|
Chapter1 [1] M. Tonouci, “Cutting-edge terahertz technology,” Nat. Photonics, vol 1, pp.97-105, Feb., 2007. [2] Michael J. Fitch and Robert Osiander, “Terahertz Waves for Communications and Sensing” Johns Hopkins Apl Technical Digest, Vol. 25, 4, 2004. [3] Auston, D. H., “Picosecond Optoelectronic Switching and Gating in Silicon,” Appl. Phys. Lett. 26, 101–103,1975. [4] LeFur, P., and Auston, D. H., “A Kilovolt Picosecond Optoelectronic Switch and Pockels Cell,” Appl. Phys. Lett. 28, 21–33, 1976. [5] Valdmani, J. A., Mourou, G., and Gabel, C. W., “Picosecond Electrooptic Sampling System,” Appl. Phys. Lett. 41, 211–212 , 1982. [6] E. Pickwell and V. P. Wallace, "Biomedical applications of terahertz technology," Journal of Physics D-Applied Physics, vol. 39, pp. R301-R310, Sep 7 2006. [7] M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett., vol. 77, pp. 4049-4051, Dec 11 2000. [8] X. C. Zhang, "Terahertz wave imaging: horizons and hurdles," Physics in Medicine and Biology, vol. 47, pp. 3667-3677, Nov 7 2002. [9] J. W. Shockley; W. T. Read, "Statistics of the Recombinations of Holes and Electrons," Physical Review pp. 835 - 842, 1952. [10] A. W. M. Lee and Q. Hu, "Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array," Optics Letters, vol. 30, pp. 2563-2565, Oct 1 2005. [11] D. Grischkowsky, S. Keiding, M. Vanexter, and C. Fattinger, "Far-Infrared Time-Domain Spectroscopy with Terahertz Beams of Dielectrics and Semiconductors," Journal of the Optical Society of America B-Optical Physics, vol. 7, pp. 2006-2015, Oct 1990. [12] Crowe, T. W., Bishop, W. L., Perterfi eld, D. W., Hesler, J. L. & Weikle, R. M. Opening the terahertz window with integrated diode circuits. IEEE J. Solid-State Circuits 40, 2104–2110 (2005). [13] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006. [14] L. Larson, D. Laney, and J. Jamp, “An Overview of Hardware Requirements for UWB Systems: Interference Issues and Transceiver Design Implications,” in Tech. Dig. MILCOM2003, Oct. 2003, pp. 863-867. [15] S. Iida, K. Tanaka, H. Suzuki, N. Yoshikawa, N. Shoji, B. Griffiths, D.Mellor, F. Hayden, I. Butler, and J. Chatwin,“A 3.1 to 5 GHz CMOS DSSS UWB Transceiver for WPANs,” in Tech. Dig. ISSCC 2005, Feb. 2005, pp. 214- 215. [16] E. E. Funk and C. H. Lee, “ Free-Space Power Combining and Beam Steering of Ultra-Wideband Radiation Using an Array of Laser-Triggered Antennas,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2039-2042, Nov.1996. [17] E. E. Funk, S. Ramsey, C. H. Lee, and J. Craven, “ A Photoconductive Correlation Receiver for Wireless Digital Communications,” in Tech. Dig.MWP‘98, Oct. 1998, pp. 21-24. [18] K. Uchiyama and T. Morioka, “All-Optical Signal Processing for 160 Gbit/s/channel OTDM/ WDM Systems,” in Tech. Dig. OFC’01, March 2001, paper ThH2-1. [19] M. J. W. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, R. Pullela,“Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog]” Proceedings of the IEEE, vol. 82, pp. 1037-1059, Jul., 1994. [20] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1032-1038, June, 2001. [21] Yu-Tai Li, J.-W. Shi, Ci-Ling Pan, C.-H. Chiu, W.- S. Liu, N.-W. Chen, C.-K. Sun, and J.-I. Chyi, “Sub-THz photonic transmitters based on separated-transport-recombination photodiodes and a micromachined slot antenna,” [22] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005. [23] Togo, H., Sah, P.-C.P., Shimizu, N., Nagatsuma, T. “Gigabit impulse radio link using photonic signal-generation techniques,” European Microwave Conference 2005, vol. 1, pp. 4-7, Oct., 2005. [24] T. -A. Liu, G. -R. Lin, Y.-C. Chang, C.-L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” [25] A. St�仡r, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. G�卲ten, and D. S. J�讚er, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Lightw. Technol., vol. 21, no. 12, pp. 3062–3070, Dec. 2003. [26] Yu-Tai Li, J.-W. Shi, Ci-Ling Pan, C.-H. Chiu, W.- S. Liu, N.-W. Chen, C.-K. Sun, and J.-I. Chyi, “Sub-THz Photonic Transmitters Based on Separated-Transport-Recombination Photodiodes and a Micromachined Slot Antenna,” IEEE Photon. Technol. Lett., vol. 19, pp. 840-842, June, 2007. [27] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005. [28] J.-W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J.-I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs-AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830nm wavelength” Appl. Phys. Lett., vol. 89, pp.053512, 2006. [29] Y.-C. Liang and N.-W. Chen, “An ultra-broadband coplanar waveguide-fed circular monopole antenna,” EuCAP 2007, Edinburgh, UK, Nov. 2007. [30] Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, "Design and performance of singular electric field terahertz photoconducting antennas," Applied Physics Letters, vol. 71, pp. 2076-2078, Oct 13 1997. [31] J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, "ErAs : GaAs photomixer with two-decade tunability and 12 mu W peak output power," Applied Physics Letters, vol. 85, pp. 3983-3985, Nov 1 2004. [32] J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, "Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 mu m wavelengths," Applied Physics Letters, vol. 91, pp. -, Dec 10 2007. [33] P. Kordos, M. Marso, and M. Mikulics, "Performance optimization of GaAs-based photomixers as sources of THz radiation," Applied Physics a-Materials Science & Processing, vol. 87, pp. 563-567, Jun 2007. [34] K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Applied Physics Letters, vol. 67, pp. 3844-3846, Dec 25 1995. [35] E. R. Brown, "A photoconductive model for superior GaAs THz photomixers," Applied Physics Letters, vol. 75, pp. 769-771, Aug 9 1999. [36] E. R. Brown, F. W. Smith, and K. A. Mcintosh, "Coherent Millimeter-Wave Generation by Heterodyne Conversion in Low-Temperature-Grown Gaas Photoconductors," Journal of Applied Physics, vol. 73, pp. 1480-1484, Feb 1 1993. [37] M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, "High-VoltagePicosecond Photoconductor Switch Based on Low-Temperature-Grown Gaas," Ieee Transactions on Electron Devices, vol. 37, pp. 2493-2498, Dec 1990. Chapter 2 [1] H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNET diodes for the 100–300-GHz frequency range and above,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 626–631, Apr. 2000. [2] N. Orihashi, S. Suzuki, and M. Asada, “One THz harmonic oscillation of resonant tunneling diodes,” Appl. Phys. Lett., vol.87, 233501,2005. [3] R. Ko¨hler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfeld, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser” Nature, vol. 417, pp156-159, May, 2002 . [4] S. Barbieri, J. Alton, S. S. Dhillon, H. E. Beere, M. Evans, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. Kohler, A. Tredicucci, and F. Beltram, “Continuous-wave operation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron., vol. 39, pp. 586–591, April, 2003. [5] C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz” Appl. Phys. Lett,. vol. 91, 131122, Sep., 2007. [6] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode” J. of Lightwave Technol., 23, 4016, 2005. [7] M.-C. Tien, H.-H. Chang, J.-Y. Lu, L.-J. Chen, S.-Y. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Device saturation behavior of submillimeter-wave membrane photonic transmitters,” IEEE Photon. Technol. Lett., 16, 873, 2004. [8] S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly Tunable Fiber-Coupled Photomixers with Coherent Terahertz Output power”, IEEE Trans. Microwave Theory Tech., 45, 1301, 1997. [9] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1032–1038, June 2001. [10] H. Togo, P.-C. P. Sah, N. Shimizu, and T. Nagatsuma, “Gigabit impulse radio link using photonic signal-generation techniques,” in Eur. Microwave Conf. 2005, vol. 1, pp. 4–7, Oct. 2005. [11] T. -A. Liu, G. -R. Lin, Y.-C. Chang, C.-L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol.13, Issue 25, pp. 10416-10423, Dec., 2005. [12] Lothar M�匜ler, John Federici, Alexander Sinyukov, Chongjin Xie, Hee Chuan Lim, and Randy C. Giles, "Data encoding on terahertz signals for communication and sensing," Opt. Lett., vol. 33, pp. 393-395, Feb. 2008. [13] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999. [14] L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power High-speed Photodetectors Design, Analysis, and Experiment Demonstration,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1320-1331, Aug., 1997. [15] S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very High-Responsivity Evanescently Coupled Photodiodes Integrating a Short Planar Multimode Waveguide for High-Speed Applications,” IEEE Photon. Technol. Lett., vol. 15, pp.1761-1763, Dec., 2003. [16] Y.-S. Wu, J.-W. Shi, P.-H. Chiu, and Wei Lin “High-Performance Dual-Step Evanescently-Coupled Uni-Traveling-Carrier Photodiodes” IEEE Photon. Technol. Lett., vol. 19, pp. 1682-1684, 2007. [17] Y.-L. Huang and C.-K. Sun, “Nonlinear saturation behaviors of high-speed p-i-n photodetectors,” J. of Lightwave Technol., vol. 18, pp. 203-212, Feb., 2000. [18] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug., 2004. [19] J.-W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J.-I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs-AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830nm wavelength” Appl. Phys. Lett, vol. 89, pp.053512 2006. [20] Yu-Tai Li, J.-W. Shi, C.-Y. Huang, N.-W. Chen, S.-H. Chen, J.-I. Chyi, and Ci-Ling Pan, “Characterization of Sub-THz Photonic-Transmitters Based on GaAs/AlGaAs Uni-Traveling Carrier Photodiodes and Substrate-Removed Broadband Antennas for Impulse-Radio Communication,” IEEE Photon. Technol. Lett., vol. 20, pp.1342-1344, Aug., 2008. [21] X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., vol. 16, pp.2326-2328, Oct., 2004. [22] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug., 2005. [23] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics, vol. 28, pp.2464-2472, Oct., 1992. [24] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999. [25] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995 [26] Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999 [27] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics, vol. 28, pp.2464-2472, 1992. [28] J. P. Ibbetson, Ph. D. Thesis, University of California at Santa Barbara, 1998. [29] J.-W. Shi, Y.-H. Chen, K. G. Gan, Y. J. Chiu, John. E. Bowers, M.-C. Tien, T.-M. Liu, and C.-K. Sun, “Nonlinear Behaviors of Low-Temperature-Grown GaAs-Based Photodetectors Around 1.3-μm Telecommunication Wavelength” IEEE Photon. Tech. Lett., vol. 16, pp.242-244, Jan., 2004. [30] C.-K. Sun, Y.-Hung Chen, J.-W. Shi, Y.-J. Chiu, K. G. Gan, and J. E. Bowers, “Electron relaxation and transport dynamics in low-temperature-grown GaAs under 1eV optical excitation” Appl. Phys. Lett., vol. 83, pp. 911-913, Aug., 2003. [31] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series of Semiconductor Parameters, World Scientific, Singapore, 1996. [32] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode” IEEE Photon. Tech. Lett., vol. 16, pp. 864-866, 2004. [33] N. Zamdmer, Q. Hu, K. A. Mclntosh, and S. Verghese, “Increase in response time of low-temeprature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett., vol. 75, pp. 2313–2315, Oct. 1999. [34] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pt. 2, pp. 1310–1319, Aug. 1997. [35] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines. Boston, London: Artech House, 1996. [36] J. W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S.Wu,W. S. Liu, and J. I. Chyi, “Separated-transport-recombination p-i-n photodiode (STR-PD) with high-speed and high-power performance under continuous-wave (CW) operation,” in Conf. Laser and Electro-Optics (CLEO/QELS 2006), 2006, OSA Tech. Dig., Paper CTuS6. [37] D. H. Martin and E. Puplett, “Polarised interferometric spectrometry for the millimeter and submillimeter spectrum,” Infared Phys., vol. 10, pp. 105–109, Jun. 1970. [38] Y.-C. Liang and N.-W. Chen, “An ultra-broadband coplanar waveguide-fed circular monopole antenna,” EuCAP 2007, Edinburgh, UK, Nov., 2007. [39] G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proceedings of IEEE, vol. 80, pp. 1748-1770, 1992. [40] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi,“High-Speed and High-Output InP-InGaAs Unitraveling-CarrierPhotodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul., 2004. Chapter 3
[1] M.S.Sherwin, S. C.A, and P. H. Bucksbaum, "Opportunities in THz Science," Arlington, VA February 12-14, 2004. [2] G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, Appl. Phys. Lett. 39, 295-296, 1981. [3] M. Vanexter and D. R. Grischkowsky, IEEE Tran. on Microwave Theory and Techniques 38, 1684-1691, 1990. [4] F. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, Appl. Phys. Lett. 54, 890-892, 1989. [5] J. T. Darrow, B. B. Hu, X. C. Zhang, and D. H. Auston, Opt. Lett. 15, 323-325 ,1990. [6] F. W. Smith, A. R, Calawa, C.L. Chen, L.J Mahoney, M.J. Manfra, J.C. Huang, and F.H. Spooner, High Speed Semiconductor Devices and Circuits, 1987. [7] Proceedings, IEEE/Cornell Conference on Advanced Concepts in, 229-238, 1987. [8] M.Y. Frankel, J.F. Whitaker, G.A. Mourou, F.W. Smith, and A.R. Calawa, IEEE Tran. on Electron Devices 37, 2493-2498, 1990. [9] K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, Appl. Phys. Lett. 70, 354-356, 1997. [10] C. S. Wong, J. M. Dai, and H. K. Tsang, Appl. Phys. Lett. 75, 745-747 (1999). B. Salem, D. Morris, V. Aimez, J Beerens, J. Beauvais, and D. Houde, Journal of Physics-Condensed Matter 17, 7327-7333, 2005. [11] F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, Appl. Phys. Lett. 91, ,2007. [12] T. A. Liu, M. Tani, and C. L. Pan, J. Appl. Phys. 93, 2996-3001, 2003. [13] B. Salem, D. Morris, Y. Salissou, V. Aimez, S. Charlebois, M. Chicoine, and F. Schiettekatte, Journal of Vacuum Science & Technology A 24, 774-777, 2006. [14] G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Review of Scientific Instruments 73, 1715-1719, 2002. [15] Z.D. Taylor, E.R. Brown, J. E. Bjarnason, M. P Hanson, and A. C. Gossard, Opt. Lett. 31, 1729-1731, 2006. [16] J. U. Kang, M. Y. Frankel, J. W. Huang, and T. F. Kuech, Appl. Phys. Lett. 70, 1560-1562, 1997. [17] B. Salem, D. Morris, Y. Salissou, V. Aimez, S. Charlebois, M. Chicoine, and F. Schiettekatte, "Terahertz emission properties of arsenic and oxygen ion-implanted GaAs based photoconductive pulsed sources," Journal of Vacuum Science & Technology A, vol. 24, pp. 774-777, May-Jun 2006. [18] I. C. Mayorga, E. A. Michael, A. Schmitz, P. van der Wal, R. Gusten, K. Maier, and A. Dewald, "Terahertz photomixing in high energy oxygen- and nitrogen-ion-implanted GaAs," Applied Physics Letters, vol. 91, pp. -, Jul 16 2007. [19] B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, "Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates," Journal of Physics-Condensed Matter, vol. 17, pp. 7327-7333, Nov 23 , 2005. [20] Chen Kejian, Li Yutai, Cheung Wingyiu, Wang Weiwen, Pan Ciling, and Chan Kamtai, "THz WAVES GENERATED BY OXYGEN IMPLANTED GaAs," in 2007 International Symposium on Antennas and Propagation Niigata Convention Center, Niigata, Japan, 2007. [21] K. Chen, Y. Li, W. Cheung, W. Wang, C. Pan, and K. Chan, "CW Sub-Terahertz wave generation by GaAs:O Materials," in Lasers and Electro-Optics - Pacific Rim, 2007. CLEO/Pacific Rim 2007. [22]Smith. F.W. Smith, F. W.; Le, H. Q.; Diadiuk, V.; Hollis, M. A.; Calawa, A. R.; Gupta, S.; Frankel, M.; Dykaar, D.R., “Picosecond GaAs-based photoconductive optoelectronic detectors.” Appl. Phys. Lett. Vol.54, 890, 1989. [23] M. Tani, K. Sakai, and H. Mimura, “Ultrafast Photoconductive Detectors Based on Semi-Insulating GaAs and InP” Jpn. J. Appl. Phys., Part2, Vol.36, L1175 ,1997 [24] D. C. Look, Thin Solid Films 231, 61, 1993. [25] C. Ludwig and J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches.”Appl. Phys. Lett. Vol.69, 1194, 1996. [26] S. Kono, M. Tani, And K. SaKai, “Ultrabroadband photocnductive detection: comparison with free-space electro-optic sampling” Appl. Phys. Lett., Vol.79, No.7, pp. 898-900, 2001. [27] A. Claverie, F. Namavar, and Z. Lilorntal-Weber, “Formation of As precipitates in GaAs by ion implantation and thermal annealing.”Appl. Phys. Lett. Vol.62, 1271, 1993. [28] Liu T-A, Tani M and Pan C-L “THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas” J. Appl. Phys. Vol.93, 2996, 2003. [29] Lin G-R, and Pan C-L “Characterization of optically excited terahertz radiation from arsenic-ion-implanted GaAs” Appl. Phys B Vol.72, 151, 2001. [30] Lloyd-Hughes J, Castro-Camus E, fraser M D, Jagadish C and Johonston M B Phys. Rev. B 70 235330, 2004. [31] Liu T-A, Tani M, Nakajima M,Hangyo M and Pan C-L “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs.” Appl. Phys. Lett. Vol.83, 1322, 2003. [32] M. Lambsdorff, J. Kuhl, J, Rosenzweig, A. Axmann, and Jo. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs.”Appl. Phys. Let. Vol.58, 1881, 1991. [33] M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Seifner, and U. Keller, “Nonlinear optical absorption and temporal response of arsenic- and oxygen-implanted GaAs.” Appl. Phys. Let. Vol.74, 1993, 1999. [34] B. Salem, D. Morris, V. Aimez, J Veerens, J Beauvais and D Houde.”Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates” J. Phys.: Condens. Matter 17 7327-7333, 2005. [35] M. Mikulics, E. A. Michael, M. Marso, M. Lepsa, A. van der Hart, and H. L�厎h, A. Dewald, S. Stanček and M. Mozolik, P. Kordoš, “Traveling-wave photomixers fabrication on high energy nitrogen-ion-implanted GaAs”, Appl. Phys. Lett. Vol.89, 071103, 2006. [36] B.Salem, D.Morris, Y.Salissou, V.Aimez and S.Charlebois, M.Chicoine, F. Schiettekatte, “Terahertz emission properties of arsenic and oxygen ion-implanted GaAs based photoconductive pulsed sources” J.Vac.Sci. Technol. A 24(3), pp.774-777, 2006. [37] B.Salem, D.Morris, V.Aimez, J Beauvais and D Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials” Semicond. Sci. Technol. Vol.21, 283-286, 2006. [38] P. Uhd Jepsn, R. H. Jacobsen, and S. R. Keiding, “Gereration and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B, Vol.13, pp. 2424-2436, 1996. Chapter 4 [1] D. H. Martin, and E. Puplett, “polarized interferometric spectrometry for the millimeter and submillimeter spectrum” Infrared Physics, Vol.10, pp. 105-109, 1969. [2] O. Morikawa, M. Tonouchi, and M. Hangyo, “sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna” Appl. Phys. Lett., Vol.75, No. 24, pp. 3772-3774, 1999. [3] S. kono, M. Tani and K. Sakai, “Coherent Detection of mid-infrared radiation up to 60THz with an LT-GaAs photoconductive antenna” IEE, Proc-optoelectron, Vol.149, No. 3, pp. 105-109, 2002. [4] Sang-Gyu Park, Michael R. Melloch, and Andrew M. Weiner, “Analysis of Terahertz Waveforms Measured by Photoconductive and electrooptic sampling” IEEE J. Quantum Electronics. Vol.35, No. 5, pp. 810-819, 1999. [5] S Kono, Masahiko Tani, and Kiyomi Sakai, “Ultrabroadband photoconductive detection: comparison with free space electro optic sampling” Appl. Phys. Lett., Vol.79, No. 7, pp. 898-900, 2001. [6] Sang-Gyu Park, M. R. Melloch, and A. M. Weiner, “Comparison photoconductive sampling” Appl. Phys Lett., Vol.73, pp. 3184-3186, 1998. [7] J. C. G. Lesurf. “Millimetre-wave optics, devices and systems.” Adam Hilger, January, 1990. Chapter 5 [1] E. A. Michael, I. Camara Mayorga, and R. Gusten,” Terahertz continous-wave large-area traveling-wave photomixers on high-energy low-dose ion-implanted GaAs”, Appl. Phys. Lett. 90, 171109 , 2007. [2] K.-G. Gan, J.-W. Shi, Y.-H. Chen, C.-K. Sun, Y.-J. Chiu, and J. E. Bowers, “Ultrahigh power-bandwidth-product performance of low-temperature-grown GaAs based metal–semiconductor–metal traveling-wave photodetectors,” Appl. Phys. Lett., vol. 80, pp. 4054-4056, May, 2002. [3] M.-C. Tien, H.-H. Chang, J.-Y. Lu, L.-J. Chen, S.-Y. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Device saturation behavior of submillimeter-wave membrane photonic transmitters,” IEEE Photon. Technol. Lett., vol. 16, pp. 873-875, March, 2004. [4] S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertzoutput power”, IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1301-1309, Aug., 1997. [5] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1032-1038, June, 2001. [6] N. Zamdmer, Qing Hu, K. A. Mclntosh, and S. Verghese, “ Increase in Response Time of Low-Temeprature-Grown GaAs Photoconductive Switches at High Voltage Bias” Appl. Phys. Lett., vol. 75, pp. 2313-2315, Oct., 1999. [7] S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertzoutput power”, IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1301-1309, Aug., 1997. [8] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug., 2005. [9] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug., 2004. [10] J. P. Ibbetson and U. K. Mishra, “Space–charge-limited currents in nonstoichiometric GaAs,” Appl. Phys. Lett., vol. 68, pp. 3781–3783, 1996. [11] T. -A. Liu, G. -R. Lin, Y.-C. Chang, C.-L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol.13, Issue 25, pp. 10416-10423, Dec., 2005. [12] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeterwave signal generation using photodiode bias modulation,” J. Lightw. Technol., vol. 24, no. 4, pp. 1725–1731, Apr. 2006. [13] Y.-S. Wu, Nan-Wei Chen, and J.-W. Shi, “A W-Band Photonic Transmitter/Mixer Based on High-Power Near-Ballistic Uni-Traveling-Carrier Photodiode (NBUTC-PD),” IEEE Photon. Technol. Lett., vol. 20, pp. 1799-1801, Nov., 2008. [14] E. Ivanov, S. Diddams, and L. Hollberg, “Study of the Excess Noise Associated with Demodulation of Ultra-Short Infrared Pulses,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, 1068-1074 , 2005. [15] T. -A. Liu, G. -R. Lin, Y.-C. Chang, C.-L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol.13, Issue 25, pp. 10416-10423, Dec., 2005. Chapter 6 [1] M. Z. Win, and R. A. Scholtz, “Impulse radio: how it works,” IEEE Commun. Lett. 2, 36-38, 1998. [2] M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wideband Signals and Systems in Communication Engineering, Second Edition, John Wiley & Sons, Ltd, 2007 [3] R. J. –M. Cramer, M. Z. Win, and R. A. Scholtz, “Impulse radio multipath characteristics and diversity reception,” Proc. of ICC, Atlanta, GA, USA, 3, 1650-1654, 1998. [4] E. E. Funk and C. H. Lee, “Free-space power combining and beam steering of ultra-wideband radiation using an array of laser-triggered antennas,” IEEE Trans. Microwave Theory Tech. 44, 2039–2042, 1996. [5] E. E. Funk, S. Ramsey, C. H. Lee, “A photoconductive correlation receiver for time-hopped wireless spread-spectrum radio,” IEEE Microwave and Guided Wave Lett. 8, 229-231, 1998. [6] E. R. Mueller, and A. J. DeMaria, “Broad bandwidth communication/data links using terahertz sources and Schottky diode modulators/detectors,” Proc. of SPIE 5727, 151-165, 2005. [7] T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40, 124-126, 2004. [8] L. Moller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393-395, 2008. [9] T. A. Liu, G. R. Lin, Y. C. Chang, C. L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Opt. Express. 13, 10416-10423, 2005. [10] Y.-S. Wu, Nan-Wei Chen and J.-W Shi, “A W-Band Photonic Transmitter/Mixer Based on High-Power Near Ballistic Uni-Traveling Carrier Photodiodes (NBUTC-PD),”IEEE Photon. Technol. Lett., vol. 20, pp1799-1801, Nov.1, 2008. [11] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeter-wave signal generation using photodiode bias modulation,” J. of Lightwave Technol., vol. 24, pp. 1725-1731, April, 2006. [12] H.-C. Chien, A. Chowdhury, Z. Jai, Y.-T. Hsueh, and G.-K. Chang, “Long-Reach 60-GHz Mm-Wave Optical-Wireless Access Network Using Remote Signal Regeneration and Upconversion,” in Proc. ECOC 2008, Brussels, Belgium, Germany, Sep., 2008, vol. 2, pp. 137-138. [13] J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGban, H. Sun, K.-T. Wu, M. Osullivan, and Y. Jiang. “Electronic Signal Processing for Fiber-Optic Communication,” IEEE LEOS NEWSLETTER, vol. 23, no. 1, pp. 11-15, Feb., 2009.
|