跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡易玲
研究生(外文):Yi-Ling Tsai
論文名稱:不同溫度下重金屬Zn突增負荷對磷積蓄菌酵素動力反應之影響
論文名稱(外文):Impacts of heavy metals Zn invasion on enzymatic kinetic reaction of polyphosphate accumulation organisms under short-term temperature conditions
指導教授:蔡勇斌蔡勇斌引用關係
指導教授(外文):Yung-Pin Tsai
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:126
中文關鍵詞:重金屬生物除磷PHAs乙醯輔酶A合成酶聚磷酸激酶
外文關鍵詞:heavy metalsphosphate removalAcetyl CoA SynthasePolyphosphate Kinase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討不同溫度條件下,重金屬鋅及濃度對活性污泥厭/好氧相釋/攝磷反應、PHAs合成/分解、乙醯輔酶A合成酶酵素活性、聚磷酸激酶酵素活性之影響,實驗進行以SRT 10天馴養達穩定之B-SBR系統活性污泥為研究對象,其對COD及PO43-之去除率均可維持在90%以上。為研擬B-SBR系統操作控制EBPR程序之基準,瞭解低濃度重金屬離子對活性污泥除磷能力的影響及毒性抑制效應,本研究分別利用比釋/攝磷速率、PHAs合成/分解率及乙醯輔酶A合成酶酵素活性、聚磷酸激酶酵素活性等批次實驗,藉控制不同溫度條件(10~30℃),探討微生物於溫度變異環境下對不同重金屬鋅(Zn2+)、濃度(0~4 mgl-1)之耐受性。結果顯示,未添加重金屬時微生物之比基質利用率、釋/攝磷率、PHAs合成/分解率、乙醯輔酶A合成酶酵素活性、聚磷酸激酶酵素活性,整體而言20℃環境下微生物對重金屬Zn2+之耐受性略高30℃者,而10℃時最差;另外,乙醯輔酶A合成酶受重金屬鋅抑制之抑制類型屬於混合型非競爭性抑制,而聚磷酸激酶酵素受重金屬鋅抑制之抑制類型屬於競爭型抑制,唯30℃時屬於反競爭型抑制。本研究亦發現污泥體內乙醯輔酶A合成酶酵素活性受重金屬毒性抑制時,造成微生物合成PHAs減緩,導致好氧環境無充足PHAs供攝磷之用,亦使釋磷率下降;再者好氧相水體存在之重金屬亦對聚磷酸激酶酵素活性具毒性抑制,此時微生物受體內碳源不足及外部毒性物質之影響,抑制代謝行為,進而惡化系統除磷效果;由此可知PHAs及乙醯輔酶A合成酶兩者於厭/好氧環境下之消長相互影響、牽制,而聚磷酸激酶酵素於好氧環境下更是直接影響攝磷率。
This study mainly investigated the effects of Zinc metal ion and concentration(0~4mgl-1) on the phosphorus removal mechanisms , including phosphorus release/uptake, polyhydroxyalkanoates (PHAs) synthesis/degradation, and total intercellular Acetyl CoA Synthase activity and Polyphosphate Kinase activity of the activated sludge under short-term temperature condition. The performance of B-SBR activated sludge, which was acclimated until steady state basing on the condition of sludge retention time (SRT) 10 days , maintained the removal raties of COD and PO43- above 90 %.

In order to realize the operational strategy for EBPR system under metal invasion situation, the performances of batch experiments of phosphate release and uptake, PHAs synthesis/degradation, and total intercellular Acetyl CoA Synthase activity and Polyphosphate Kinase activity were used as indicators to investigate the effects of heavy metal zinc on phosphate removal mechanisms and toxic inhibition of microorganisms under different metal concentration (0~4mgl-1) and temperature conditions(10℃~30℃). In addition, inhibitory type about Acetyl CoA Synthase inhibited by zinc was mixed non-competitive inhibition, while the Polyphosphate Kinase inhibition type was competitive inhibition.

Results of batch experiments under the condition of without any metal addition showed that specific substrate utilization rate (SSUR), specific phosphorus release/uptake rates(SPRR,SPUR), PHAs synthesis/degradation rates, and total intercellular Acetyl CoA Synthase and Polyphosphate Kinase activities of microorganisms had the best tolerant ability to zinc invasion under 20℃, In addition , the temperature order of the tolerant ability of microorganisms to heavy metal invasion was 20℃>30℃>10℃,

It was also found in the study that, the microorganism intercellular Acetyl CoA Synthase Enzyme activity was inhibited by zinc metal toxicity, it resulted in microbial synthesis of PHAs slowed down and insufficient PHA and total intercellular Acetyl CoA Enzyme activity were provided for phosphorus uptake in aerobic stage , In addition, the existence of metal zinc also influenced the decomposition of PHAs in aerobic phase. At the same time, the phosphate removal ability was further deteriorated due to the insufficient of intercellular carbohydrate and external toxic inhibition. Thus, it could be known that the increase or decrease of PHAs and Acetyl CoA Synthase activity intercellular carbohydrate metabolism were influenced and impacted by each other in both anaerobic and aerobic phase, In the other hand, The Polyphosphate Kinase directly impacted on the phosphorus uptake in the aerobic phase.
第一章前言1
1.1研究緣起1
1.2研究動機2
1.3研究目的2
1.4研究流程及重點 3
1.5研究內容與架構 4
第二章 文獻回顧6
2.1水污染問題及需求說明6
2.2生物除磷機制與程序7
2.2.1生物除磷7
2.2.2生物除磷代謝模式9
2.2.3生物除磷系統之中間產物11
2.2.4影響生物除磷效率之因子22
2.3酵素動力學之介紹與應用29
2.3.1酵素之分類29
2.3.2酵素動力學之演進30
2.3.3酵素與受質間的催化因子30
2.3.4酵素動力學的描述及其參數30
2.3.5影響酵素活性之因子36
2.4微生物處理重金屬的機制38
2.4.1胞外吸附38
2.4.2細胞表面積聚38
2.4.3生物轉換39
2.4.4重金屬對活性污泥之影響39
2.5鋅元素之污染背景40
第三章 實驗設備與方法41
3.1研究設備41
3.1.1B-SBR模廠41
3.1.2批次實驗設備42
3.2研究方法42
3.2.1污泥馴養與人工合成基質43
3.2.2B-SBR 模廠操作參數44
3.3分析方法與設備46
3.3.1分析設備46
3.3.2分析方法47
3.3.3 批次實驗設計57
第四章 結果與討論 60
4.1B-SBR系統對生物營養鹽之去除特性60
4.2溫度對活性污泥除磷生化反應之影響63
4.2.1溫度對釋/攝磷之影響63
4.2.2溫度對PHAs之影響65
4.2.3溫度對ACS活性與PHAs合成率之影響66
4.2.4溫度對PPK活性與SPUR 之影響68
4.3重金屬鋅突增負荷對微生物除磷特性之影響69
4.3.1重金屬鋅突增負荷對釋/攝磷機制之影響69
4.3.2重金屬鋅突增負荷對PHAs代謝之影響74
4.3.3重金屬鋅突增負荷對ACS活性之影響77
4.3.4重金屬鋅突增負荷對PPK活性之影響91
4.3.5抑制百分比之比較98
4.4綜合比較102
4.4.1PHAs合成與ACS酵素活性探討102
4.4.1.1 溫度因子102
4.4.1.2 重金屬因子103
4.4.2攝磷機制與PPK活性探討 104
4.4.2.1 溫度因子104
4.4.2.2 重金屬因子105
第五章 結論與建議106
5.1 結論 106
5.1.1 未添加重金屬時溫度對生物除磷反應與機制之影響106
5.1.2 添加重金屬濃度突增負荷與溫度對生物除磷反應與機制之影響106
5.2 建議108
參考文獻109
附錄119
1.Ahn, K., Kornberg, A. (1990) J. Biol. Chem., 265,pp.11734-11739
2.Brown, T. D. K, Jones-Mortiner, M. C., Kornberg, H. L. (1977) The enzymatic interconversion of acetate and acetyl-coenzyme A in Escherichia coli,” J. Gen. Microbiol. 102, pp.327-336.
3.Baetens D., Vanrolleghem P.A., van Loosdrecht M.C.M., and Hosten L.H., 1999. Temperature effects in bio-P removal. Wat. Sci. Tech. 39 (1), 215-225.
4.Bradjanovic D.,Hooijmans C.M.,van Loosdrecht M.C.M., Alaerts G.J., and Heijnen J.J., 1996. The dynamic effects of potassium limitation on biological phosphorus removal. Wat. Res. 30, 2323-2328.
5.Brdjanovic D., van Loosdrecht, M.C.M., Hooijmans, C.M., Alaerts, G.J. and Heijnen, J.J., 1997. Temperature effects on physiology of biological phosphorus removal. J. Env. Eng. 144-153.
6.Brdjanovic D., Logemann S., van Loosrecht M.C.M., Hooijmans C.M., Alaerts G.J., and Jeijnen J.J., 1998a. Influence of temperature on biological phosphorus removal: process and molecular ecological studies. Wat. Res. 32 (4), 1035-1048.
7.Brdjanovic D., van Loosdrecht M.C.M., Hooijmans C.M., Mino T., Alaerts G.J., and Jeijnen J.J., 1998b. Bioassay for glycogen determination in biological phosphorus removal systems. Wat. Sci. Tech. 37 (4-5), 541-547.
8.Bradjanovic, D., Slamet A., van Loosdrecht, M.C.M., Hooijmans, C.M., Alaerts, G.J., and Heijnen, J.J., 1998c. Impact of excessive aeration on biological phosphorus removal from wastewater. Wat. Res. 32 (1), 200-208.
9.Chapman, A. G., and Atkinson, D. E. (1977) Adv. Microbiol. Physiol., 15, pp.253-306.
10.Comeau, Y., Hall, K.J., Hancock, R.E.W. and Oldham, W.K. (1986) Biochemical Modelfor enhanced biological phosphorus removal. Wat. Res. 20 (12) , pp.1511-1521.
11.Comeau, Y., Rabinowitz, B., Hall, K. J., Oldham, W. K. (1987)Phosphate Release and Uptake in Enhanced Biological Phosphorus Removal from Wastewater. J. Wat. Pollut. Control Fed., 59, pp.707-715.
12.Cloete, T. E., Oosthuizen, D. J. (2001) The role of extracellular exopolymers in the removal of phosphorus from activated sludge. Water Research 35(15),pp.3595-3598
13.Cheryl Ingram-Smith, Barrett I. Woods, Kerry S. Smith (2006) Characterization of the Acyl Substrate Binding Pocket of Acetyl-CoA Synthetase. Biochemistry , 45,pp. 11482-11490
14.Chang, J.S. , and Hong , J. (1994) Biosorption of Mercury by the Inactivated Cell of Pseudomona aeruginosa Pu21 (Rip64).Biotechnology and Bioengineering 44,pp.999-1006
15.David L. Nelson Michael M. Cox. , Principles of biochemistry , FREEMAN , Fourth edition.
16.Davis T. A. , Volesky B. , Mucci A. (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Research 37(18),pp.4311-4330
17.Erdal UG, Erdal ZK, Randall CW. (2003) The competition between PAO(phosphorus accumulating organisms) and GAO (glycogen accumulating organisms) in EBPR (enhanced biological phosphorus removal)systems at different temperatures and the effects on system performance. Water Sci Technol 47(11),pp.1–8.
18.Fleit E. (1995) Intracellular pH regulation in biological excess phosphorus removal systems. Water Research 29(7), 1787±1792
19.Harvey W. Blanch, Douglas S. Clark(1996), Biochemical Engineering , MARCEL DEKKER , INC.
20.Helmer C. and Kunst S., 1998. Low temperature effects on phosphorus release and uptake by microorganisms in EBPR plants Wat. Sci. Tech. 37 (4-5), 531-539.
21.Hung, C.H.(2000)SeparationandConcentrationof Polyphosphate-Accumulating Organisms from Enhanced Biological Phosphorus Removal Processes.University of Wisconsin-Madison,USA.
22.Itoh Hiromichi , Shiba Toshikazu ,(2004) Polyphosphate Synthetic Activity of Polyphosphate:AMPPhosphotransferase in Acinetobacter johnsonii 210A . JOURNAL OF BACTERIOLOGY, 186 (15),pp. 5178–5181
23.Ingram-Smith, C.; Smith, K.S.; Archaea ,(2007) AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization.Journal List, 2(2), pp.,95-107
24.Jetten M. S., Stams A. J. M. and Zehnder A. J. B. (1989)Isolation and characterization of acetyl coenzyme A synthetase from Methanothrix soehngenii. Journal of Bacteriology 171(10),pp.5430±5435
25.Jones M. and Stephenson, T., 1996. The effect of temperature on enhanced biological phosphate removal. Env. Tech. 17, 965-976.
26.Jones M. E., Lipmann F. (1955) Aceto-CoA-Kinase. Methods in Enzymology 1, pp.585-595.
27.Keasling J. D., Van Dien S. J., Trelstad P., Renninger N., and McMahon K.(2000), Application of Polyphosphate Metabolism to Environmental and Biotechnological Problems. Biochemistry (Moscow), Vol. 65, No. 3, 2000, pp. 324-331.
28.Kornberg, A., Kornberg, S. R., and Simms, E. S. (1956) Biochim. Biophys. Acta, 20, pp.215-227.
29.Kornberg, A., Kornberg, S. R., and Simms, E. S. (1956) Biochim. Biophys. Acta, 20, pp.215-227
30.Koch F.A. and Oldham W.K., 1985. Oxidation-reduction potential—A tool for monitoring control and optimization of biological nutrient removal system. Wat. Sci. Tech. 17, 259-281.
31.Kuba T., Wachtmeister A., van Loosdrecht M.C.M., and Heijnen J.J., 1994. Effect of nitrate on phosphorus release in biological phosphorus removal systems. Wat. Sci. Tech., 30, 263-269.
32.Kargi F., Uygur A. , and Baskaya H.S. , (2005) Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR. Journal of Environmental Management. 76, 71-75.
33.Kratochvil D. ,Volesky B. (1998) Advances in the biosorption of heavy metals.Trends in Biotechnology , 16(7),pp.291-300
34.Krupa Olimpia Coppellotti, Vannucci Deborah., (2003) Citrate synthase from Antarctic ciliates: adaptation to low temperatures and comparison with temperate ciliates., Polar Bio. 26,452–457
35.Kazuya Ishige ,Toshitada Noguchi,(2001) Polyphosphate:AMP Phosphotransferaseand Polyphosphate:ADP PhosphotransferaseAivities of Pseudomonas aeruginosa,Biochemical and Biophysical Research Communications.281, 821–826
36.Kawaharasaki Mamoru, Tanaka Hide, Kanagawa Takahiro , Nakumura Kazunori ,(1999) In situ identification of polyphosphate accumulating bacteria in activated sludge by dual staining DAPI at a polyphosphate probing concentration. Wat. Res. 33(1), pp. 257±265
37.Lemos, P.C., Serafim, L.S., Santos, M.M., Reis, M.A.M., Santos, H. (2003) Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: C-13labeling and in vivo nuclear magnetic resonance. Appl. Environ. Microbiol. 69 (1), pp.241–251.
38.Lopez-Vazquez CM, Song YI, Hooijmans CM, Brdjanovic D, Moussa MS,Gijzen HJ, van Loosdrecht MCM. (2007) Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms. Biotech Bioeng 97(3),pp.483–495.
39.Luz E. de-Bashana, Yoav Bashana(2004)‚Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003) ‚Water Research 38 pp.4222–4246
40.Louzeiro N.R., Mavinic D.S., Oldham W.K., Meisen A., and Gardner I.S., 2002. Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor. Wat. Res. 36 (11), pp.2721-2732.
41.Liu W.T., Mino T., Nakamura K., and Matsuo T., 1996. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic- aerobic activated sludge without biological phosphorus removal. Wat. Res. 30 (1), 75-82.
42.Lee Eun Young ,Lim Joung Soo ,Oh Kyung Hwan ,Lee Jae Yeon ,Kim Seog Ku , Lee Yoo Kyung ,and Kim Keun (2007), Removal of heavy metals by an enriched consortium.The Journal of Microbiology 46(1),pp.23-28
43.Mar´ıa Eugenia Leteliera , Ana Mar´ıa Lepea , Mario Fa´undeza , Julia Salazara , (2005), Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity, Chemico-Biological Interactions151.pp.71–82
44.McGrath John W. , Kulakova Anna N., Kulakov Leonid A., Quinn John P. (2005) In vitro detection and characterisation of a polyphosphate synthesizing activity in the yeast Candida humicola G-1 Research in Microbiology 156 pp.485–491
45.Mino T., Arun V., Tsuzuki Y. and Matsuo T. (1987) Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. In Advances in Water Pollution Control: Biological Phosphate Removal from Wastewater, ed. R. Ramadori, pp.27±38. Pergamon Press, Oxford.
46.Mullan A., Quinn J.P., McGrath J.W, (2002) A nonradioactive method for the assay of polyphosphate kinase activity and its application in the study of polyphosphate metabolism in Burkholderia cepacia, Anal. Biochem. 308 ,pp.294–299.
47.Meinhold J., Arnold E., and Isaacs S., 1999. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge. Wat. Res. 33 (8), 1871-1883.
48.Oehmen, A., Zeng, R.J., Yuan, Z.G., Keller, J., (2005). Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems. Biotechnol. Bioeng. 91 (1), pp.43–53
49.Oberlies G., Fuchs G. and Thauer R. K. (1980) Acetate thiokinase and the assimilation of acetate in Methano-bacterium thermoautotrophicum. Archives of Micro-biology 128, pp.248±252
50.Okunuki Suguru, Kawaharasaki, Mamoru,Tanakaa Hideo,Kanagawa Takahiro .(2004) Changes in phosphorus removing performance and bacterialcommunitystructure in an enhanced biological phosphorusremoval reactor. Water Research 38,pp. 2433–2439
51.Panswad T, Doungchai A, Anotai J. (2003). Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research 37(2),pp.409–415.
52.Puranik, P.R. and K.M. Paknikar. 1999. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol. Prog. 15, 228-237.
53.Salehizadeh H. , Loosdrecht M.C.M. Van, (2004), Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance, Biotechnology Advances 22 ,pp.261–279
54.Satoh, H., Mino, T., Matsuo, T., (1992). Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobicconditions in the biological excess phosphate removal processes.Water Sci. Technol. 26 (5–6),pp.933–942.
55.Smolders G. J. F., van der Meij J., van Loosdrecht M.C. M. and Heijnen J. J. (1995) A structured metabolic model for the anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotechnology and Bioengineering 47, pp.277±287.
56.Storey, K. B. and Storey, J. M.(1990) Biochemistry of Cryoprotectants. in Insects at Low Temperatures.
57.Schon G., Geywitz S., and Mertens F., 1993. Influence of dissolved oxygen and oxidation-reduction potential on phosphate release and uptake by activated sludge from sewage plants with enhanced biological phosphorus removal. Wat. Res. 27 (3), pp.349-354.
58.Shehab O., Porta F., and Wojewski T., (1996). Optimizing Phosphorus Removal at The Ann Arbor Wastewater Treatment Plant. Wat. Sci. Tech. 34(1-2),pp.493-499
59.Schuler, A. J., and Jenkins, D. (2003). Enhanced biological phosphorous removal from wastewater by biomass with different phosphorus contents, Part II: Anaerobic adenosine triphosphate utilization and acetate uptake rates.Water Environ. Res., 75(6), pp.499–511.
60.Smolders G.J.F., Loosdrecht M.C.M., and Heijnen J.J., 1994. pH: Key factor in the biological phosphorus removal process. Wat. Sci. Tech. 29 (7), 71-74.
61.Sudiana I. M., Mino T., Satoh H., Nakamura K., and Matsuo T., 1999. Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source. Wat. Sci. Tech. 39 (6), 29-35.
62.Veligio, F. and F. Beolchini. 1997. Removal of metals by biosorption: a review. Hydrometallurgy 44, 301-316.
63.Wentzel M.C., Lotter L.H., Ekama G.A., Loewental R.E., and Marais G.V.R., (1991). Evaluation of biochemical model for biological excess phosphorus removal, Wat. Sci. Tech., 23, pp.567-576.
64.Wentzel M. C., LoÈ tter L. H., Loewenthal R. E. and Marais GvR (1986) Metabolic behaviour of Acinetobacter spp. in enhanced phosphorus removal a biochemical model. Water South-Africa 12(4),pp.209±224.
65.Whang L.M. and Park J.K., 2002. Competition between polyphosphate- and glycogen- accumulating organisms in biological phosphorus removal systems – effect of temperature. Wat. Sci. Tech. 46 (1-2), 191-194.
66.Whang L.M., Park J.K. (2006). Competition between polyphosphate- and glycogen-accumulating organisms in enhanced biological phosphorus removal systems: Effect of temperature and sludge age. Water Environ Res 78(1),pp.4–11
67.Wolfe, A. J. (2005) The acetate switch. Microbiol. Mol. Biol. Rev. 69,pp.12–50
68.Wertz,John T.,Breznak, John A. (2007) .Physiological Ecology of Stenoxybacter acetivorans, an Obligate Microaerophile in Termite Guts. Applied and Environment Microbiology 73(21) , pp. 6829–6841
69.Warren, L.A. and E.A. Haack. (2001) Biogeochemical controls on metal behaviour in freshwater environments. Earth Sci. Rev.54, pp.261-320.
70.Yu R.F., Liaw S.L., Chang C.N., Lu H.J., and Cheng W.Y., 1997. The monitoring and control using on-line ORP on continuos-flow sludge batch reactor. Wat. Sci. Tech. 35 (1), 57-66.
71.原著/Trudy Mckee , James R. Mckee ,譯者/李仁愛,李貽琳,張學偉,生物化學,滄海書局,第三版
72.原著/Campbell, Farrell,譯者/林順富,業東柏,陳師瑩,顏瑞鴻,蕭惠美,生物化學,偉明圖書有限公司,第四版
73.游勝傑(2001),「併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究」,博士論文,國立中央大學環境工程研究所。
74.陳萬源、廖述良、余瑞芳,1996,單槽連續流SBR廢水處理系統即時自動控制之研究,第二十一屆廢水處理技術研討會論文集,台中。
75.歐陽嶠暉,2003,下水道工程學,三版再修訂,長松文化公司。
76.葉影緻,2004,紫色不含硫光和作用細菌在不同培養條件下累積聚磷酸鹽之能力探討,中興大學環境工程學系碩士論文,台中。
77.胡礫元,2008,不同溫度下重金屬突增負荷對生物除磷機制之影響,暨南國際大學土木工程學系碩士論文,南投。
78.陳綉庭,2006,重金屬在不同SRT與內部碳源條件下對活性污泥釋/攝磷機制之影響,國立暨南國際大學土木工程學系碩士論文,南投。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top