跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方振洲
研究生(外文):Fong, Chen-Joe
論文名稱:福衛三號大氣遙測星系效能及部署技術挑戰與展望
論文名稱(外文):FORMOSAT-3 Constellation Performance, Deployment Challenges, and Prospect for Atmospheric Remote Sensing
指導教授:祁甡祁甡引用關係
指導教授(外文):Chi, Sien
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:118
中文關鍵詞:福衛三號福爾摩沙衛星三號衛星全球定位系統全球導航衛星系統無線電掩星星系部署操作挑戰系統效能數值氣象預報氣候遙測大氣
外文關鍵詞:FORMOSAT-3COSMICSpacecraftSatelliteGNSSGPSRadio Occultation (RO)Constellation DeploymentSystem PerformanceOperation ChallengeNumerical Weather PredictionClimateRemote Sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
全球導航衛星系統(GNSS)無線電掩星(Radio Occultation,簡稱RO)技術有別於傳統的衛星微波輻射計,是一個利用地球尺度的幾何光學折射原理用於大氣遙測的先進邊緣探空太空遙測技術。此技術主要係接收經過地球遮掩的GNSS衛星所傳送的電磁波折射信號,由電磁波訊號穿過電離層和大氣層時受電子密度、溫度、壓力、及水氣等影響而改變信號的時間延遲,反演推算行進路徑下的電離層和大氣層相關的資料。福爾摩沙衛星三號(FORMOSAT-3,簡稱福衛三號)任務,又名「氣象、電離層及氣候之衛星星系觀測系統」(Constellation Observing System for Meteorology, Ionosphere and Climate,簡稱COSMIC)任務,係由六顆同型實驗微衛星組成,是世界上第一個進行全球氣象監測的近實時運作展示的GPS RO衛星星系觀測系統。福衛三號於2006年4月中旬,在美國加州的范登堡空軍基地發射升空到地表516公里的暫駐軌道上。六顆衛星本體完成入軌健康檢查之後,開始進行三個衛星酬載包括GPS氣象量測儀(簡稱GOX)、小型電離層光度計及三頻段信標儀的一系列入軌儀器健康檢查、校正及實驗。隨後展開星系部署工作,前後共歷經19個月,近500次軌道轉換,每一顆衛星分別升軌到高度約800公里的全球均等分佈的六個軌道面上,福衛三號成為世界上第一個利用先進的地球進動理論進行星系部署的系統。微衛星的質量參數資料,將可供學術進行後續大地重力場量測及研究。目前每天觀測大約1,800~2,200個大氣層和電離層剖面資料點,提供給氣象操作中心和科學研究團隊進行氣象預報及分析用。經過全球氣象單位的資料評估及驗證,福衛三號對目前運作中的全球氣象預報模式及颱風及颶風軌跡路徑預測產生正面的影響,並可用以監測全球氣候變遷。利用先進的開迴路技術,福衛三號比之前的CHAMP任務所提供的RO資料,更深入穿透到對流層以下以探測大氣層的變化。由於福衛三號的優異科學成就,後續任務將進一步由實驗型轉換成作業型的任務,並計畫同時接收GPS/GALILEO/GLONASS系統的資料。本博士論文論述福衛三號星系任務的無線電掩星理論、星系部署原理、升軌操作技術、星系操作結果及所面臨的操作挑戰、及如何利用先進進動理論完成世界上第一個星系部署系統的寶貴操作經驗及成果,並敘述後續任務的任務分析及攜帶GNSS RO量測儀酬載的衛星概念設計。
The FORMOSAT-3/COSMIC (FORMOsa SATellite mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate) satellites were successfully launched in California on April 15, 2006 into a 516 km orbit plane. The FORMOSAT-3 mission consisting of six low-earth-orbiting satellites is the world’s first demonstration of near real-time operational Global Positioning System (GPS) radio occultation (RO) mission for global weather monitoring. After six spacecraft bus in-orbit checkout activities were completed, the mission was started immediately at the parking orbit for in-orbit checkout, calibration, and experiment of three onboard payload instruments: GPS occultation receiver (GOX), Tiny Ionospheric Photometer (TIP), and Tri-Band Beacon (TBB). Individual spacecraft was then maneuvered into six separate orbit planes of ~800 km with evenly distributed global coverage. FORMOSAT-3 mission has verified a novel “proof-of-concept” way of performing constellation deployment by taking the advantage of nodal precession. The received RO data have been processed into 1,800 to 2,200 good atmospheric and ionospheric profiles per day, respectively. The processed atmospheric RO data have been assimilated into Numerical Weather Prediction (NWP) model for near real-time weather prediction and typhoon/hurricane/cyclone forecasting by global weather centers which have shown significant positive impact. With the advent of the open-loop technique, the quality, the accuracy and the lowest penetration altitude of the RO sounding profiles are better than CHAMP data. Due to the great success of this innovative FORMOST-3 mission, the goal of the follow-on mission is to transfer FORMOSAT-3 mission from research to operational with GPS, Galileo, and GLONASS tracking capabilities. In this dissertation we present the Global Navigation Satellite Systems (GNSS) RO theory, the constellation deployment theory, the constellation deployment results, the mission challenges, and the lessons learned. We also present the spacecraft system performance, the follow-on mission trade analysis results, and new spacecraft constellation system conceptual design with a next-generation GNSS RO receiver onboard.
Table of Contents
Chinese Abstract i
English Abstract ii
Acknowledgements iv
Table of Contents v
List of Table vi
List of Figures vii
Nomenclature ix
Chapter 1 Introduction 1
1.1 History of Occultation 1
1.2 GNSS Radio Occultation 2
1.3 FORMOSAT-3 Mission 3
1.4 F3 System 5
1.5 F3 Follow-on Mission 6

Chapter 2 Radio Occultation Theory and Constellation Deployment Principle 11
2.1 Introduction 11
2.2 The GNSS Radio Occultation Theory 11
2.3 Constellation Deployment Principle 15
2.4 Conclusion 17

Chapter 3 Constellation Deployment 21
3.1 Introduction 21
3.2 Spacecraft System for Orbit Raising, and Flight Dynamics 21
3.3 Constellation Deployment Plan Evolution 26
3.4 Constellation Deployment Results 27
3.5 Conclusion 29

Chapter 4 Challenges of Constellation Mission Operations 42
4.1 Introduction 42
4.2 Constellation Mission Operation 42
4.3 Constellation Operations Challenges 45
4.4 Payload Operation Challenges 48
4.5 Constellation Deployment Challenges 51
4.6 Conclusion 53

Chapter 5 Constellation Spacecraft System Performance 61
5.1 Introduction 61
5.2 Constellation Spacecraft SystemPerformance Summary 61
5.3 Spacecraft Subsystem On-Orbit Performance Summary 62
5.4 GOX Payload Science Performance Results 64
5.5 Conclusion 66

Chapter 6 Follow-On Mission Trade Analysis and Design 77
6.1 Introduction 77
6.2 Follow-On Mission Definition Trade Analysis Results 77
6.3 Follow-On Mission System Architecture and System Design 82
6.4 Conclusion 84

Chapter 7 Conclusions 94
Reference 95
Appendix Acronyms and Abbreviations 104
Autobiography 111
References
1. W. G. Melbourne, E. S. Davis, C. B. Duncan, G. A. Hajj, K. R. Hardy, E. R. Kursinski, T. K. Meehan, L. E. Young, and T. P. Yunck, “The application of spaceborne GPS to atmospheric limb sounding and global change monitoring,” Jet Propulsion Laboratory, Pasadena, CA, JPL Publication 94-18, Apr. 1994.
2. G. Fjeldbo and V. R. Eshleman, “The bistatic radar-occultation method for the study of planetary atmospheres,” J. Geophys. Res., vol. 70, pp. 3217-3225, 1965.
3. E. R. Kursinski, G. A. Hajj, S. S. Leroy, and B. Herman, “The GPS occultation technique,” Terrestrial, Atmospheric and Oceanic Sciences (TAO), vol. 11, no. 1, pp. 53-114, Mar. 2000.
4. A. J. Kliore, D. L. Cain, G. S. Levy, V. R. Eschleman, G. Fjeldbo, and F. D. Drake, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science, vol. 149, no. 3689, pp. 1243-1248, Sep. 1965.
5. W. G. Melbourne, Radio Occultation Using Earth Satellites: A Wave Theory Treatment, John Wiley & Sons, Inc., ISBN 0-471-71222-1, 2005.
6. T. P. Yunck, C. H. Liu and R. Ware, “A history of GPS sounding,” Terrestrial, Atmospheric and Oceanic Sciences (TAO), vol. 11, no. 1, pp. 1-20, Mar. 2000.
7. B. Lusignan, G. Modrell, A. Morrison, J. Pomalaza, and S. G. Ungar, “Sensing the Earth's atmosphere with occultation satellites,” Proc. IEEE, vol. 57, no. 4, pp. 458-467, Apr. 1969.
8. A. S. Liu, “On the determination and investigation of the terrestrial ionospheric refractive indices using GEOS-3/ATS-6 satellite-to-satellite tracking data,” Jet Propulsion Laboratory, Pasadena, CA, NASA-CR-156848, Nov. 1978.
9. O. Yakovlev, I. Matyugov, and I. A. Vilkov, “Radio-wave phase and frequency fluctuations as observed in radio occultation experiments on the satellite-to-satellite link,” Journal of Communications Technology and Electronics, vol. 41, no. 11, pp. 993-998, Nov. 1996.
10. J. L. Davis, T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, “Geodesy by radio interferometery: Effects of atmospheric modeling errors on estimates of baseline length,” Radio Sci., vol. 20, no. 6, pp. 1593-1607, 1985.
11. G. Elgered, B. Stoew, L. Gradinarsky, and H. Bouma, “Analysis of atmospheric parameters derived from ground-based GPS observations,” Proc. Int. Workshop on GPS Meterology, Tsukuba, Japan, 14-17 Jan. 2003.
12. S.-Y. Ha, Y.-H. Kuo, and G.-H. Lim, Assimilation of GPS slant wet delay data and its impact on the short-range NWP, Proc. Int. Workshop on GPS Meterology, Tsukuba, Japan, 14-17 Jan. 2003.
13. T. P. Yunck and G. A. Hajj, “Global navigation satellite sounding of the atmosphere and GNSS altimetry: prospects for geosciences,” IUGG General Assembly, Sapporo, Japan, 8-11 Jul. 2003.
14. ──, W. G. Melbourne, and C. L. Thornton, “GPS-based satellite tracking system for precise positioning,” IEEE Trans. Geosci. Remote Sens., vol. GE-23, no. 4, pp. 450-457, Jul. 1985.
15. ──, G. F. Lindal, and C. H. Liu, “The role of GPS in precise Earth observations,” in Proc. IEEE: Position Location and Navigation Symposium, 1988. Record. 'Navigation into the 21st Century'. IEEE PLANS '88, 29 Nov.-2 Dec. 1988.
16. ──, S. C. Wu, J. T. Wu, and C. L. Thornton, “Precise tracking of remote sensing satellites with the global positioning system” IEEE Trans. Geosci. Remote Sens., vol. 28, no.1, pp. 108-116, Jan. 1990.
17. S. C. Wu and W. G. Melbourne, “An optimal GPS data processing technique for precise positioning,” IEEE Trans. Geosci. Remote Sens., vol. 31, no. 1, pp. 146-152, Jan. 1993.
18. R. Ware, C. Rocken, F. Solheim, M. Exner, W. Schreiner, R. Anthes, D. Feng, B. Herman, M. Gorbunov, S. Sokolovskiy, K. Hardy, Y. Kuo, X. Zou, K. Trenberth, T. Meehan, W. Melbourne, and S. Businger, “GPS sounding of the atmosphere from low earth orbit: Preliminary results,” Bulletin of the American Meteorological Society (BAMS), vol. 77, no. 1, pp. 19-40, Jan. 1996.
19. E. R. Kursinski, G. A. Hajj, W. I. Bertiger, S. S. Leroy, T. K. Meehan, L. J. Romans, J. T. Schofield, D. J. McCleese, W. G. Melbourne, C. L. Thornton, T. P. Yunck, J. R. Eyre, and R. N. Nagatani, “Initial results of radio occultation observations of Earth’s atmosphere using the Global Positioning System,” Science, vol. 271, no. 5252, pp. 1107-1110, Feb. 1996.
20. A. Rius, G. Ruffini, and A. Romeo, “Analysis of ionospheric electron-density distribution from GPS/MET occultations,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 2, pp. 383-394, Mar. 1998.
21. R. A. Anthes, C. Rocken and Y. H. Kuo, “Application of COSMIC to meteorology and climate,” Terrestrial, Atmospheric and Oceanic Sciences (TAO), vol. 11, no. 1, pp. 115-156, Mar. 2000.
22. G. A. Hajj, L. C. Lee, X. Pi, L. J. Romans, W. S. Schreiner. P. R. Straus and C. Wang, “COSMIC GPS ionospheric sensing and space weather,” Terrestrial, Atmospheric and Oceanic Sciences (TAO), vol. 11, no. 1, pp. 235-272, Mar. 2000.
23. Y.-H. Kuo, S. Sokolovskiy, R. Anthes, and V. Vandenberghe, “Assimilation of GPS radio occultation data for numerical weather prediction,” Terrestrial, Atmospheric and Oceanic Sciences (TAO), vol. 11, no. 1, pp. 157–186, Mar. 2000.
24. L.-C. Lee, R. Kursinski, and C. Rocken, Ed., Applications of Constellation Observing System for Meteorology, Ionosphere & Climate: Observing System for Meteorology Ionosphere and Climate, Springer, ISBN 9624301352, 2001.
25. Y.-A. Liou, A. G. Pavelyev, C.-Y. Huang, K. Igarashi, and K. Hocke, “Simultaneous observation of the vertical gradients of refractivity in the atmosphere and electron density in the lower ionosphere by radio occultation amplitude method,” Geophys. Res. Lett., vol. 29, no. 19, pp. 43-1-43-4, doi: 10.1029/2002GL015155, 2002.
26. ──, ──, ──, ──, ──, and S.-K. Yan, “An analytic method for observing the gravity waves using radio occultation data,” Geophys. Res. Lett., vol. 30, no. 20, pp. 2021, doi: 10.1029/2003GL017818, 2003.
27. ──, --, J. Wickert, T. Schmidt, and A. A. Pavelyev, “Analysis of atmospheric and ionospheric structures using the GPS/MET and CHAMP radio occultation database: a methodological review,” GPS Solutions, vol. 9, no. 2, 122-143, doi: 10.1007/s10291-005-0141-y, 2005.
28. C.-Z. F. Cheng, Y.-H. Kuo, R. A. Anthes, and L. Wu, “Satellite constellation monitors global and space weather,” EOS Trans. Amer. Geophy. Union, vol. 87, no. 17, pp. 166-167, Apr. 2006.
29. Y.-A. Liou, A. G. Pavelyev, S.-F. Liu, A. A. Pavelyev, N. Yen, C.-Y. Huang, and C.-J. Fong, “FORMOSAT-3 GPS radio occultation mission: preliminary results,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, doi: 10.1109/TGRS.2007.903365, Nov. 2007.
30. R. A. Anthes, P. A. Bernhardt, Y. Chen, L. Cucurull, K. F. Dymond, D. Ector, S, B. Healy, S.-P. Ho, D. C. Hunt, Y.-H. Kuo, H. Liu, K. Manning, C. McCormick, T. K. Mehan, W. J. Randel, C. Rocken, W. S. Schreiner, S. V. Sokolovskiy, S. Syndergaard, D. C. Thompson, K. E. Trenberth, T. K. Wee, N. L. Yen, and Z. Zeng, “The COSMIC/FORMOSAT-3 mission: early results,” Bulletin of the American Meteorological Society (BAMS), doi: 10.1175/BAMS-89-3-313, Mar. 2008.
31. C.-J. Fong, C.-Y. Huang, C.-H. Chu, N. L. Yen, Y.-H. Kuo, Y.-A. Liou, and S. Chi., “Mission results from FORMOSAT-3/COSMIC constellation system,” AIAA J. Spacecraft and Rockets, vol. 45, no. 6, doi: 10.2514/1.34427, Nov./Dec. 2008.
32. ──, N. Yen, V. Chu, E. Yang, A. Shiau, C.-Y. Huang, S. Chi, S.-S. Chen, Y.-A. Liou and, Y. H. Kuo, “FORMOSAT-3/COSMIC spacecraft constellation system, mission results, and prospect for follow-on mission,” Terrestrial, Atmospheric and Oceanic Sciences (TAO), vol. 20, no. 1, Feb. 2009.
33. C.-Y. Huang, C. Z. Cheng, P. H. Lin, C.-J. Fong, J. Wicker, and C. C. Hsiao, “Radio occultation retrieval of atmospheric profiles in the FORMOSAT-3/COSMIC mission: current status,” Terrestrial, Atmospheric and Oceanic Sciences (TAO), vol. 20, no. 1, Feb. 2009.
34. C.-H. Vicky Chu, N. Yen, C.-C. Hsiao, C.-J. Fong, S.-K. Eddy Yang, T.-Y. Liu, M. Lin, and J.-J. Miau, “Earth observations with orbiting thermometers – prospective FORMOSAT-3/COSMIC follow-on mission,” Small Satellite Conference 2008 Proceedings, Logan, Utah, 11-14 Aug. 2008.
35. C.-J. Fong, N. Yen,.C.-H. Chu,.C.-C. Hsiao, Y.-C. Lin, S.-S. Chen, Y.-A. Liou, and S. Chi, “In quest of global radio occultation mission for meteorology beyond 2011,” 2009 IEEE Aerospace Conference Proceedings, Big Sky, MT, 7-14 Mar. 2009. (to be published)
36. ──, ──, ──, ──, Y.-A. Liou, and S. Chi, “Space-based global weather monitoring system – FORMOSAT-3/COSMIC constellation and its follow-on mission,” AIAA J. Spacecraft and Rockets, Submitted on 24 Sep. 2008, to be published.
37. Y.-H. Kuo, T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, “Inversion and error estimation of GPS radio occultation data,” Journal of the Meteorological Society of Japan, vol. 82, no. 1B, pp. 507-531, doi:10.2151/jmsj.2004.507, 2004.
38. ──, H. Liu, Z. Ma, , and Y.-R. Guo, “The impact of FORMOSAT-3/COSMIC GPS radio occultation,” 4th Asian Space Conference and 2008 FORMOSAT-3/COSMIC International Workshop, Taipei, Taiwan, 1-3 Oct. 2008.
39. C. Rocken, Y.-H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, C. McCormick, “COSMIC system description,” Terrestrial, Atmospheric and Oceanic Sciences (TAO), vol. 11, no. 1, pp. 21-54, Mar. 2000.
40. B.-H. Wu, C.-J. Fong, C.-Y. Huang, Y.-A. Liou, N. Yen, and P. Chen, “FORMOSAT-3/COSMIC mission to global earth weather monitoring, operation, and TACC/CDAAC post-processing,” 86th AMS Annual Meeting,-14th conf. satellite meteorology and oceanography, Atlanta, GA, 29-2 Feb. 2006.
41. WMO Secretariat, Workshop on the “Redesign and Optimization of the Space Based Global Observing System, Outcome of the OPT-2 Workshop,” ETSAT/SUP3/Doc. 5(1), World Meteorological Organization, Geneva, Switzerland, 21-22 Jun. 2007.
42. M. Born and E. Wolf, Principles of Optics, 6th Ed., Oxford, United Kingdom: Pergamon Press, 1980.
43. S. Sokolovskiy, Y.-H. Kuo, C. Rocken, W.S. Schreiner, D. Hunt, and R.A. Anthes, “Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode,” Geophysical Research Letters, vol.33, no. L12813, pp. 1-4, doi:10.1029/2006GL025955, 2006.
44. ──, “Modeling and inverting radio occultation signals in the moist troposphere,” Radio Sci., vol. 36, no. 3, pp. 441-458, 2001.
45. ──, “Tracking tropospheric radio occultation signals from low Earth orbit,” Radio Sci., vol. 36, no. 3, pp. 483-498, 2001.
46. D. D. Feng and M. Herman, “Remote sensing the Earth’s atmosphere using the global positioning system (GPS)—The GPS/MET data analysis” J. Atmos. Ocean. Technol., vol. 16, no.8, pp. 989–1002, Aug. 1999.
47. M. D. Mortensen and P. Hoeg, “Inversion of GPS occultation measurements using Fresnel diffraction theory,” Geophys. Res. Lett., vol. 25, no. 13, pp. 2441–2444, 1998.
48. M. E. Gorbunov, “Three-dimensional satellite refractive tomography of the atmosphere: Numerical simulation” Radio Sci., vol. 31, no. 1, pp. 95– 104, 1996.
49. ── and A. S. Gurvich, “Microlab-1 experiment: multipath effects in the lower troposphere,” J. Geophys. Res., vol. 103, no. D12, pp. 13 819–13 826, 1998.
50. K. Igarashi, A. Pavelyev, J. Wickert, K. Hocke, and D. Pavelyev, “Application of radio holographic method for observation of altitude variations of the electron density in the mesosphere/lower thermosphere using GPS/MET radio occultation data,” J. Atmos. Sol.-Terr. Phys., vol. 64, no. 8–11, pp. 959–969, May 2002.
51. A. G. Pavelyev, Y.-A. Liou, C. Reigber, J. Wickert, K. Igrashi, K. Hocke, and C. Y. Huang, “GPS radio holography as a tool for remote sensing of the atmosphere and mesosphere from space,” GPS Solut., vol. 6, no. 1/2, pp. 100–108, doi: 10.1007/s10291-002-0025-3, 2002.
52. ──, T. Tsuda, K. Igarashi, Y.-A. Liou, and K. Hocke, “Wave structures in the electron density profile in the ionospheric D- and E-layers observed by radio holography analysis of the GPS/MET radio occultation data,” J. Atmos. Sol.-Terr. Phys., vol. 65, no. 1, pp. 59–70, Jan. 2003.
53. A. S. Jensen, M. S. Lohmann, H.-H. Benzon, and A. S. Nielsen, “Full spectrum inversion of radio occultation signals,” Radio Sci., vol. 38, no. 3, p. 1040, 2003.
54. M. E. Gorbunov, “Ionospheric correct and statistical optimization of radio occultation data,” Radio Sci., vol. 37, no. 5, pp. 1084-1092, doi:10.1029/2000RS002370, Oct. 2002.
55. Y.-A. Liou and C.-Y. Huang, “Active limb sounding of atmospheric refractivity and dry temperature profiles by GPS/Met occultation,” Proc. COSPAR Colloquia Series, Taipei, Taiwan, vol. 12, pp. 325–328, Sep. 2002.
56. T.-C. Chiu, Y.-A. Liou, W.-H. Yeh, and C.Y. Huang, “NCURO Data-Retrieval Algorithm in FORMOSAT-3 GPS Radio-Occultation Mission,” IEEE Trans. Geosc. Remot. Sens., vol. 46, no. 11, pp. 3395-3405, Nov. 2008.
57. C.-J. Fong, W.-T. Shiau, C.-T. Lin, T.-C. Kuo, C.-H. Chu, S.-K. Yang, N. L. Yen, S.-S. Chen, Y.-H. Kuo, Y.-A. Liou, and S. Chi, “Constellation deployment for FORMOSAT-3/COSMIC mission,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, doi: 10.1109/TGRS.2008.2005202, Nov. 2008
58. W.-T. Shiau and R. Kuo, “FORMOSAT-3 constellation deployment plan,” National Space Organization, Hsin-Chu, Taiwan, Tech. Rep. NSPO-PLAN-0009_0000, Jun. 2006.
59. J. R. Wertz Ed., “Summary of orbit properties and terminology – Spacecraft Orbits,” in Spacecraft Attitude Determination and Control, Dordrecht, Netherlands, Kluwer Academic Publishers, ch. 3, sec. 3, Eq. (3-41d), p.68, 1978.
60. C.-J. Fong, N. Yen, V. Chu, S.S. Chen, and S. Chi, “Operations challenges from the FORMOSAT-3/COSMIC constellation for global Earth weather monitoring,” in IEEE 2007 Aerospace Conference Proc., Big Sky, MT, doi: 10.1109/AERO.2007.352986, pp. 1-14, 3-10 Mar. 2007.
61. --, S.-K. Yang, C.-H. Chu, J.-J. Yeh, C.-T. Lin, T.-C. Kuo, T.-Y. Liu, N. L. Yen, S.-S. Chen, C.-Y. Huang, Y.-H. Kuo, Y.-A. Liou, and S. Chi, “FORMOSAT-3/COSMIC constellation spacecraft system performance: after one-year in orbit,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11. doi: 10.1109/TGRS.2008.2005203, Nov. 2008
62. J. A. King, N. J. Beidleman, “Method and apparatus for deploying a satellite network,” U.S. Patent 5 199 672, 25 May 1990.
63. C. Hwang, T.-P. Tseng, T. Ling, D. Švehla, and B. Schreiner, “Precise orbit determination for the FORMOSAT-3/COSMIC satellite mission using GPS,” J. of Geod., doi 10.1007/s00190-008-0256-3, Aug. 2008.
64. ──, T.-J. Lin, T.-P. Tseng, and B. F. Chao, “Modeling orbit dynamics of FORMOSAT-3/COSMIC satellites for recovery of temporal gravity variations” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3412-3423, doi: 10.1109/TGRS.2008.2004789, Nov. 2008.
65. C.-J. Fong, C.-H. Chu, R. Lo, and N. L. Yen, “The FORMOSAT-3/COSMIC FM6 67-days-outage event,” S12-06, 4th Asian Space Conference and 2008 FORMOSAT-3/COSMIC Data Users Workshop, Taipei, Taiwan, Oct. 1-3, 2008.
66. ──, ──, S.-K. Yang, J.-J. Yeh, C.-T. Lin, T.-C. Kuo, R. Lo, T.-Y. Liu, and Nick Yen, “The FORMOSAT-3/COSMIC constellation spacecraft system performance: after two years in orbit” C22-04, 4th Asian Space Conference and 2008 FORMOSAT-3 / COSMIC Data Users Workshop, Taipei, Taiwan, 1-3 Oct. 2008.
67. C.-H. Chu, N. Yen, C.-C. Hsiao, C.-J. Fong, S.-K. Yang, T.-Y. Liu, M. Lin, and J.-J. Miau, “Earth observations with orbiting thermometers - prospective FORMOSAT-3/COSMIC follow-on mission,” 22nd Annual AIAA/USU Conference on Small Satellites, SSC008-II-02, Logan, Utah, 11-14 Aug. 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊