跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 16:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉全修
研究生(外文):Chuan-Shiu Liu
論文名稱:台灣中南部粉土質細砂的壓縮性
論文名稱(外文):Compressibility of silty sands from central and southern Taiwan
指導教授:黃安斌黃安斌引用關係
指導教授(外文):An-Bin Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:172
中文關鍵詞:等速應變壓密試驗單向度壓密不排水三軸試驗靜止土壓力過壓密比剪力模數
外文關鍵詞:Constant rate of consolidaitonCKoUCoefficient of earth pressure at restOverconsolidation ratioShear modulus
相關次數:
  • 被引用被引用:12
  • 點閱點閱:762
  • 評分評分:
  • 下載下載:110
  • 收藏至我的研究室書目清單書目收藏:2
粉土質砂土為台灣中南部沖積平原常見的土壤形式,且在此等土壤上曾多次的發生地層下陷、基樁沉陷以及土壤液化等大地工程災害,顯示對於此類土壤現有知識存在著許多缺陷。作者在針對三種分布於台灣中南部的粉土質砂土(麥寮砂(MLS)、員林砂(YLS)、高雄砂(KHS))進行等速應變壓密試驗(CRS)、單向度壓密不排水三軸試驗(CKoU),並依據過去的經驗公式標定出此等土壤的靜止土壓力與過壓密比(Ko-OCR)之間的關係、剪力模數與孔隙比以及應力狀態三者間的關係,且修改MIT-S1模式對壓縮曲線的結果進行闡述。試驗結果顯示,此等土壤的壓縮性高而剪力強度則低於一般常見的砂土,且壓縮量的貢獻並非來自於土壤顆粒的破碎(與過去的研究成果相牴觸)。另外,此等土壤受到細料含量的不同,其剪力波速、壓縮係數、剪力強度以及不排水剪強度與過壓密比(OCR)之間的關係也因此有明顯的不同。另外,研究結果也發現,台灣中南部的粉土質砂土在細料含量介於某個區間時會表現出介於砂土與黏土之間的過渡性行為(transitional behavior)。
The alluvial soils that consist of silty sand to sandy silt can be found in most parts of Central and Southern Taiwan. There have been continued and excessive settlement in the region due to compression of this alluvial deposit, foundation settlement and soil liquefaction have also been reoported. The exisiting theories that deal with the compressibility and srength of clean sands have been found to be inadequate to predict the behavior of silty sands in Central and Southern Taiwan. As part of a long term research effort, the author conducted a series of constant rate of consolidation (CRS) and CKoU triaxial tests with shear-wave velocity measurements on Mail Liao Sand (MLS), Yuan Lin Sand (YLS) and Kao Hsiung Sand (KHS). Based on the available data, the author calibrated the Ko-OCR and Gmax-e-stress state relationships. The MIT-S1 model was modified to describe the compressibility behavior of MLS, YLS and KHS. Test results revealed that MLS, YLS and KHS had higher compressibility and lower strength than unifrmlygraded quartz sand typically reported in literatures. The compressibility of MLS, YLS and KHS did not involved significant grain crushing as in the case of clean quartz sand. The fine content played a significant role in stiffness, compressibility, undrained shear strength and its relationship with stress history. Under certain range of fines contents, the compressibility of the studied silty sand had a transitional behavior.
第一章 前言 1
1.1 研究動機與目的 1
1.2 研究流程 2
1.2.1麥寮砂(MLS) 2
1.2.2員林砂(YLS) 2
1.2.3高雄砂(KHS) 3
1.3 論文內容概述 3
第二章 麥寮砂、員林砂與高雄砂之基本性質 6
2.1 麥寮砂 6
2.1.1 麥寮砂之來源 6
2.1.2 麥寮砂之基本物理性質 6
2.2 員林砂 7
2.2.1員林砂之來源 8
2.2.2員林砂之基本性質 8
2.2.3員林砂之非擾動取樣工法 9
2.3高雄砂 9
2.3.1高雄砂之來源 9
2.3.2高雄砂之非擾動取樣工法 10
2.3.3高雄砂之基本性質 10
第三章 文獻回顧 29
3.1砂土的壓縮行為 29
3.1.1應力狀態 29
3.1.2顆粒組構 30
3.1.3顆粒破碎 31
3.2單向度壓密試驗 32
3.2.1等速應變壓密試驗(constant rate of strain consolidation, CRS) 32
3.2.2 等速應變壓密理論 33
Wissa’s theory 33
Lee’s theory 35
3.3 MIT-S1土壤壓縮模式 36
3.3.1 MIT-S1壓縮模式理論 37
3.3.2 MIT-S1壓縮模式的參數標定 40
3.4 Ko-壓密三軸試驗(CKoU) 40
3.4.1 Ko壓密之必要性 40
3.4.2三軸Ko壓密試驗方式 41
3.4.3 Ko壓密三軸試驗之要求與影響Ko值之因素 42
3.5剪力波速量測 43
3.5.1剪力波速的判斷準則 43
3.5.2初始剪力模數(G0) 44
第四章 試驗程序與設備 57
4.1 CRS壓密儀 57
4.1.1 CRS壓密儀 57
軸壓加載系統 58
氣壓與水壓控制系統 58
4.1.2 CRS壓密試驗程序 58
試體架設流程 58
壓密速率決定 59
4.2 CKoU三軸試驗儀 60
4.2.1 CK0U三軸儀器 60
軸壓加載系統 61
軸壓控制系統 61
氣壓與水壓控制系統 62
量測系統 62
4.2.2 PID軸向應變控制系統 63
4.2.3剪力波速量測 63
剪力波元件 64
激發頻率 65
4.2.4 CKoU三軸室驗程序 66
試體架設流程 66
壓密與不排水剪動速率 66
第五章 結果與討論 77
5.1 剪力波速與剪力模數 77
5.1.1剪力波速 77
5.1.2剪力模數 78
5.2 CRS壓密試驗 79
5.2.1壓縮模式的修改 79
5.2.2壓縮曲線與數值模擬 82
麥寮砂 82
員林砂 84
高雄砂 84
5.2.3砂土的壓縮性 84
5.3 CKoU三軸試驗 86
5.3.1不排水剪力強度 86
麥寮砂 86
員林砂 88
高雄砂 89
5.3.2 Ko與垂直有效應力之間的關係 89
正常壓密 90
過壓密試體 91
第六章 結論與建議 150
6.1結論 150
6.2建議 151
參考文獻 153
附錄A 161
CKoU試驗在Ko壓密過程中的總體積變化與垂直向體積變化監測結果
Aboshi, H., Yoshikumi, H. and Maruyama, S. (1970). “Constant loading rate consolidation test.” Soils and foundations 10, No.1, 43-56.

Almeida, M.S.S., Jamiolkowski, M., and Peterson, R.W., (1991) “Preliminary Results of CPT tests in Calcareous Quiou Sand,” Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, pp.41-53, Elsevier.

Andraws, K.Z. and El-Sohby, M.A., (1973) “Factors Affecting Coefficient of Earth Pressure Ko.” ASCE, SM, Vol.99, No.7, pp.527-539.

Biarez, J., and Hicher, P.I. (1994) “Elementary soils mechanics: saturated remoulded soils.” A.A. Balkema, Rotterdam.

Borden, R.H., (1992) “Boundary Displacement Induced by DMT Penetration,” Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, pp.101-18, Elsevier.

Carriglio, F. (1989). “Caratteristiche sforzi-deformazioni-resistenza delle sabbie.” PhD thesis, Politecnico di Torino.

Chu, J., and Leong, W.K. (2004) “Effect of Fine on Instability Behavior of Loose Sand,” Geotechnique 52, No. 10, pp 751-755.

Chuhan, F. A., Kjeldstad, A., Bjørlykke, K., and Høeg K., (2003), “Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins” Canadian Geotechnical Journal, Vol 40, pp 995-1011.

Coop, M.R., and Lee, I.K. (1993) “The behaviour of granular soils at elevated stress.” In Proceedings of Wroth Memorial Symposium Predictive Soil Mechanics, Oxford, 1992. Edited by G.T. Houlsby and A.N. Schofield. Thomas Telford, London, pp. 101–112.

Coop, M. R. (2005) “On the mechanics of reconstituted and natural sands.” Proc., 3rd Int. Symp. on Deformation Characteristics of Geomaterials, Lyon, France, H. Di Benedetto, T. Doanh, H. Geoffroy, and C. Sauzeat, eds., A.A. Balkema, Rotterdam, The Netherlands, 29–58.

Dafalias, Y. F. and Herrmann, L. R. (1982). “Bounding surface formulation of soil plasticity.” In Soil mechanics: transient and cyclic loads (eds G. N. Pande and O. C. Zienkiewicz). New York : Wiley.

Deresiewicz, H. (1958). “Stress-strain relations for a simple model of a granular medium.” J. Appl. Mech. Am. Sot. Mech. Enqrs 25. No.2, 402-406.

Dyvik, R., and Madshus, C. (1985). “Lab measurements of Gmax using bender element.” Proc., ASCE Convention on Advances in the Art ofTesting Soils under Cyclic Conditions, 186–196.

El-Sohby, M. A., and Andrawes K. Z. (1972). “Deformation characteristics of granular Materials under hydrostatic compression” Canadian Geotechnical Journal No 9, pp 338-350.

Fioravante, V., Jamiolkowski, M., Tanizawa, F., and Tatzuoka, F. (1991), “Results of CPT’s in Toyoura Quartz sand,” Proceedings of the International Symposium on Calibration Chamber Testing,” Potsdam, New York, 1991, pp.135-146, Elsevier.

Fukagawa, R. and Ohta, H., (1988), “Effect of Some Factors on Ko-value of Sand,”JSSMFE, Soil and Foundations, Vol.28, No.4, pp.93-106.

Hagerty, M.M., Hite, D.R., Ullrich, C.R., and Hagerty, D.J. (1993) ”One-dimensional high pressure compression of granular material.” Journal of Geotechnical Engineering, ASCE, 119: 1–18.

Hardin, B.O., (1985) , "Crushing of Soil Particles" , Journal of Geotechnical Engineering Division, ASCE, Vol.111, pp.1177-1192.

Holtz, R.D. and Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 733 pp.

Huang, Y.T., Huang, A.B., Kuo, Y.C., and Tsai, M.D. (2004) “A Laboratory Study on The Undrained Strength of A Silty Sand from Central Weestern Taiwan,” Soil Dynamics and Earthquake Engineering 24, pp 733-743.

Huang, A.B., and Huang, Y.T., (2007). “Undisturbed Sampling and Laboratory Shearing Tests on a Sand with Various Fines Contents,” Soils and Foundations, Vol.47, No.4, pp.771-781.

Huang, A.B., Tai, Y.Y., Lee, W.F., and Ishihara, K., (2008) “Sampling and field characterization of the silty sand in central and southern Taiwan,” Proceedings, The 3rd International Conference on Site Characterization, Taipei, pp.1457-1463.

Janbu, N. (1963). “Soil compressibility as determined by oedometer and triaxial tests.” Proc. 3rd Eur. Conf Soil Mech., Wiesbaden 1, 19-25.

Jamiolkowski, M., Lancellotta, R., and Lo Presti, D. C. F. (1994). “Remarks on the stiffness at small trains of six Italian clays.” Proc., 1st Int. Symp. On Pre-Failure Deformation Characteristics of Geomaterials, Vol. 2, Balkeman, Rotterdam, The Netherlands, 817-836.

Kawaguchi, T., Mitachi, T., and Shibuya, S., (2001) “Evaluation of Shear Wave Travel Time in Laboratory Bender Element Test,” Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Vol.1, pp.155-158.

La Rochelle, P., Sarrailh, J., Tavenas, F., Roy, and Laroueil, S., (1981) “Causes of Sampling Disturbance and Design of a New Sampler for Sensitive Soils,” Canadian Geotechnical Journal, Vol.18, No.1, pp.52-66.

Lade, P.V., and Yamamuro, J.A. (1996) Undrained sand behavior in axisymmetric tests at high pressures. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 122(2): 120–129.

Lambrechts, J.R., and Leonard, G.A. (1978) “Effects of Stress History on Deformation of Sand,” Journal of Geotechnical Engineering Division, ASCE, Vol. 104, No. GT11, pp. 1371-1387.

Lee, K., and Farhoomand, I., (1967) , “Compressibility and Crushing of Grannular Soil in Anisotropic Triaxial Compression” Canadian Geotechnical Journal, Vol 4, No 1, pp. 68-99.

Lee, K. (1981). “Consolidation with constant rate of deformation.” Geotechnique 31, No.2, 215-229.

Lee, J.S., and Santamarina, J.C., (2005), “Bender Elements: Performance and Signal Interpretation.” Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.9, pp.1063-1070.

Lowe, J., III, Jonas, E. Jc Obrician, V. (1969). “Controlled gradient consolidation test.” J. Soil Mech. Fdns Div.,Am. Sot. Ciu. Engrs 95, No. SM l, 77-97.

Mindlin, R. D. and Deresiewicz, H. (1953). “Elastic spheres in contact under varying oblique forces.” J. Appl. Mech. Am. Sot. Mech. Engrs 20, No.3, 327-344.

Miura, N. (1979). “A consideration on the stress-strain relation of a sand under high pressures.” Proc. Jap. Sot. Civ. Engrs 282, No. 2, l27-130.

Moore, C.A., (1971), “Effect of Mica on Ko Compressibility of Two Soils,”ASCE,GT, Vol.108, No.6, pp.1275-1291.

Nakata, Y., Hyodo, M., Hyde, A.F.L., Kato, Y., and Murata, H., (2001) “Microscopic particle crushing of sand subjected to high pressure one-dimensional compression.” Soils and Foundations,41: 69–82.

Nocilla, A., Coop, M.R.; and Colleselli, F., (2006) “The mechanics of an Italian silt: an example of 'transitional' behaviour.” Geotechnique Vol 56, Issue 4, pp 261-271.

Okochi, Y. and Tatsuoka, F., (1984), “Some Factors Affecting Ko-values of Sand Measured in Triaxial Cell,” JSSMFE, Soils and Foundations, Vol.24, No3, pp.52-68.

Pestana, J.M., and Whittle, A.J., (1995). Compression model for cohesionless soils. Géotechnique, 45(4): 611–631.

Rampello, S., Viggiani, G. and Silvestri, F. (1995) “Panellist Discussion:The Dependence of G0 on Stress State and History in Cohesive Soils.”Pre-failure Deformation of Geomaterials, Balkema, Rotterdam, pp 1155-1160.

Robertson, P. K., Sasitharan, S., Counning J. C., and Sego D. C., (1995) “Shear-Wave Velocity to Evaluate In-Situ State of Ottawa Sand.” Journal of Geotechnical Engineering, Vol. 121, No. 3, pp. 262-273.

Sanches-Salinero, I., Roesset, J.M., and Stokoe, K.M., (1986) “Analytical Studies of Body Wave Propagation and Attenuation,” Report GR 86-15, University of Texas, Austion.

Shibuya, S., and Tanaka, H. (1996) “Estimate of elastic shear modulus in Holocene soil deposits.” Soils and Foundations, 36(4): 45–55.

Smith, R. E. and Wahls, H. E. (1969). “Consolidation under constant rate of strain.” J. Soil Mech. Fdns Div., Am. Sot. Civ. Engrs 95, No. SM2, 519-539.

Thevanayagam, S., (1998), “Effects of fines and confining stress on undrained shear strength of silty sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.6, June, pp.479-490.

Umehara, Y. and Zen, K. (1980). “Constant rate of strain consolidation for very soft clayey soils.” Soils Fdns 20, No. 2, 79-95.

Vesic, A. S., and Clough G.. W. (1968). “Behavior of granular materials under high stresses.” J. Soil Mech. Fdns Div. Am. Soc. Civ. Engrs 94, SM3, 661-688.

Viggiani, G. and Atkinson, J.H. (1995) “Stiffness of Fine Grained Soil at Very Small Strains.” Geotechnique, 45(2), pp 249-265.
Viggiani, G. and Atkinson, J. H., (1995), “Interpretation of bender element tests,” Geotechnique, Vol.45, No.1, pp.149-154.

Whittle, A. J. (1993). “Evaluation of a constitutive model for overconsolidated clays.” Geotechnique 43, No.2, 289-314.

Wissa, A. E. Z., Christian, J. T., Davis, E. H., and Heiberg, S.(1971). “Consolidation at constant rate of strain.” J. Soil Mech. Fdns Div., Am. Sot. Ciu. Engrs 97, No. SM lO, 1393-1413.

Yamamuro, J.A., Bopp, P.A., and Lade, P.V. (1996) “One dimensional compression of sands at high pressures,” Journal of Geotechnical Engineering Division, ASCE, 122(2): 147-154.’

Zhang, J., Wong, T.F., Yanagidani, T., and Davis, D.M. (1990b), “Pressure-induced microcracking and grain crushing in berea and boise sandstones—acoustic emission and quantitative microscopy measurements.” Mechanics of Materials, 9: 1–15.
王統立 (2000) “高細料含量粉土細砂中CPT之標定試驗,” 國立交通大學土木工程學系, 碩士論文。

李維峰,王淳讙,梅興泰,簡臣又 (2006) “不擾動取樣器 中日開發問世,”營建知訊, 第287期, 第38-45頁。

林靜怡 (2003) “細粒料對粉土細砂小應變勁度之影響,” 國立交通大學土木工程學系, 碩士論文。

柳志錫,杜富麗,洪偉嘉 (2004) “超抽地下水引起之地層下陷問題探討”,財團法人工業技術研究院-能源與資源研究所。

張嘉偉(1997)“圓錐貫入試驗在粉砂中之標定”國立交通大學土木工程系,碩士論文。

黃耀道 (2007)“台灣中西部粉土質砂土液化行為分析,”國立交通大學土木工程學系, 博士論文

蔡明道 (2002) “細粒料含量對粉土細砂不排水強度之影響,” 國立交通大學土木工程學系, 碩士論文。

戴源昱 (2007) “台灣西南部粉土質細砂CRR與qc關係之標定,” 國立交通大學土木工程學系, 碩士論文。

大河內保彥、河邊衛、龍崗文夫(1982)「黏土長期Ko 壓密不排水三軸壓縮試驗」,第十七回日本土質工程研究發表會講演集,pp.353-356。(日文)

望月秋利(1983),「室內試驗技術」土與基礎,日本土質研究工程學會,Vol.31, No.7, pp.52-53。(日文)

森協武夫、藤井秀憲、網干壽夫(1998),「有關飽和黏土Ko 值之研究」,日本土質工程研究會論文報告集,Vol.28, No.2, pp.205-215。(日文)

大西有三、蘆田徹也、矢野隆夫、小西真治(1982),「以微電腦控制自動Ko 壓密三軸試驗裝置」,第17 回日本土質工學研究發表會講演集,pp.213-216。(日文)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top