跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾子欽
研究生(外文):Chung,Tzu-Chin
論文名稱:以即時電性量測法探討AgInSbTe及其奈米複合薄膜之相變化動力學研究
論文名稱(外文):A Study of Phase-change Kinetics of AgInSbTe and Its Nanocomposite Thin Films by In-situ Electrical Property Measurement
指導教授:謝宗雍
指導教授(外文):Hsieh,Tsung-Eong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:60
中文關鍵詞:相變化光碟相變化記憶體Avrami指數
外文關鍵詞:AgInSbTephase-change memoryAvrami coefficientactivation energy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究以自組之即時電性量測系統(In-situ Electrical Property Measurement)探討AgInSbTe(AIST)與AIST-SiO2奈米複合薄膜之相變化動力學。X光繞射分析(X-ray Diffraction,XRD)顯示初鍍之非晶態AIST經加熱至約200�aC後轉變為結晶態之Sb2Te相。在等升溫實驗中,相變化溫度(Tc)隨膜厚與升溫速度之增加而降低,由Kissinger分析知相變化活化能(Activation Energy,Ea)隨著膜厚的減少而增加,顯示試片維度會抑制晶粒成長;在相同膜厚下,在AIST-SiO2奈米複合薄膜中掺入SiO2會增加其活化能,意味著SiO2抑制了AIST再結晶時的晶粒成長,故使Ea值上升。在恆溫實驗中,以Johnson-Mehl-Avami-Kolmogorov(JMAK)理論探討薄膜之成長模式發現AIST之晶粒成長模式介於二維與三維;當SiO2摻雜量為15 wt.%且膜厚為50 nm以上時,其成長轉為三維模式;推測其原因應為SiO2顆粒在薄膜內部提供了許多異質成核(Heterogeneous Nucleation)位置,均勻分佈的SiO2顆粒使相變化過程趨向於三維模式。適當活化能(Appropriate Activation Energy,�寒)之量測顯示ΔΗ值隨著膜厚的增加而增加,與JMAK分析所得之三維成長趨勢結果一致。
本研究亦研究加入Ti及GeN潤濕層對含AIST奈米複合記錄層光碟之短T訊號品質之影響,但目前之實驗結果尚無法獲得理想的品質改善。
In this study, a self-assembly in-situ electrical property measurement system was adopted to study the phase-change kinetics of AgInSbTe (AIST) and AIST-SiO2 nanocomposite thin films. X-Ray diffraction (XRD) showed that the as-deposited amorphous AIST transforms to crystalline Sb2Te phase when heated to a temperature above 200�aC. In the constant-heating-rate experiment, the phase transition temperatures were found to increase with the increase of film thickness and heat rate. The calculation of activation energy (Ea) using Kissinger’s analysis indicated that the Ea values of AIST and its nanocomposite layers increase with the decrease of film thickness. This indicated that the sample dimension affects the progress of phase transition. However, in the same thickness condition, the Ea’s increases with the addition of SiO2 in nanocomposite layers, denoting the embedment of SiO2 restrains the grain growth of AIST during recrystallization. Isothermal experiment in conjunction with Johnson-Mehl-Avrami-Kolomogrov (JMAK) analysis revealed that the phase transition of AIST occurs in a mode in between two-dimensional to three-dimensional manner. As to the AIST-SiO2 nanocomposite layers, the phase change mode becomes three-dimensional when the SiO2 content exceeds 15 wt.% and the film thickness is greater than 50 nm. This is ascribed to the numerous heterogeneous nucleation sites provided by the embedment of SiO2 so that the grain growth mode of AIST becomes three-dimensional. This is in good agreement with the measurement of appropriate activation energy (�寒) which shows that the values of �寒 increase with the increasing film thickness.
This work also reports the improvement of short T signals of optical disk containing AIST-SiO2 nanocomposite recording layer by addition the Ti and GeN wetting layers. Unfortunately, no substantial improvement on the quality of short T signals was found.
第一章 緒論 1
第二章 文獻回顧 3
2-1、記憶體技術 3
2-1-1、PCRAM原理 7
2-1-2、PCRAM近年研發概況 10
2-2、光記錄媒體 11
2-3、AIST與相變化材料簡介 14
2-4、相變化薄膜電阻特性與結晶動力學研究 17
2-4-1、Kissinger分析 18
2-4-2、JAMK分析 19
2-4、研究動機 26
第三章 實驗方法 27
3-1、AIST相變化動力學實驗流程 27
3-1-1、含AIST奈米複合紀錄層光碟之訊號改善實驗流程 27
3-2、AIST及奈米複合薄膜製備 28
3-3、即時電性量測 29
3-4、XRD分析 30
3-5、Kissinger分析 31
3-6、JAMK分析 32
3-7、TEM分析 32
3-8、光碟訊號分析 32
第四章 結果與討論 34
4-1、薄膜結構分析 34
4-1-1、XRD分析 34
4-1-2、Kissinger分析 36
4-1-3、JMAK分析 41
4-2、潤濕層對含AIST奈米複合記錄層光碟之影響 48
第五章 結論 52
參考文獻 54
[1] 雷宇宏,新興記憶體之技術動態探析,EEDESIGN-電子設計資源網,2007/10/29。
[2] Stefan Lai and Tyler Lowery, “OUM–A 180 nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications”, IEDM'01 Tech, Dig., (2001), p.803.
[3] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, “先進記憶體簡介”, 國研科技創刊號。
[4] http://en.wikipedia.org/wiki/Random_access_memory.
[5] http://electronics.howstuffworks.com/flash‐memory.htm.
[6] 劉志益,曾俊元,”電阻式非揮發記憶體之近期發展” 。
[7] 葉林秀,李佳謀,徐明豐,磁阻式隨機存取記憶體技術的發展-現在與未來,物理雙月刊,廿六卷四期(2004)。
[8] 小笠原 陽介 (記者),產綜研和夏普開發出耗電低且速度高的ReRAM,日經BP社報導,(2008/10/6) 。
[9] NanterO官方網站。
[10] S. Ovshinsky, “Rversible electrical switching phnomena in disodered structure”, Phy. Rev. Lett., 20(1968), p.1450-1453.
[11] Technology presentation, http://www.ovonyx.com/.
[12] M. Wuttig and C. Steimer Phase Change materials, “From material science to navel storage devices”, Appl. Phys., A 87(2007), p.411-417.
[13] 鍾朝安,淺談相變化記憶體技術專文2,電子報(2002/12)。
[14] J. Kramer, Z. Phys. 106(1937)639-641.
[15] S. Hosaka, K. Miyauchi, T. Tamura, Y. Yin and H. Sone, “Proposal of memory transistor using a phase change and nona-size effects of high density memory array”, Proc. 15th Symp. on Phase Change Optical Information Storage, ed. by T. Ide, The Society of Phase Change Recording, (2003), p.52-55.
[16] Dae-Hwan Kang, Dong-Ho Ahn, Ki-Bum Kim, J. F. Webb and Kyung-Woo Yi, “One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F2 memory cell (F = 0.15 µm)”, J. Appl. Phys., 94(2003), p. 3536.
[17] Kazuya Nakayama, Kazuhiko Kojima, Yutaka Imai, Toshihiko Kasai, Sanae Fukushima, Akio Kitagawa, Minoru Kumeda, Yoshio Kakimoto and Masakuni Suzuki, “Nonvolatile Memory Based on Phase Change in Se–Sb–Te Glass”, Jpn. J. Appl. Phys., 42(2003), p. 404-408.
[18] Bo Liu, Ting Zhang, Jilin Xia, Zhitang Song, Songlin Feng and Bomy Chen, “Nitrogen-implanted Ge2Sb2Te5 film used as multilevel storage media for phase change random access memory”, Semicond. Sci. Technol., 19(2004), p.L61-L64.
[19] Sung-Min Yoon, Nam-Yeal Lee, Sang-Ouk Ryu, Kyu-Jeong Choi, Y.-S. Park, Seung-Yun Lee, Byoung-Gon Yu, Myung-Jin Kang, Se-Young Choi and M. Wuttig, “Sb-Se-based phase-change memory device with lower power and higher speed operations”, IEEE Electron Device Letters, 27(2006), p.445-447.
[20] Ting Zhang, Zhitang Song, Feng Wang, Bo Liu and Songlin Feng, “Advantages of SiSb phase-change material and its applications in phase-change memory”, Appl. Phys. Lett., 91(2007), p.222102.
[21] Ting Zhang, Zhitang Song, Bo Liu and Songlin Feng, “Investigation of environmental friendly Te-free SiSb material for applications of phase-change memory”, Semicond. Sci. Technol., 23(2008), p.055010.
[22] Ting Zhang, Zhitang Song, Feng Wang, Bo Liu, Songlin Feng, and Bomy Chen, “Te-Free SiSb Phase Change Material for High Data RetentionPhase Change Memory Application”, Jpn. J. Appl. Phys., 46(25)(2007), p.L602-L604.
[23] Ting Zhang, Zhitang Song, Bo Liu, Songlin Feng and Bomy Chen, “Investigation of phase change Si2Sb2Te5 material and its application in chalcogenide random access memory”, Solid State Electronics, 51(6)(2007), p.950-954.
[24] Lee Tae-Yon, Yim Sung-Soo, Lee Dongbok, Lee Min-Hyun, Ahn Dong-Ho, and Kim Ki-Bum, “Separate domain formation in Ge2Sb2Te5-SiOx mixed layer”, Appl. Phys. Lett., 89(2006), p.163503.
[25] Tsukasa Nakai, Keiichiro Yusu, Yasuhiro Satoh and Sumio Ashida, “High-Speed Deposition of New Low-Refractive-Index Dielectric Film “SiOC” for Rewritable HD DVD Media”, Jpn. J. Appl. Phys., 45(2006), p.1447-1451.
[26] Noritake Ohmachi, Naoki Morishota, Keiichiro Yusu, Naomasa Nakamura, Tsukasa Nakai and Sumio Ashida, “High-Speed Recording Media for HD DVD Rewritable System”, Jpn. J. Appl. Phys., 45(2006), p.1210-1212.
[27] Noritake Ohmachi, Sumio Ashida, Keiichiro Yusu, Tsukasa Nakai, Katsutaro Ichihara and Naomasa Nahamura, “Media Technologies of 20 GB Single-Layer Rewritable Phase-Change Disc for HD DVD System”, Jpn. J. Appl. Phys., 43(2004), p.4978-4982.
[28] Masaru Sakai, Shuji Mononobe, Keiichiro Yusu, Toshiyasu Tadokoro and Toshiharu Saiki, “Observation of Amorphous Recording Marks Using Reflection-Mode Near-Field Scanning Optical Microscope Supported by Optical Interference Method”, Jpn. J. Appl. Phys., 44(2005), p.6855-6858.
[29] Yasuo Hosoda, Takanobu Higuchi, Noriyoshi Shida, Tetsuya Imai, Tetsuya Iida, Kazumi Kuriyama and Fumihiko Yokogawa, “BD-Type Write-Once Disk with Pollutant-Free Material and Starch Substrate”, Jpn. J. Appl. Phys., 44(2005), p.3587-3590.
[30] Jochen Hellmig, Andrei V. Mijiritskii, Herman J. Borgi, Katerina Musialkova and Piet Vromans, “Dual-Layer Blu-ray Disc Based on Fast-Growth Phase-Change Materials”, Jpn. J. Appl. Phys., 42(2003), p.848-851.
[31] Wook Yeon Hwang, Kyung Geun Lee, Chang Jin Yang and In Sik Park, “Optimized Write Strategy for 4×Speed BD-RE”, Jpn. J. Appl. Phys., 44(2005), p.3440-3441.
[32] http://www.blu-ray.com/faq/#bluray_developers.
[33] http://www.toshiba.co.jp/about/press/2008_02/pr1903.htm.
[34] 許金池、柯博偉,IEK電子時報整理製表,2005/1。
[35] 錸德科技,http://www.ritek.com.tw/
[36] Hung-Chuan Mai and Tsung-Eong Hsieh, “The Nanocomposite Thin Film Applied to High-Density Write-Once Optical Data Storage”, Jpn. J. Appl. Phys., 46(2007), p.5834-5837.
[37] M. Wuttig and C. Steimer, “Phase Change materials: from material science to navel storage devices”, Appl. Phys. A, 87(2007), p.411-417.
[38] T. Matsushita, A. Suzuki, T. Hishiguchi, K Shibata and M. Okuda, “Phase-Change optial recording films with AgInTe2-Sb-Te system“, Jpn. J. Appl. Phys., 32(1995), p. 519-520.
[39] J. Tominaga, T. Handa, S. Haratani and S. Takayama, “V and Ti doping effect on In-Ag-Te-Sb optical phase change rewritable disc”, Jap. J. Appl. Phys., 32(1993), p.1980-1982.
[40] Tatsunaga and N. Tamada, “Thermal properties on the structures of AgInSbTe and GeSbTe compounds, high-speed phase-change materials”, Proc. 15th Symp. on Phase Change Optical Information Storage, ed. by T. Ide, The Society of Phase Change Recording, (2003), p.7-12.
[41] G. Ghosh, “The Sb-Te system”, J. Phase Equilib., 15(1994), p.349-335.
[42] H. Iwasaki, “CD-Rewritable and Future Disc Technology”, Digest of Technical Papers Proceeding of the 1997 Optical Data Storage Topical Meeting,(1997),p. 9-10.
[43] Chien-Chih Chou, Fei-Yi Hung and Truan-Sheng Lui, “Role of crystallized phase in sheet resistance of amorphous AgInSbTe chalcogenide film” Scripta Materialia, 56(2007), p.1107-1110.
[44] 陳沿洲,“鍺銻碲相變化薄膜的電氣性值與相變化行為之研究”,國立交通大學材料科學與工程學系碩士論文,(2007)。
[45] Homer E. Kissinger, “Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis”, J. Res. Nat. Bur. Stand., 57(1956), p.217-221.
[46] Homer E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis”, Anal. Chem., 29(1957), p.1702-1706.
[47] Michael E. Brown, Introduction to Thermal Analysis, Chapman and Hall, London, (1988), p.127.
[48] Walter K. Njoroge and Matthias Wuttig, “Crystallization Kinetics of Sputter-deposited Amorphous AgInSbTe Films”, J. Appl. Phys., 90(2001), p.3816-3821.
[49] Walter K. Njoroge, Henning Dieker and Matthias Wuttig, “Influence of Dielectric Capping Layers on The Crystallization Kinetics of Ag5In6Sb59Te30 Films”, J. Appl. Phys., 96(2004), p.2624-2627.
[50] M. Avrami, “Kinetics of Phase Change I”, J. Chem. Phys., 7(1939), p.1103-1112.
[51] M. Avrami, “Kinetics of Phase Change II”, J. Chem. Phys., 8(1940), p.212-224.
[52] M. Avrami, “Kinetics of Phase Change III”, J. Chem. Phys., 9(1941), p.177-184.
[53] G. Kostorz, Phase Transformation in Materials, Wiley-VCH, Weinheim, (2001), p.243.
[54] R.H. Doremus, Rate of Phase Transformation, Academic Press, Orlando, (1985), p.24.
[55] D. A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 1st ed., Chapman and Hall, London, (1981), p.289.
[56] J. W. Christian, The Theory of Transformations in Metals and Alloys, PART I, “Equilibrium and General Kinetic Theory”, 2nd ed., Pergamon Press, Oxford, (1975), p.12-20;ibid, p.542.
[57] Michael C. Weinberg, Dunbar P. Birnie III and Vitaly A. Shneidman, “Crystallization Kinetics and JMAK Equation”, J. Non-Cryst. Solids, 219(1997), p.89-99.
[58] Dunbar P. Birnie III and Michael C. Weinberg, “Shielding Effects in 1-D Transformation Kinetics”, Phys. A, 223(1996), p.337-347.
[59] V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser Induced Crystallization of Amorphous Ge2Sb2Te5 Films”, J. Appl. Phys., 89(2001), p.3168-3176.
[60] P. N. Kalu and D. R. Waryoba, “A JMAK-microhardness Model for Quantifying the Kinetics of Restoration Mechanisms in Inhomogeneous microstructure.”, Mate. Sci. and Eng. A, 464(2007), p.68-75.
[61] L. B. Vald, “Resistance Measurements on Germanium for Transistors”, Proc I.R.E., 42(1954), p.420
[62] 張鴻鐘,“AgInSbTe薄膜與AgInSbTe-SiO2¬奈米複合薄膜之相變化動力學研究”,國立交通大學工學院半導體材料與製程產業研發碩士論文,(2008)。
[63] M. L. Lee, L. P. Shi, Y. T. Tian, C. L. Gan, and X. S. Miao, “Crystallization behavior of Sb70Te30 and Ag3In5Sb60Te32 chalcogenide materials for optical media applications”, Phy. Stat. Sol. (a), 205(2)(2008), p.340-344.
[64] J. Li, and F. Gan, “Optical properties of Ag8In14Sb55Te23 phase-change films”, Thin Solid Films, 402(2002), p.232–236.
[65] N. Ohshima: “Crystallization of germanium-antimony-telluriurm amorphous thin film sandwiched between various dielectric protective films”, J. Appl. Phys., 79(11)(1996), p.8357-8363.
[66] P. K. Tan, L. P. Shi, X. S. Miao, H. Meng, K. P. Wong, K. G. Lim and T. C. Chong, “Substrate Deformation Studies on Direct Overwriting of Phase-Change Rewritable Optical Disc with Germanium Nitride Interface Layers” ,Jpn. J. Appl. Phys., Part1, 43(7B)(2004), p.5024-5028.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top