跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 00:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張宗盛
論文名稱:多頻道表面波震測之施測與頻散分析標準化研究
論文名稱(外文):Towards the standardization of field testing and dispersion analysis for MASW methods
指導教授:林志平林志平引用關係
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:145
中文關鍵詞:多頻道表面波震測波場轉換頻散曲線表面波
外文關鍵詞:Multi-station Analysis of Surface WaveMASWwavefield transformationdispersion curvesurface wave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:1
由於非破壞性的試驗方法及簡便操作等特性,將表面波震測運用於工址調查實務上愈來愈受歡迎。特別是多頻道表面波震測(Multi-station Analysis of Surface Wave, MASW)紀錄針對單一測線可提供較深探測深度及較多資料。但如欲得到品質良好且寬頻的頻散曲線,試驗施作時之施測參數即扮演一重要角色。選用施測參數時常因訊號分析、施測解析度及深度上的不同考量而陷入兩難。除此之外,MASW試驗者亦常對前人提出之數種頻散分析演算方法進行驗證比較。本文最主要的課題即為針對MASW中野外施測及頻散分析兩部分提出一標準步驟。針對野外施測,本文先行討論時間及空間施測參數對實驗的影響,包含時間與空間域上的映頻與資料遺漏、波場的遠近場效應、高次震態模組的影響及空間水平解析度等。之後針對各種影響加以探討分析並提出一創新施測方式及合成震測資料方法,藉以消彌各施測參數選用規則上的衝突並使MASW施測步驟標準化而有利一般工地實務應用。在頻散分析方面,本文提出一波場轉換之統一演算法。先將野外收錄之時間-空間域之二維波場轉換至頻率-空間域,並以線性迴歸之多頻道表面波頻譜分析(Multi-channel Spectral Analysis of Surface Wave, MSASW)進行初步頻散分析。透過頻率-空間域之複數頻譜及線性迴歸資料評估收錄訊號品質並消除不良訊號。再將頻率-空間域之複數頻譜以統一波場轉換方式同時得到頻率-波數(wavenumber)域、頻率-慢度(slowness)域、頻率-速度(velocity)域及頻率-波長(wavelength)域之頻散曲線。本文並提出一藉由使用離散空間傅立葉轉換(discrete-space Fourier Transform)之最佳化方法證明各域之頻散曲線皆為相同,並討論頻散曲線取樣時以等頻率及等波長進行之優劣。本文的各項結果可作為日後多頻道表面波震測實驗標準化之基礎。
The surface wave method has gained popularity in engineering practice for determining S-wave velocity depth profiles. In particular, MASW (multi-station analysis of surface wave) method permits a single survey of a broad depth range and high levels of redundancy with a single field configuration. Despite its apparent advantage over the two-channel SASW (spectral analysis of surface wave) method, the testing configuration of the MASW method remains a crucial factor that may affect the test results. Tradeoffs are involved when selecting the testing parameters. In addition, several algorithms with different preferences in the literature exit for the dispersion analysis. The objectives of this study are to establish a standard procedure for field testing and dispersion analysis of MASW. In the field testing, the influences of temporal and spatial parameters were investigated, including aliasing and leakage in both time and space domain, far and near field effects, effect of higher modes, and horizontal resolution. The investigation leads to several rules for choosing testing parameters. An innovative testing procedure and the associated signal processing was proposed to resolve the dilemma of choosing testing parameters and standardize the testing procedure. In the dispersion analysis, a unified approach was proposed. The wavefield in time-space (t-x) domain is transformed to frequency-space (f-x) domain first, in which a preliminary dispersion analysis (a new method called multi-channel spectral analysis of surface wave, MSASW) was introduced and methods for assessing data quality and data screening were proposed. The f-x domain is further transformed to f-k (wavenumber), f-p (slowness), f-v (velocity), or f-λ (wavelength). The dispersion curves obtained by different transformation are shown to be identical by a newly-proposed optimization method based on the discrete-space Fourier Transform, which allows the transformed domain remain continuous for best resolution of dispersion analysis. A wavelength-controlled sampling approach was further proposed for the dispersion curve to avoid bias in depth sampling. The results of this study may lead to further standardization of the surface wave testing.
中文摘要 I
ABSTRACT III
誌 謝 V
Contents VI
List of figures IX
List of tables XII
1 Introduction 1
1.1 Motivation 1
1.2 Objectives 3
1.3 Dissertation outline 4
2 Literature review 6
2.1 Dynamic properties of soil and testing methods 6
2.1.1 Dynamic properties of soil 6
2.1.2 Testing methods 10
2.2 Wave propagation and computation of surface wave 15
2.2.1 Basic theory of elastic wave propagation 16
2.2.2 Computation of theoretical dispersion curve 29
2.2.3 Computation of synthetic wavefield 33
2.3 Seismic tests using surface wave 36
2.3.1 Overview of surface wave methods 36
2.3.2 Field testing procedure of MASW 43
2.3.3 Dispersion analysis of MASW 44
2.3.4 Inversion for the stiffness profile 50
3 Investigation of field parameters and standardization of field testing 53
3.1 Temporal parameters of field testing 54
3.1.1 Aliasing due to time domain discretization: the sampling interval, Δt 54
3.1.2 Leakage due to time domain truncation: total sampling duration, T 54
3.2 Spatial parameters of field testing 55
3.2.1 Aliasing due to space domain discretization: the geophone spacing, Δx 55
3.2.2 Leakage due to space domain truncation and modal separation: the geophone spread, L 57
3.2.3 Near and far field effects: the minimum offset, X0 and maximum offset, (X0+L) 60
3.2.4 The dilemma 62
3.3 The countermeasure: Pseudo-section approach 64
3.3.1 The concept of Pseudo-section method 64
3.3.2 Combining seismic records of the pseudo-section method 66
3.3.3 Observation on near and far field effects via pseudo-section method 72
3.4 Seismic sources and receivers 74
3.4.1 Some improvement on the seismic source 74
3.4.2 Some improvement on the receivers 82
3.5 The proposed standard field testing 89
4 Unified dispersion analysis 91
4.1 Analyses in the frequency-space (f-x) domain 93
4.1.1 Representation of surface waves in f-x domain 93
4.1.2 Real part and energy spectrum of the f-x complex data 95
4.1.3 Phase Angles: Multi-station spectral analysis of surface wave (MSASW) 95
4.1.4 Amendment for near and far field effect: Optimum offset range selection 101
4.2 Unified Wavefield Transformation (UWFT) 109
4.2.1 Different transformations and presentations of space domain 109
4.2.2 Characteristics of wavefield transformation in different domains 111
4.2.3 Optimization of dispersion analysis 124
4.3 Data sampling of dispersion curve 129
4.4 The proposed standard dispersion analysis 132
5 Conclusion and suggestion 134
5.1 Conclusion 134
5.2 Suggestion 138
6 Reference 139
Aki, K. and Richards, P. G., (2002), “Quantitative seismology, theory and method”, Vol. 2, San Francisco: Freeman
Achenbach, J. D., (1973), “Wave propagation in elastic solids”, North-Holland publishing company
Alleyne, D., and Cawley, P. (1990), “A two-dimensional Fourier Transform method for the propagating multimode signals”, Journal of the Acoustical Society of America, 89(3): 1159–1168.
Beaty, K., (2000), “Determination of near-surface variability using Rayleigh waves”, Master thesis, University of Alberta
Beaty, K., D. R. Schmitt and M. Sacchi, (2002), “Simulated annealing inversion of multimode Rayleigh waves dispersion curves for geological structure”, Geophys. J. Internat. 151, pp 622-631
Boore, D. M., (1972), “Finite difference methods for seismic wave propagation in heterogeneous materials”, Methods in computational physics, Ed. B. A. Bolt, pp. 1-37, Academic Press
Bellotti, R., Ghionna, V.N., Jamiolkowski, M., and Robertson, P.K., (1989), “Design Parameters of Cohesionless Soils from In-Situ Tests.”, Specialty Session on In-Situ Testing of Soil Properties for Transportation Facilities, Sponsored by Committee A2L02-Soil and Rock Properties, National Research Council, Transportation Research Board, Washington, January
Cuellar, V., (1997), “Geotechnical application of the spectral analysis of surface waves”, in Modern geophysics in engineering geology, Eds. D. M. McCann, M. Eddleston, P. J. Fenning, and G. M. Reeves, pp. 53-52, Geological Society Engineering Geology Special Publication no.12
Das, B. M., (1993), “Principles of soil dynamics”, PWS-KENT Publiching Company
Dobry, R., Borcherdt, R.D., Crouse, C.B., Idriss, I.M., Joyner, W.B., Martin, G.R., Power, M.S., Rinne, E.E., and Seed, R.B. (2000), “New site coefficients and site classification system used in recent building seismic code provisions”, Earthquake Spectra 16(1), 41–67.
Doyle H., (1995) “Seismology”, J. Wiley & sons, Chichester
Electric Power Research Institute. (1991), Proceedings: “NSF/EPRI Workshop on Dynamic Soil Properties and Site Characterization”, Report NP-7337, Vol. 1, Research Project 810-14.
Electric Power Research Institute. (1993). “Guidelines for Determining Design Basis Ground Motions” Vol. I: Methods and Guidelines for Estimating Earthquake Ground Motion in Eastern North America. EPRI TR-102293 Project 3302
Ewing, W. M., Jardetzky, W. S., and Press, F., (1957), “Elastic waves in layered media”, McGraw-Hill book company, Inc..
Forbriger, T., (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation”, Geophys. J. int. (2003) 153, pp 719-734
Forbriger, T., (2003), “Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms”, Geophys. J. int. (2003) 153, pp 735-752
Forchap, E.A., and Schmid, G., (1998), “Experimental determination of Rayleigh-wave mode velocities using the method of wave number analysis”, Soil Dynamics and Earthquake Engineering, 17: 177–183.
Foti, S. and Fahey, M., (2003), “Applications of multistation surface wave testing”, Proceedings of the 3rd International Symposium on Deformation Characteristics of Geomaterials, Lyon, France; 2003. p. 13-19.
Foti, S., (2000), “Multistation method for geotechnical characterization using surface waves”, Ph. D. thesis, Politecnico di Torino
Futterman, W. I., (1962), “Dispersive body waves”, J. Geophys. Res. 67(1962), no. 13, pp. 893-912
Ganji, V., Gucunski, N. and Nazarian, S., (1998) , “Automated inversion procedure for spectral analysis of surface waves”, J. Geotech. And Geoenv. Eng. 124(1998), no.8, pp757-769
Haskell, N. A., (1953), “the dispersion of surface waves on multilayered media”, Bull. Seism. Soc. Am. 43(1953), no. 1, pp 17-34
Hunaidi, O., (1998), “Evolution-based genetic algorithms for analysis of non-destructive surface wave tests on pavement”, NDTGE Int. 31(1998), no 4, pp. 273-280
Ishibashi, I. (1992). Discussion to “Effect of Soil Plasticity on Cyclic Response.”, by M. Vucetic and R. Dobry, Journal of Geotechnical Engineering, ASCE, Vol.118, No.5, pp.830- 832.
Ishihara, K., (1996), “Soil Behaviour in Earthquake Geotechnics.”, Oxford Science Publications, Oxford, UK
Kausel, E. and Roesset, J. M., (1981), “Stiffness matrices for layered soils”, Bull. Seism. Soc. Am. 71(1981), no. 6, pp 1743-1761
Kennett, B. L. N., (1974), “Reflections, rays and reverberations”, Bull. Seism. Soc. Am. 64(1974), no. 6, pp 1685-1696
Kennett, B. L. N., (1983), “Seismic wave propagation in stratified media”, Cambridge university press
Kramer, S. L., (1996), “Geotechnical earthquake engineering”, Prentice Hall
Lai, C. G. and Rix, G. J., (1998), “Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization”, Report No. CIT-CEE/GEO-98-2, Georgia Institute of Technology
Lay, T., Wallace, T. C., (1995), “Modern global seismology”, Academic press
Lin, C. P., Chang, C. C., Chang, T. S., (2004), “The use of MASW method in the assessment of soil liquefaction potential”, J. Soil Dynamics and Earthquake Engineering, Vol 24/9-10, pp 689-698.
Lin, C. P., Chang, T. S., (2004), “Multi-station Analysis of Surface Wave Dispersion”, J. Soil Dynamics and Earthquake Engineering, Vol 24/11, pp. 877-886.
Lin,,C. P., Chang, T. S. and Cheng, M. H., (2003), “Shear-wave velocities from multi-station analysis of surface wave”, Proceedings of the 3rd International Symposium on Deformation Characteristics of Geomaterials, Lyon, France; 2003. p. 1335-1343.
Lin, C. P., Lin, C. H., (2007), “Effect of lateral heterogeneity on surface wave testing: Numerical simulations and a countermeasure”, J. Soil Dynamics and Earthquake Engineering, 27 (2007), pp. 541–552.
Lo Presti, D.C.F., (1987), “Behavior of Ticino Sand During Resonant Column Tests.”, Ph.D. Thesis, Politecnico di Torino, Torino, Italy
Lu, L. Y., and Zhang, B. X., (2004), “Analysis of dispersion curves of Rayleigh waves in the frequency–wavenumber domain”, Can. Geotech. J. 41: 583–598
Lysmer, J. and Drake, L. A., (1972), “A finite element method for seismology”, Methods in computational physics, Ed. B. A. Bolt, pp. 181-216, Academic Press
Mackenzie, G. D., Maguire, P. K. H., Denton, P., Morgan, J. and Warner, M., (2001), “Shallow seismic velocity structure of the Chicxulub impact crater from modeling of Rg dispersion using a genetic algorithm”, Tectonogeophysics, 338(2001), pp. 97-112
Malischewsky, P., (1987), “Surface waves and discontinuities”, Elsevier scientific publishing company
McMechan G.A., Yedlin M.J., (1981), “Analysis of dispersive waves by wave field transformation”, Geophysics, vol. 46, pp. 869-874
Meier, R. W. and Rix, G. J., (1993), “An initial study of surface wave inversion using artificial neural networks”, Geotechnical testing journal, 16(1993), no 4, pp. 425-431
O’Neill, A., “Full waveform reflectivity for inversion of surface wave dispersion in shallow site investigations”, Proc. 2nd Int. Conf. on Site Char. (ISC-2), Portugal, Sep 2004
O’Neill, A., “Shear velocity model appraisal in shallow surface wave inversion”, Proc. 2nd Int. Conf. on Site Char. (ISC-2), Portugal, Sep 2004
O’Neill, A., (2003), “Full-waveform reflectivity for modeling inversion and appraisal of seismic surface wave dispersion in shallow site investigation”, Ph. D. thesis, University of Western Australia
Robinson, E. A., (1982), “Spectral approach to geophysical inversion by Lorentz, Fourier and Radon transforms”, Processing IEEE (1982), vol. 70, pp. 1039-1054.
Park, C. B., Xia, J., and Miller, R. D., (1998a), Ground roll as a tool to image near-surface anomaly: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 874–877.
Park, C. B., Xia, J., and Miller, R. D., (1998b), Imaging dispersion curves of surface waves on multichannel record: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1377–1380.
Park, C. B., Miller, R. D. and Xia, J., (1999), “Multichannel analysis of surface waves”, Geophysics, vol. 64, no3 (1999), pp. 800-808
Park, C.B., Miller, R.D., and Miura, H., (2002), “Optimum field parameters of an MASW survey”, [Exp.Abs.]: SEG-J, Tokyo, May 22-23, 2002.
Prokis J. G., Manolakies D. G., (1992),“Digital signal processing-principles, algorithms, and applications”, 3rd ed. New Jersey, Prentice Hall
Richart, F. E. Jr., Woods, R. D. and Hall, J. R. Jr., (1970), “Vibration of soils and foundation”, Prentice-Hall publishing company
Rix, G. J., (1988), “Experimental study of factors affecting the Spectral- Analysis- of- Surface- Waves method”, Ph. D. thesis, University of Texas at Austin
Rix, G. J., Stokoe, K. H. II and Roesset, J. M., (1990), “Experimental determination of surface wave mode contribution”, Soc., Expl. Geophys. 60th Ann. Internat. Mtg. (Soc., Expl. Geophys., 1990), pp 447-450
Sabetta, F. and Bommer, J. (2002), “Modification of the spectral shapes and subsoil conditions in Eurocode 8”, 12th Europ. Conf. Earthq. Engin, paper ref. 518.
Sheriff, Gelfart, (1982), “Exploration seismology, Vol. 1, history, theory and acquisition”, Cambridge university press
Stokoe, K. H. II, Wright, G. W., James, A. B. and Jose, M. R., (1994), “Characterization of geotechnical sites by SASW method”, in Woods, R. D., Ed., Geophysical characterization of sites: Oxford Publ.
Strobbia, C., Foti, S., (2006), “Multi-offset phase analysis of surface wave data (MOPA)”, J. of Applied Geophysics 59 (2006) 300– 313
Takeuchi, H. and Saito, M., (1972), “Seismic surface waves”, Methods in computational physics, Ed. B. A. Bolt, pp. 217-294, Academic Press
Thomson, W. T., (1950), “Transmission of elastic waves through a stratified solid medium”, J. Appl. Phys. 21(1950), no. 2, 89-93
Tolstoy, I., (1978), “Wave propagation”, McGraw-Hill book company, Inc.
Vucetic, M., and Dobry, R. (1991). “Effect of Soil Plasticity on Cyclic Response.” J. Geotechnical Engineering, ASCE, 117(1), 89-107.
Vucetic, M. (1994). “Cyclic Threshold Shear Strains in Soils.”, J. of Geotechnical Engineering, ASCE, Vol.120, No.12, pp.2208-2228.
Wang, C. Y., Herrmann, R. B., (1980), “A numerical study of P-, SV- and SH-wave generation in a plane layered medium”, Bulletin of the seismologica society of America, vol. 70, 1980. p. 1015-36.
Wang, C.Y., (1981), “Wave theory for seismogram synthesis”, Ph.D. Dissertation, Saint Louis University
Watkins, D. J., Lysmer, J. and Monismith, C. L., (1974), “Nondestructive pavement evaluation by the wave propagation method”, Report no. TE-74-2, University of Berkeley
Williams, T. P. and Gucunski, N., (1995), “Neural networks for backcalculation of moduli from SASW test”, 9(1995), no. 1, pp 1-8.
Xia, J., Miller, R. D. and Park, C. B., (2003), “Inversion of higher mode frequency surface wave with fundamental and higher modes”, J. Appl. Geophys. 52(2003), pp 45-57
Xia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B. and Ivanov, J., (2002), “Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements”. Soil Dynamics and Earthquake Engineering; 2002(22):181-190.
Xia, J., Miller, R. D. and Park, C. B., (2000), “Advantages of calculating shear wave velocity from surface wave with higher modes”, Soc. Expl. Geophys. 69th Ann. Internat. Mtg. (Soc. Expl. Geophys, 2000), pp. 1295-1298
Xia, J., Miller, R. D. and Park, C. B., (1999), “Estimation of near surface shear wave velocity by inversion of Rayleigh wave”, Geophysics, vol. 64, no3 (1999), pp. 691-700
Yamanaka, H. and Ishida, H., (1996), “Application of genetic algorithm to an inversion of surface wave dispersion data”, Bull. Seism. Soc. Am., 86(1996), no. 2, pp. 436-444

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊