跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎宇泰
研究生(外文):Li, Yu-Tai
論文名稱:光電式次兆赫波發射器及其應用之研究
論文名稱(外文):A Study of Sub-THz Impulse Radio Photonic Devices and Application
指導教授:潘犀靈趙如蘋
指導教授(外文):Pan, Ci-LingChao, Ru-Pin
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:142
中文關鍵詞:飛秒雷射兆赫波次兆赫波光二極體光電激發器低溫砷化鎵超寬頻通訊
外文關鍵詞:femto second Laser (fs)Tera Hertz (THz)Sub-THzPhotodiodePhotonic transmitterLTG-GaAsUltra wideband communication (UWB)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研究可利用短脈衝雷射激發之次兆赫波(0.1~1THz)發射器,包括結合高速光電二極體和印刷天線之次兆赫波發射器以及光導天線兩種型式。不同型式的元件可產生不同波段之脈衝訊號,我們探討此頻段相關量測系統,元件特性,以及探討其在寬頻傳輸之應用。
首先我們以波長為800nm短脈衝鈦藍寶石雷射激發,以產生出高功率次兆赫波輻射,並予以調制;本研究中首先探討分別由改良利用低溫成長砷化鎵(LTG-GaAs) 為基材的分離式傳輸複合光二極體 (STR-PD)以及以砷化鎵/砷化鋁鎵(GaAs/AlGaAs)為基材的單載子傳輸光二極體(UTC-PD),並結合溝槽天線以及單極圓碟微波天線之次兆赫波激發器之輻射效率以及其操作行為,以符合寬頻通訊實驗所需。研究中成功分別驗證了: (1)中心頻率100GHz(約75GHz~120GHz)以及(2)中心頻率500GHz的高功率輻射元件之可行性。我們並詳細的探討此兩種不同的高速二極體結合相同結構之寬頻天線對於兆赫波發射之效果,研究顯示此兩種設計存在截然不同電流響應機制,但皆具有高功率之輻射輸出功率。
此外,短脈衝雷射亦可激發光導天線以產生兆赫輻射。我們嘗試利用製作程序較為簡單之多重氧離子佈值之砷化鎵(GaAs:O) 光導天線取代傳統低溫砷化鎵(LT-GaAs)做為激發器,並探討其性質差異。我們量測多重氧離子佈植砷化鎵 ( ions/cm2(500 & 800 ), ions/cm2 (1200 ) 薄膜材料和低溫成長之砷化鎵製程之光導天線,驗證其材料替代之可行性。本研究除探討此兩種光導天線在高偏壓下操作之飽和現象外,亦驗證其產生連續兆赫波之可行性。
對於兆赫波與次兆赫波之量測,除了可利用800nm 之鈦藍寶石鎖模脈衝雷射以及1550nm光纖雷射做為激發源外,本研究中也架設了利用800nm雷射二極體拍頻連續波激發系統,可做為連續波兆赫波激發之用。在量測此高頻微波的功率方面,除了分別利用熱輻射儀量測並比較各元件之絕對功率外,也架設基於低溫砷化鎵光導天線之時域光譜儀,以量測元件輻射出來之電場以及傅式轉換後之頻譜。為了進一步展示次兆赫波寬頻通訊系統,也架設了一利用高速號角天線(W頻段,75~110 GHz)做為接受器之寬頻通訊系統,以提高系統之資料傳輸率。
最後在次兆赫波發射器在寬頻通訊應用部分,我們分別做了以下展示: (1) 以Manchester編碼用改善通訊系統之傳輸品質以及(2)以光纖鎖模脈衝雷射(波長為1550nm)為系統光源以產生寬頻載波(W頻段,75~110GHz),並量測此系統之最高資料傳輸率。在第一部份我們在利用鈦藍寶石鎖模雷射做為激發光源,並以低溫砷化鎵光導天線做為系統之傳輸接收器,成功的將誤碼率由10-8降低到10-12。在第二部分,我們利用了光纖鎖模雷射之高脈衝重覆率的優點,成功的展示了在W頻段下2.5Gbit/s的高資料傳輸率。
This study investigates of the key components of optical electrical devices operating in the THz and Sub-THz range (0.1~1THz), including photoconductive (PC) antennas and photonic transmitters (PTs). PTs are integrated high speed photo diodes with printed planar antennas designed based on the required radiation frequency range. This study also examines related high frequency measurement systems and broadband communication applications.
The feasibility of several novel photonic transmitters is demonstrated first, which are designed for high peak power generation and wireless ultra-wideband (UWB) communication. Initially, the feasibility of a PT composed of a low-temperature-grown GaAs (LTG-GaAs) based separated-transport-recombination photodiode (STR-PD) and a micromachined slots antenna is demonstrated. Under femto-second (fs) optical pulse illumination, this device radiates strong electrical pulses (300 mW peak power) at a designed frequency of 500GHz. A traditional LTG-GaAs based PT under high, externally applied electrical fields (>50kV/cm) is then eliminated using our STR-PD based PTs (STR-PTs). Monolithic integration of a GaAs/AlGaAs based uni-traveling-carrier photodiode (UTC-PD) with a broadband micromachined antenna creates UTC-PD based PTs (UTC-PTs) that can also radiate strong sub-THz pulses (20mW peak-power) with a narrow pulse-width (<2ps) and wide bandwidth (100~250GHz). The bias dependent peak output-power of both PTs (UTC- and STR-PD based) makes them highly promising for use as a data modulator/emitter for a photonic UWB system.
This study also describes in detail the characterization of two high power PTs based on two high power photodiodes, UTC-PD and STR-PD. Both PDs have the same depletion layer thickness, i.e. the same theoretical RC-limited bandwidth, and are monolithically integrated with the same broadband micro-machined circular disk monopole antennas. However, the STR-PD based transmitter exhibits a significantly different dynamic and static performance from that of the UTC-PD based transmitter due to a low temperature grown GaAs (LTG-GaAs) based recombination center inside the active region, as well as a much thinner thickness of an effective depletion layer. Under optical pulse excitation (~480pJ/pulse), the STR-PD based transmitter exhibits a markedly lower maximum average output photocurrent (1.2mA vs. 0.3mA) than that of the UTC-PD transmitter. This is despite the fact that the radiated electrical pulse width and maximum peak power, which are determined by the same THz time domain spectroscopic (TDS) system, of both devices are comparable.
Next, high power THz generation by using PC antennas is studied by comparing the emission properties of LT-GaAs PC antennas with GaAs:O PC antennas in the pulse and CW mode. GaAs:O PC antennas can generate a higher THz power than LT-GaAs based both in the pulsed and CW modes. The bandwidths of GaAs:O PC antennas and LT-GaAs PC antennas are measured at approximately 1THz both under pulse (TDS) and CW (photomixing) pumping. However, the THz power of LT-GaAs PC antenna becomes saturated in CW mode, while GaAs:O does not. This finding suggests that GaAs:O PC antenna is a more reliable THz emitter than LT-GaAs, which is difficult to reproduce.
To excite THz and Sub-THz radiation, not only are a Ti:Sappire laser (��=800nm) and fiber mode locked laser (��=1550nm) used, but a CW excitation system is also established, which consists of two laser diodes (��=800nm) . The radiated powers of all devices are compared using a Helium-cooled bolometer. Additionally, radiated electrical fields are measured by a TDS system, which is based on LTG-PC antennas. The power spectrum of devices can be determined following fast Fourier transformation (FFT). A wideband communication system is also adopted by using a high speed horn (W band, 75~110GHz) antenna as a receiver to demonstrate the effectiveness of sub-THz wideband communication, which displays an improved data transmission rate.
Finally, this study demonstrates the feasibility of wideband communication applications by using our sub-THz emitters as follows: (1) Communication quality of the LTG-GaAs PC antennas based TDS system is improved by using Manchester coding; and (2) A wideband carrier (W band, 75~110GHz) is generated by using a fiber mode-locked laser as system optical source and determining its maximum data transmission rate. In (1), the Ti: Sapphire laser is adopted as the excitation source and we demonstrate that the bit error rate (BER) improved from 10-8 to10-12 by using Manchester coding. In (2), data transmission of 2.5Gbit/s at W band is successfully demonstrated by utilizing the advantage of a high repetition rate of fiber mode-locked laser.
光電式次兆赫波發射器及其應用之研究 i
A Study of Sub-THz Impulse Radio Photonic Devices and Application iii
Acknowledgements vii
Contents viii
List of Figures xi
List of Tables Pages xvii
Chapter 1 Introduction 1
1-1 THz Gap 1
1-2 THz Impulse Radio Communication 4
1-3 Generation of Sub-THz Pulses 10
1-4 Photodiode Based Photonic Transmitters 13
1-5 Low Temperature Grown Based GaAs (LTG-GaAs) or Ion-implanted Materials Based PC Antennas 15
1-6 Organization of Dissertation 16
Reference 19
Chapter 2 THz Photonic Transmitters 24
2-1 Introduction 24
2-2 Basic Theory 27
2-3 Separated-Transport-Recombination Photodiode (STR-PD) 31
2-4 Uni-Traveling-Carrier Photodiode (UTC-PD) 37
2-5 STR-PD Integrated with Slot Antennas 41
2-6 STR/ UTC-PD integrated with Circular Antenna 44
Reference 48
Chapter 3 Photoconductive Antennas 53
3-1 Introduction 53
3-2 Basic Theory 56
3-3 Material of Photoconductive Antenna 61
3-4 Antenna Types 63
3-5 Properties of Photoconductive Antennas 64
Reference 69
Chapter 4 Experimental Methods for Characterization of THz Waves 74
4-1 Introduction 74
4-2 Power Measurement 75
4-2-1 Bolometer 75
4-3 Waveform of Spectrum Measurement 78
4-3-1 Martin-Puplett Polarization Interferometer 78
4-3-2 THz Time Domain Spectrometer 82
Reference 84
Chapter 5 Performances of THz and Sub-THz Emitters 85
5-1 LTG-GaAs & GaAs :O PC Antennas under Pulse Excitation 85
5-2 LTGaAs & GaAs :O PC Antennas under CW Excitation 91
5-3 STR-PD Combined with Slot Antennas 97
5-4 Comparison of UTC-PT and STR-PT 101
Reference 112
Chapter 6 Sub-THz Impulse Radio Communication 115
6-1 Introduction 115
6-2 Frequency Response of Communication Link System 117
6-3 Manchester Coding to Improve Link Reliability 120
6-4 Impulse Radio Communication under 1550nm Wavelength 123
Reference 129
Chapter 7 Conclusion and Future Work 131
7-1 Conclusion 131
7-2 Future Work 133
Appendix A 135
Publication list 137
Curriculum Vita 141
Chapter1
[1] M. Tonouci, “Cutting-edge terahertz technology,” Nat. Photonics, vol 1, pp.97-105, Feb., 2007.
[2] Michael J. Fitch and Robert Osiander, “Terahertz Waves for Communications and Sensing” Johns Hopkins Apl Technical Digest, Vol. 25, 4, 2004.
[3] Auston, D. H., “Picosecond Optoelectronic Switching and Gating in Silicon,” Appl. Phys. Lett. 26, 101–103,1975.
[4] LeFur, P., and Auston, D. H., “A Kilovolt Picosecond Optoelectronic Switch and Pockels Cell,” Appl. Phys. Lett. 28, 21–33, 1976.
[5] Valdmani, J. A., Mourou, G., and Gabel, C. W., “Picosecond Electrooptic Sampling System,” Appl. Phys. Lett. 41, 211–212 , 1982.
[6] E. Pickwell and V. P. Wallace, "Biomedical applications of terahertz technology," Journal of Physics D-Applied Physics, vol. 39, pp. R301-R310, Sep 7 2006.
[7] M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett., vol. 77, pp. 4049-4051, Dec 11 2000.
[8] X. C. Zhang, "Terahertz wave imaging: horizons and hurdles," Physics in Medicine and Biology, vol. 47, pp. 3667-3677, Nov 7 2002.
[9] J. W. Shockley; W. T. Read, "Statistics of the Recombinations of Holes and Electrons," Physical Review pp. 835 - 842, 1952.
[10] A. W. M. Lee and Q. Hu, "Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array," Optics Letters, vol. 30, pp. 2563-2565, Oct 1 2005.
[11] D. Grischkowsky, S. Keiding, M. Vanexter, and C. Fattinger, "Far-Infrared Time-Domain Spectroscopy with Terahertz Beams of Dielectrics and Semiconductors," Journal of the Optical Society of America B-Optical Physics, vol. 7, pp. 2006-2015, Oct 1990.
[12] Crowe, T. W., Bishop, W. L., Perterfi eld, D. W., Hesler, J. L. & Weikle, R. M. Opening the terahertz window with integrated diode circuits. IEEE J. Solid-State Circuits 40, 2104–2110 (2005).
[13] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
[14] L. Larson, D. Laney, and J. Jamp, “An Overview of Hardware Requirements for UWB Systems: Interference Issues and Transceiver Design Implications,” in Tech. Dig. MILCOM2003, Oct. 2003, pp. 863-867.
[15] S. Iida, K. Tanaka, H. Suzuki, N. Yoshikawa, N. Shoji, B. Griffiths, D.Mellor, F. Hayden, I. Butler, and J. Chatwin,“A 3.1 to 5 GHz CMOS DSSS UWB Transceiver for WPANs,” in Tech. Dig. ISSCC 2005, Feb. 2005, pp. 214- 215.
[16] E. E. Funk and C. H. Lee, “ Free-Space Power Combining and Beam Steering of Ultra-Wideband Radiation Using an Array of Laser-Triggered Antennas,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2039-2042, Nov.1996.
[17] E. E. Funk, S. Ramsey, C. H. Lee, and J. Craven, “ A Photoconductive Correlation Receiver for Wireless Digital Communications,” in Tech. Dig.MWP‘98, Oct. 1998, pp. 21-24.
[18] K. Uchiyama and T. Morioka, “All-Optical Signal Processing for 160 Gbit/s/channel OTDM/ WDM Systems,” in Tech. Dig. OFC’01, March 2001, paper ThH2-1.
[19] M. J. W. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, R. Pullela,“Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog]” Proceedings of the IEEE, vol. 82, pp. 1037-1059, Jul., 1994.
[20] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1032-1038, June, 2001.
[21] Yu-Tai Li, J.-W. Shi, Ci-Ling Pan, C.-H. Chiu, W.- S. Liu, N.-W. Chen, C.-K. Sun, and J.-I. Chyi, “Sub-THz photonic transmitters based on separated-transport-recombination photodiodes and a micromachined slot antenna,”
[22] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
[23] Togo, H., Sah, P.-C.P., Shimizu, N., Nagatsuma, T. “Gigabit impulse radio link using photonic signal-generation techniques,” European Microwave Conference 2005, vol. 1, pp. 4-7, Oct., 2005.
[24] T. -A. Liu, G. -R. Lin, Y.-C. Chang, C.-L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,”
[25] A. St�仡r, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. G�卲ten, and D. S. J�讚er, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Lightw. Technol., vol. 21, no. 12, pp. 3062–3070, Dec. 2003.
[26] Yu-Tai Li, J.-W. Shi, Ci-Ling Pan, C.-H. Chiu, W.- S. Liu, N.-W. Chen, C.-K. Sun, and J.-I. Chyi, “Sub-THz Photonic Transmitters Based on Separated-Transport-Recombination Photodiodes and a Micromachined Slot Antenna,” IEEE Photon. Technol. Lett., vol. 19, pp. 840-842, June, 2007.
[27] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
[28] J.-W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J.-I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs-AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830nm wavelength” Appl. Phys. Lett., vol. 89, pp.053512, 2006.
[29] Y.-C. Liang and N.-W. Chen, “An ultra-broadband coplanar waveguide-fed circular monopole antenna,” EuCAP 2007, Edinburgh, UK, Nov. 2007.
[30] Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, "Design and performance of singular electric field terahertz photoconducting antennas," Applied Physics Letters, vol. 71, pp. 2076-2078, Oct 13 1997.
[31] J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, "ErAs : GaAs photomixer with two-decade tunability and 12 mu W peak output power," Applied Physics Letters, vol. 85, pp. 3983-3985, Nov 1 2004.
[32] J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, "Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 mu m wavelengths," Applied Physics Letters, vol. 91, pp. -, Dec 10 2007.
[33] P. Kordos, M. Marso, and M. Mikulics, "Performance optimization of GaAs-based photomixers as sources of THz radiation," Applied Physics a-Materials Science & Processing, vol. 87, pp. 563-567, Jun 2007.
[34] K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Applied Physics Letters, vol. 67, pp. 3844-3846, Dec 25 1995.
[35] E. R. Brown, "A photoconductive model for superior GaAs THz photomixers," Applied Physics Letters, vol. 75, pp. 769-771, Aug 9 1999.
[36] E. R. Brown, F. W. Smith, and K. A. Mcintosh, "Coherent Millimeter-Wave Generation by Heterodyne Conversion in Low-Temperature-Grown Gaas Photoconductors," Journal of Applied Physics, vol. 73, pp. 1480-1484, Feb 1 1993.
[37] M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, "High-VoltagePicosecond Photoconductor Switch Based on Low-Temperature-Grown Gaas," Ieee Transactions on Electron Devices, vol. 37, pp. 2493-2498, Dec 1990.
Chapter 2
[1] H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNET diodes for the 100–300-GHz frequency range and above,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 626–631, Apr. 2000.
[2] N. Orihashi, S. Suzuki, and M. Asada, “One THz harmonic oscillation of resonant tunneling diodes,” Appl. Phys. Lett., vol.87, 233501,2005.
[3] R. Ko¨hler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfeld, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser” Nature, vol. 417, pp156-159, May, 2002 .
[4] S. Barbieri, J. Alton, S. S. Dhillon, H. E. Beere, M. Evans, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. Kohler, A. Tredicucci, and F. Beltram, “Continuous-wave operation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron., vol. 39, pp. 586–591, April, 2003.
[5] C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz” Appl. Phys. Lett,. vol. 91, 131122, Sep., 2007.
[6] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode” J. of Lightwave Technol., 23, 4016, 2005.
[7] M.-C. Tien, H.-H. Chang, J.-Y. Lu, L.-J. Chen, S.-Y. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Device saturation behavior of submillimeter-wave membrane photonic transmitters,” IEEE Photon. Technol. Lett., 16, 873, 2004.
[8] S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly Tunable Fiber-Coupled Photomixers with Coherent Terahertz Output power”, IEEE Trans. Microwave Theory Tech., 45, 1301, 1997.
[9] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1032–1038, June 2001.
[10] H. Togo, P.-C. P. Sah, N. Shimizu, and T. Nagatsuma, “Gigabit impulse radio link using photonic signal-generation techniques,” in Eur. Microwave Conf. 2005, vol. 1, pp. 4–7, Oct. 2005.
[11] T. -A. Liu, G. -R. Lin, Y.-C. Chang, C.-L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol.13, Issue 25, pp. 10416-10423, Dec., 2005.
[12] Lothar M�匜ler, John Federici, Alexander Sinyukov, Chongjin Xie, Hee Chuan Lim, and Randy C. Giles, "Data encoding on terahertz signals for communication and sensing," Opt. Lett., vol. 33, pp. 393-395, Feb. 2008.
[13] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[14] L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power High-speed Photodetectors Design, Analysis, and Experiment Demonstration,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1320-1331, Aug., 1997.
[15] S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very High-Responsivity Evanescently Coupled Photodiodes Integrating a Short Planar Multimode Waveguide for High-Speed Applications,” IEEE Photon. Technol. Lett., vol. 15, pp.1761-1763, Dec., 2003.
[16] Y.-S. Wu, J.-W. Shi, P.-H. Chiu, and Wei Lin “High-Performance Dual-Step Evanescently-Coupled Uni-Traveling-Carrier Photodiodes” IEEE Photon. Technol. Lett., vol. 19, pp. 1682-1684, 2007.
[17] Y.-L. Huang and C.-K. Sun, “Nonlinear saturation behaviors of high-speed p-i-n photodetectors,” J. of Lightwave Technol., vol. 18, pp. 203-212, Feb., 2000.
[18] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug., 2004.
[19] J.-W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J.-I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs-AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830nm wavelength” Appl. Phys. Lett, vol. 89, pp.053512 2006.
[20] Yu-Tai Li, J.-W. Shi, C.-Y. Huang, N.-W. Chen, S.-H. Chen, J.-I. Chyi, and Ci-Ling Pan, “Characterization of Sub-THz Photonic-Transmitters Based on GaAs/AlGaAs Uni-Traveling Carrier Photodiodes and Substrate-Removed Broadband Antennas for Impulse-Radio Communication,” IEEE Photon. Technol. Lett., vol. 20, pp.1342-1344, Aug., 2008.
[21] X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., vol. 16, pp.2326-2328, Oct., 2004.
[22] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug., 2005.
[23] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics, vol. 28, pp.2464-2472, Oct., 1992.
[24] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[25] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995
[26] Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999
[27] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics, vol. 28, pp.2464-2472, 1992.
[28] J. P. Ibbetson, Ph. D. Thesis, University of California at Santa Barbara, 1998.
[29] J.-W. Shi, Y.-H. Chen, K. G. Gan, Y. J. Chiu, John. E. Bowers, M.-C. Tien, T.-M. Liu, and C.-K. Sun, “Nonlinear Behaviors of Low-Temperature-Grown GaAs-Based Photodetectors Around 1.3-μm Telecommunication Wavelength” IEEE Photon. Tech. Lett., vol. 16, pp.242-244, Jan., 2004.
[30] C.-K. Sun, Y.-Hung Chen, J.-W. Shi, Y.-J. Chiu, K. G. Gan, and J. E. Bowers, “Electron relaxation and transport dynamics in low-temperature-grown GaAs under 1eV optical excitation” Appl. Phys. Lett., vol. 83, pp. 911-913, Aug., 2003.
[31] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series of Semiconductor Parameters, World Scientific, Singapore, 1996.
[32] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode” IEEE Photon. Tech. Lett., vol. 16, pp. 864-866, 2004.
[33] N. Zamdmer, Q. Hu, K. A. Mclntosh, and S. Verghese, “Increase in response time of low-temeprature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett., vol. 75, pp. 2313–2315, Oct. 1999.
[34] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pt. 2, pp. 1310–1319, Aug. 1997.
[35] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines. Boston, London: Artech House, 1996.
[36] J. W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S.Wu,W. S. Liu, and J. I. Chyi, “Separated-transport-recombination p-i-n photodiode (STR-PD) with high-speed and high-power performance under continuous-wave (CW) operation,” in Conf. Laser and Electro-Optics (CLEO/QELS 2006), 2006, OSA Tech. Dig., Paper CTuS6.
[37] D. H. Martin and E. Puplett, “Polarised interferometric spectrometry for the millimeter and submillimeter spectrum,” Infared Phys., vol. 10, pp. 105–109, Jun. 1970.
[38] Y.-C. Liang and N.-W. Chen, “An ultra-broadband coplanar waveguide-fed circular monopole antenna,” EuCAP 2007, Edinburgh, UK, Nov., 2007.
[39] G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proceedings of IEEE, vol. 80, pp. 1748-1770, 1992.
[40] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi,“High-Speed and High-Output InP-InGaAs Unitraveling-CarrierPhotodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul., 2004.
Chapter 3

[1] M.S.Sherwin, S. C.A, and P. H. Bucksbaum, "Opportunities in THz Science," Arlington, VA February 12-14, 2004.
[2] G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, Appl. Phys. Lett. 39, 295-296, 1981.
[3] M. Vanexter and D. R. Grischkowsky, IEEE Tran. on Microwave Theory and Techniques 38, 1684-1691, 1990.
[4] F. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, Appl. Phys. Lett. 54, 890-892, 1989.
[5] J. T. Darrow, B. B. Hu, X. C. Zhang, and D. H. Auston, Opt. Lett. 15, 323-325 ,1990.
[6] F. W. Smith, A. R, Calawa, C.L. Chen, L.J Mahoney, M.J. Manfra, J.C. Huang, and F.H. Spooner, High Speed Semiconductor Devices and Circuits, 1987.
[7] Proceedings, IEEE/Cornell Conference on Advanced Concepts in, 229-238, 1987.
[8] M.Y. Frankel, J.F. Whitaker, G.A. Mourou, F.W. Smith, and A.R. Calawa, IEEE Tran. on Electron Devices 37, 2493-2498, 1990.
[9] K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, Appl. Phys. Lett. 70, 354-356, 1997.
[10] C. S. Wong, J. M. Dai, and H. K. Tsang, Appl. Phys. Lett. 75, 745-747 (1999).
B. Salem, D. Morris, V. Aimez, J Beerens, J. Beauvais, and D. Houde, Journal of Physics-Condensed Matter 17, 7327-7333, 2005.
[11] F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, Appl. Phys. Lett. 91, ,2007.
[12] T. A. Liu, M. Tani, and C. L. Pan, J. Appl. Phys. 93, 2996-3001, 2003.
[13] B. Salem, D. Morris, Y. Salissou, V. Aimez, S. Charlebois, M. Chicoine, and F. Schiettekatte, Journal of Vacuum Science & Technology A 24, 774-777, 2006.
[14] G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Review of Scientific Instruments 73, 1715-1719, 2002.
[15] Z.D. Taylor, E.R. Brown, J. E. Bjarnason, M. P Hanson, and A. C. Gossard, Opt. Lett. 31, 1729-1731, 2006.
[16] J. U. Kang, M. Y. Frankel, J. W. Huang, and T. F. Kuech, Appl. Phys. Lett. 70, 1560-1562, 1997.
[17] B. Salem, D. Morris, Y. Salissou, V. Aimez, S. Charlebois, M. Chicoine, and F. Schiettekatte, "Terahertz emission properties of arsenic and oxygen ion-implanted GaAs based photoconductive pulsed sources," Journal of Vacuum Science & Technology A, vol. 24, pp. 774-777, May-Jun 2006.
[18] I. C. Mayorga, E. A. Michael, A. Schmitz, P. van der Wal, R. Gusten, K. Maier, and A. Dewald, "Terahertz photomixing in high energy oxygen- and nitrogen-ion-implanted GaAs," Applied Physics Letters, vol. 91, pp. -, Jul 16 2007.
[19] B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, "Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates," Journal of Physics-Condensed Matter, vol. 17, pp. 7327-7333, Nov 23 , 2005.
[20] Chen Kejian, Li Yutai, Cheung Wingyiu, Wang Weiwen, Pan Ciling, and Chan Kamtai, "THz WAVES GENERATED BY OXYGEN IMPLANTED GaAs," in 2007 International Symposium on Antennas and Propagation Niigata Convention Center, Niigata, Japan, 2007.
[21] K. Chen, Y. Li, W. Cheung, W. Wang, C. Pan, and K. Chan, "CW Sub-Terahertz wave generation by GaAs:O Materials," in Lasers and Electro-Optics - Pacific Rim, 2007. CLEO/Pacific Rim 2007.
[22]Smith. F.W. Smith, F. W.; Le, H. Q.; Diadiuk, V.; Hollis, M. A.; Calawa, A. R.; Gupta, S.; Frankel, M.; Dykaar, D.R., “Picosecond GaAs-based photoconductive optoelectronic detectors.” Appl. Phys. Lett. Vol.54, 890, 1989.
[23] M. Tani, K. Sakai, and H. Mimura, “Ultrafast Photoconductive Detectors Based on Semi-Insulating GaAs and InP” Jpn. J. Appl. Phys., Part2, Vol.36, L1175 ,1997
[24] D. C. Look, Thin Solid Films 231, 61, 1993.
[25] C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches.”Appl. Phys. Lett. Vol.69, 1194, 1996.
[26] S. Kono, M. Tani, And K. SaKai, “Ultrabroadband photocnductive detection: comparison with free-space electro-optic sampling” Appl. Phys. Lett., Vol.79, No.7, pp. 898-900, 2001.
[27] A. Claverie, F. Namavar, and Z. Lilorntal-Weber, “Formation of As precipitates in GaAs by ion implantation and thermal annealing.”Appl. Phys. Lett. Vol.62, 1271, 1993.
[28] Liu T-A, Tani M and Pan C-L “THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas” J. Appl. Phys. Vol.93, 2996, 2003.
[29] Lin G-R, and Pan C-L “Characterization of optically excited terahertz radiation from arsenic-ion-implanted GaAs” Appl. Phys B Vol.72, 151, 2001.
[30] Lloyd-Hughes J, Castro-Camus E, fraser M D, Jagadish C and Johonston M B Phys. Rev. B 70 235330, 2004.
[31] Liu T-A, Tani M, Nakajima M,Hangyo M and Pan C-L “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs.” Appl. Phys. Lett. Vol.83, 1322, 2003.
[32] M. Lambsdorff, J. Kuhl, J, Rosenzweig, A. Axmann, and Jo. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs.”Appl. Phys. Let. Vol.58, 1881, 1991.
[33] M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Seifner, and U. Keller, “Nonlinear optical absorption and temporal response of arsenic- and oxygen-implanted GaAs.” Appl. Phys. Let. Vol.74, 1993, 1999.
[34] B. Salem, D. Morris, V. Aimez, J Veerens, J Beauvais and D Houde.”Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates” J. Phys.: Condens. Matter 17 7327-7333, 2005.
[35] M. Mikulics, E. A. Michael, M. Marso, M. Lepsa, A. van der Hart, and H. L�厎h, A. Dewald, S. Stanček and M. Mozolik, P. Kordoš, “Traveling-wave photomixers fabrication on high energy nitrogen-ion-implanted GaAs”, Appl. Phys. Lett. Vol.89, 071103, 2006.
[36] B.Salem, D.Morris, Y.Salissou, V.Aimez and S.Charlebois, M.Chicoine, F. Schiettekatte, “Terahertz emission properties of arsenic and oxygen ion-implanted GaAs based photoconductive pulsed sources” J.Vac.Sci. Technol. A 24(3), pp.774-777, 2006.
[37] B.Salem, D.Morris, V.Aimez, J Beauvais and D Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials” Semicond. Sci. Technol. Vol.21, 283-286, 2006.
[38] P. Uhd Jepsn, R. H. Jacobsen, and S. R. Keiding, “Gereration and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B, Vol.13, pp. 2424-2436, 1996.
Chapter 4
[1] D. H. Martin, and E. Puplett, “polarized interferometric spectrometry for the millimeter and submillimeter spectrum” Infrared Physics, Vol.10, pp. 105-109, 1969.
[2] O. Morikawa, M. Tonouchi, and M. Hangyo, “sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna” Appl. Phys. Lett., Vol.75, No. 24, pp. 3772-3774, 1999.
[3] S. kono, M. Tani and K. Sakai, “Coherent Detection of mid-infrared radiation up to 60THz with an LT-GaAs photoconductive antenna” IEE, Proc-optoelectron, Vol.149, No. 3, pp. 105-109, 2002.
[4] Sang-Gyu Park, Michael R. Melloch, and Andrew M. Weiner, “Analysis of Terahertz Waveforms Measured by Photoconductive and electrooptic sampling” IEEE J. Quantum Electronics. Vol.35, No. 5, pp. 810-819, 1999.
[5] S Kono, Masahiko Tani, and Kiyomi Sakai, “Ultrabroadband photoconductive detection: comparison with free space electro optic sampling” Appl. Phys. Lett., Vol.79, No. 7, pp. 898-900, 2001.
[6] Sang-Gyu Park, M. R. Melloch, and A. M. Weiner, “Comparison photoconductive sampling” Appl. Phys Lett., Vol.73, pp. 3184-3186, 1998.
[7] J. C. G. Lesurf. “Millimetre-wave optics, devices and systems.” Adam Hilger, January, 1990.
Chapter 5
[1] E. A. Michael, I. Camara Mayorga, and R. Gusten,” Terahertz continous-wave large-area traveling-wave photomixers on high-energy low-dose ion-implanted GaAs”, Appl. Phys. Lett. 90, 171109 , 2007.
[2] K.-G. Gan, J.-W. Shi, Y.-H. Chen, C.-K. Sun, Y.-J. Chiu, and J. E. Bowers, “Ultrahigh power-bandwidth-product performance of low-temperature-grown GaAs based metal–semiconductor–metal traveling-wave photodetectors,” Appl. Phys. Lett., vol. 80, pp. 4054-4056, May, 2002.
[3] M.-C. Tien, H.-H. Chang, J.-Y. Lu, L.-J. Chen, S.-Y. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Device saturation behavior of submillimeter-wave membrane photonic transmitters,” IEEE Photon. Technol. Lett., vol. 16, pp. 873-875, March, 2004.
[4] S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertzoutput power”, IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1301-1309, Aug., 1997.
[5] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1032-1038, June, 2001.
[6] N. Zamdmer, Qing Hu, K. A. Mclntosh, and S. Verghese, “ Increase in Response Time of Low-Temeprature-Grown GaAs Photoconductive Switches at High Voltage Bias” Appl. Phys. Lett., vol. 75, pp. 2313-2315, Oct., 1999.
[7] S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertzoutput power”, IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1301-1309, Aug., 1997.
[8] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug., 2005.
[9] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug., 2004.
[10] J. P. Ibbetson and U. K. Mishra, “Space–charge-limited currents in nonstoichiometric GaAs,” Appl. Phys. Lett., vol. 68, pp. 3781–3783, 1996.
[11] T. -A. Liu, G. -R. Lin, Y.-C. Chang, C.-L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol.13, Issue 25, pp. 10416-10423, Dec., 2005.
[12] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeterwave signal generation using photodiode bias modulation,” J. Lightw. Technol., vol. 24, no. 4, pp. 1725–1731, Apr. 2006.
[13] Y.-S. Wu, Nan-Wei Chen, and J.-W. Shi, “A W-Band Photonic Transmitter/Mixer Based on High-Power Near-Ballistic Uni-Traveling-Carrier Photodiode (NBUTC-PD),” IEEE Photon. Technol. Lett., vol. 20, pp. 1799-1801, Nov., 2008.
[14] E. Ivanov, S. Diddams, and L. Hollberg, “Study of the Excess Noise Associated with Demodulation of Ultra-Short Infrared Pulses,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, 1068-1074 , 2005.
[15] T. -A. Liu, G. -R. Lin, Y.-C. Chang, C.-L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol.13, Issue 25, pp. 10416-10423, Dec., 2005.
Chapter 6
[1] M. Z. Win, and R. A. Scholtz, “Impulse radio: how it works,” IEEE Commun. Lett. 2, 36-38, 1998.
[2] M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wideband Signals and Systems in Communication Engineering, Second Edition, John Wiley & Sons, Ltd, 2007
[3] R. J. –M. Cramer, M. Z. Win, and R. A. Scholtz, “Impulse radio multipath characteristics and diversity reception,” Proc. of ICC, Atlanta, GA, USA, 3, 1650-1654, 1998.
[4] E. E. Funk and C. H. Lee, “Free-space power combining and beam steering of ultra-wideband radiation using an array of laser-triggered antennas,” IEEE Trans. Microwave Theory Tech. 44, 2039–2042, 1996.
[5] E. E. Funk, S. Ramsey, C. H. Lee, “A photoconductive correlation receiver for time-hopped wireless spread-spectrum radio,” IEEE Microwave and Guided Wave Lett. 8, 229-231, 1998.
[6] E. R. Mueller, and A. J. DeMaria, “Broad bandwidth communication/data links using terahertz sources and Schottky diode modulators/detectors,” Proc. of SPIE 5727, 151-165, 2005.
[7] T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40, 124-126, 2004.
[8] L. Moller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393-395, 2008.
[9] T. A. Liu, G. R. Lin, Y. C. Chang, C. L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Opt. Express. 13, 10416-10423, 2005.
[10] Y.-S. Wu, Nan-Wei Chen and J.-W Shi, “A W-Band Photonic Transmitter/Mixer Based on High-Power Near Ballistic Uni-Traveling Carrier Photodiodes (NBUTC-PD),”IEEE Photon. Technol. Lett., vol. 20, pp1799-1801, Nov.1, 2008.
[11] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeter-wave signal generation using photodiode bias modulation,” J. of Lightwave Technol., vol. 24, pp. 1725-1731, April, 2006.
[12] H.-C. Chien, A. Chowdhury, Z. Jai, Y.-T. Hsueh, and G.-K. Chang, “Long-Reach 60-GHz Mm-Wave Optical-Wireless Access Network Using Remote Signal Regeneration and Upconversion,” in Proc. ECOC 2008, Brussels, Belgium, Germany, Sep., 2008, vol. 2, pp. 137-138.
[13] J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGban, H. Sun, K.-T. Wu, M. Osullivan, and Y. Jiang. “Electronic Signal Processing for Fiber-Optic Communication,” IEEE LEOS NEWSLETTER, vol. 23, no. 1, pp. 11-15, Feb., 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top