)
[16] J.H. Kang, W.B. Im, D.C. Lee, J.Y. Kim, D.Y. Jeon, Y.C. Kang and K.Y. Jung, “Correlation of photoluminescence of (Y, Ln)VO4:Eu3+ (Ln = Gd and La) phosphors with their crystal structures,” Solid State Commun., 133, 651-656 (2005)
[17] X. Fu, S. Niu, H. Zhang and Q. Xin, “Photoluminescence properties of nanocrystalline A3(VO4)2:Eu (A = Mg, Ca, Sr and Ba),” Spectroscopy and Spectral Analysis, 26, No. 1, 27-29 (2006)
[18] X.Q. Su and B. Yan, “Matrix-induced synthesis and photoluminescence of M3Ln(VO4)3:RE (M = Ca, Sr, Ba; Ln = Y, Gd; RE = Eu3+, Dy3+, Er3+) phosphors by hybrid precursors,” J. Alloys Compd., 421, 273-278 (2006)
[19] X. Xiao and B. Yan, “Chemical co-precipitation of hybrid precursors to synthesize Eu3+/Dy3+ activated YNbxP1-xO4 and YNbxV1-xO4 microcrystalline phosphors,” J. Non. Cryst. Solids, 352, 3047-3051 (2006)
[20] H. Zhang, M. Lü, Z. Xiu, G. Zhou, S. Wang, Y. Zhou and S. Wang, “Influence of processing conditions on the luminescence of YVO4:Eu3+ nanoparticles,” Mater. Sci. Eng. B, 130, 151-157 (2006)
[21] L. Tian and S.I. Mho, “Enhanced photoluminescence of YVO4:Eu3+ by codoping the Sr2+, Ba2+ or Pb2+ ion,” J. Lumin., 122-123, 99-103 (2007)
[22] W.J. Park, M.K. Jung, S.J. Im and D.H. Yoon, “Photoluminescence characteristics of energy transfer between Bi3+ and Eu3+ in LnVO4: Eu, Bi (Ln = Y, La, Gd),” Colloids Surf. A: Physicochem. Eng. Aspects, 313-314, 373-377 (2008)
[23] Y. Wang, Y. Sun, J. Zhang, Z. Ci, Z. Zhang and L. Wang, “New red Y0.85Bi0.1Eu0.05V1-yMyO4 (M = Nb, P) phosphors for light-emitting diodes,” Physica B, 403, 2071-2075 (2008)
[24] W.J. Park, M.K. Jung, T. Masaki, S.J. Im and D.H. Yoon, “Characterization of YVO4:Eu3+, Sm3+ red phosphor quick synthesized by microwave rapid heating method,” Mater. Sci. Eng. B, 146, 95-98 (2008)
[25] S. Choi, Y.M. Moon, K. Kim, H.K. Jung and S. Nahm, “Luminescent properties of a novel red-emitting phosphor: Eu3+-activated Ca3Sr3(VO4)4,” J. Lumin., 129, No. 9, 988-990 (2009)
[26] S. Yan, J. Zhang, X. Zhang, S. Lu, X. Ren, Z. Nie and X. Wang, “Enhanced Red Emission in CaMoO4:Bi3+,Eu3+,” J. Phys. Chem. C, 111, No. 35, 13256-13260 (2007)
[27] M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima and T. Mukai, “Red-enhanced white-light-emitting diode using a new red phosphor,” Jpn. J. Appl. Phys., 42, Part 2, No. 1A/B, L20-L23 (2003)
[28] X. Piao, T. Horikawa, H. Hanzawa and K.I. Machida, “Characterization and luminescence properties of Sr2Si5N8: Eu2+ phosphor for white light-emitting-diode illumination,” Appl. Phys. Lett., 88, 161908 (1-3) (2006)
[29] Z. Wang, H. Liang, L. Zhou, H. Wu, M. Gong and Q. Su, “Luminescence of (Li0.333Na0.334K0.333)Eu(MoO4)2 and its application in near UV InGaN-based light-emitting diode,” Chem. Phys. Lett., 412, 313-316 (2005)
[30] V.P. Singh, B. Parsarathy, R.S. Singh, A. Aguilera, J. Anthony and M. Payne, “Characterization of high-photovoltage CuPc-based solar cell structures,” Sol. Energy Mater. Sol. Cells, 90, 798–812 (2006)
[31] A. Yakimov and S.R. Forrest, “High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters,” Appl. Phys. Lett., 80, No. 9, 1667–1669 (2002)
[32] T. Tsutsui, T. Nakashima, Y. Fujita and S. Saito, “Photovoltaic conversion efficiency in copper-phthalocyanine / perylenetetracarboxylic acid benzimidazole heterojunction solar cells,” Synthetic Met., 71, 2281–2282 (1995)
[33] H. Zhang, M. Lü, Z. Xiu, S. Wang, G. Zhou, Y. Zhou, S. Wang, Z. Qiu and A. Zhang, “Synthesis and photoluminescence properties of a new red emitting phosphor: Ca3(VO4)2:Eu3+;Mn2+,“ Mater. Res. Bull., 42, 1145-1152 (2007)
[34] V.D. Zhuravlev, A.A. Fotiev and B.V. Shulgin, “Thermal and luminescent properties of samples of the systems Ca3(VO4)2 - M3(VO4)2, where M equals Sr, Ba.,” Izv. Akad. Nauk SSSR Neorg. Mater., 15, No. 11, 2003-2006 (1979)
[35] P.R. Biju, G. Jose, V. Thomas, V.P.N. Nampoori and N.V. Unnikrishnan, “Energy transfer in Sm3+:Eu3+ system in zinc sodium phosphate glasses,” Opt. Mater., 24, 671-677 (2004)
[36] G.H. Lee, T.H. Kim, C. Yoon and S. Kang, “Effect of local environment and Sm3+-codoping on the luminescence properties in the Eu3+-doped potassium tungstate phosphor for white LEDS,” J. Lumin., 128, 1922-1926 (2008)
[37] R. Reisfeld and L. Boehm, “Energy transfer between Samarium and Europium in phosphate glasses,” J. Solid State Chem., 4, 417-424 (1972)
[38] Y. Yu, Y. Liu and M. Song, “Luminescence and energy transfer in GdP5O14:Eu3+,Sm3+ single crystals,” J. Alloys Compd., 202, 47-50 (1993)
[39] T. Trupke, M.A. Green and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys., 92, No. 3, 1668-1674 (2002)
[40] P. Chung, H.H. Chung and P.H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol., A 25, No. 1, 61-66 (2007)
[41] V. Jubera, A. Garcia, J.P. Chaminade, F. Guillen, J. Sablayrolles and C. Fouassier, “Yb3+ and Yb3+-Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin., 124, 10-14 (2007)
[42] B. Valeur, Molecular Fluorescence: Principles and Applications, WILEY-VCH Verlag GmbH, Weinheim (2002)
[43] J. García Solé, L.E. Bausá and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, John Wiley & Sons, Ltd, Spain (2005)
[44] A. Beiser, Concepts of Modern Physics, Sixth Edition, The McGraw-Hill Companies, Inc., New York (2003)
[45] G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience, New York (1968)
[46] Jey-Jau Lee, The Application on Material Crystallography, summer school in National Synchrotron Radiation Research Center (NSRRC), Taiwan, pp. 9-22 (2006)
[47] INSTRUCTION MANUAL, HITACHI F-7000 FLUORESCENCE SPECTROPHOTOMETER (MAINTENANCE MANUAL), Hitachi High-Technologies Corporation, 2nd Edition (2006)
[48] You-Ming Chuang, Master Thesis: The syntheses and optical investigations of molybdate-based and nano-scaled strontium barium niobate powders, Department of Electrical Engineering, National Cheng Kung University, Taiwan (2008)
[49] http://en.wikipedia.org/wiki/CIE_1931_color_space (a website)
[50] W. T. Carnall, P. R. Fields and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys., 49, No. 10, 4450-4455 (1968)
[51] G. Li, Z. Wang, M. Yu, Z Quan and J. Lin, “Fabrication and optical properties of core–shell structured spherical SiO2@GdVO4:Eu3+ phosphors via sol–gel process,“ J. Solid State Chem., 179, 2698-2706 (2006)
[52] B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids, Clarendon Press, Oxford, pp. 146-182 (1989)
[53] G. Tang, J. Zhu, Y. Zhu and C. Bai, “The study on properties of Eu3+-doped fluorogallate glasses,“ J. Alloys Compd., 453, 487-492 (2008)
[54] P. Maestro, D. Huguenin, A. Seigneurin, F. Deneuve, P. Le Lann and J. F. Berar, “Mixed rare earth oxides as stating material for the preparation of Y2O3:Eu lamp phosphor: Characterization and use,” J. Electrochem. Soc., 139, No. 5, 1479-1482 (1992)
[55] M. Gaft, R. Reisfeld and G. Panczer, Modern Luminescence Spectroscopy of Minerals and Materials, Springer-Verlag, Berlin Heidelberg, p. 145 (2005)
[56] H.M. Yang, J.X. Shi, H.B. Liang and M.L. Gong, “A novel green emitting phosphor Ca2GeO4:Tb3+,” Mater. Res. Bull., 41, 867-872 (2006)
[57] F. A. Kröger and H. J. Vink, Solid State Physics, Vol. 3, edited by F. Seitz and D. Turnbull, Academic Press, New York, pp. 307-435 (1956)
[58] B.C. Joshi, “Enhanced Eu3+ emission by non-radiative energy transfer from Tb3+ in zinc phosphate glass,” J. Non. Cryst. Solids, 180, 217- 220 (1995)
[59] R. Reisfeld, N. Lieblich, L. Boehm and B. Barnett, “Energy transfer between Bi3+→Eu3+, Bi3+→Sm3+ and UO22+→Eu3+ in oxide glasses,” J. Lumin., 12-13, 749-753 (1976)
[60] R. Reisfeld and L. Boehm, “Energy transfer between samarium and europium in phosphate glasses,” J. Solid State Chem. 4, 417-424 (1972)
[61] B. Yan and X.Q. Su, “LuVO4:RE3+ (RE = Sm, Eu, Dy, Er) phosphors by in-situ chemical precipitation construction of hybrid precursors,” Opt. Mater., 29, 547-551 (2007)
[62] Y.C. Li, Y.H. Chang, Y.F. Lin, Y.S. Chang and Y.J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd., 439, 367-375 (2007)
[63] P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan and M.K.R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids, 64, 841-846 (2003)
[64] J.C. Joshi, B.C. Joshi, N.C. Pandey, R. Belwal and J. Joshi, “Nonradiative energy transfer from Tb3+→Er3+ in calibo glass,” J. Solid State Chem., 22, 439-443 (1977)
[65] G. A. Kumar, P.R. Biju, G. Jose and N.V. Unnikrishnan, “Static energy transfer for Mn2+ : Pr3+ system in phosphate glasses,” Mater. Chem. Phys., 60, 247-255 (1999)
[66] B.C. Joshi, R. Lohani and B. Pande, “Energy transfer between optically excited Dy3+ and Er3+ ions in zinc phosphate glass,” Ind. J. Pure Appl. Phys., 39, 443-446 (2001)
[67] B.C. Joshi and R. Lohani, “Non-radiative energy transfer from Dy3+ to Ho3+ in zinc phosphate glass,” J. Non. Cryst. Solids, 189, 242-245 (1995)
[68] B.C. Joshi and R. Lohani, “Non-radiative energy transfer from Tm3+ to Ho3+ and Nd3+ in zinc phosphate glass,” J. Non. Cryst. Solids, 215, 103-107 (1997)
[69] B.C. Joshi, R. Lohani and B. Pande, “Sensitizing Sm3+ emission by non-radiative energy transfer from UO2++ in zinc phosphate glass,” J. Non. Cryst. Solids, 337, 97–99 (2004)
[70] G. Ajithkumar, P.K. Gupta, G. Jose and N.V. Unnikrishnan, “Judd-Ofelt intensity parameters and laser analysis of Pr3+ doped phosphate glasses sensitized by Mn2+ ions,” J. Non. Cryst. Solids, 275, 93-106 (2000)
[71] R. Reisfeld and N. Lieblich-soffer, “Energy transfer from UO22+ to Sm3+ in phosphate Glass,” J. Solid State Chem., 28, 391-395 (1979)
[72] W.J. Yang, L. Luo, T.M. Chen and N.S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater., 17, 3883-3888 (2005)
[73] C.K. Chang and T.M. Chen, “White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7 : Eu, Mn through energy transfer,” Appl. Phys. Lett., 90, 161901(1-3) (2007)
[74] H. Jiao, F. Liao, S. Tian and X. Jing, “Luminescent properties of Eu3+ and Tb3+ activated Zn3Ta2O8,” J. Electrochem. Soc., 150, H220-H224 (2003)
[75] D.L. Dexter and J.H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys., 22, No. 6, 1063-1070 (1954)
[76] S. Ye, Z.S. Liu, J.G. Wang and X.P. Jing, “Luminescent properties of Sr2P2O7:Eu,Mn phosphor under near UV excitation,” Mater. Res. Bull., 43, 1057–1065 (2008)
[77] C. Hsu and R.C. Powell, “Energy transfer in europium doped yttrium vanadate crystals,” J. Lumin., 10, 273-293 (1975)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊