跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/01/29 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪淙琦
研究生(外文):Hung, Tsung-Chi
論文名稱:奈米碳材料的合成及電化學電容器之應用
論文名稱(外文):Synthesis of Carbon Nanomaterials and Applications on Electrochemical Capacitor
指導教授:陳家富陳家富引用關係黃華宗
指導教授(外文):Chen, Chia-FuWhang, Wha-Tzong
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:142
中文關鍵詞:奈米碳管電化學電容器微波電漿
外文關鍵詞:nanotubeelectrochemicalcapacitormicrowaveplasma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管具有優異且獨特的化學與物理特性,應用於各種領域深具有淺力,例如場發射顯示器、儲氫材料、能量儲存、奈米電子元件及複合材料等。奈米碳管主要的合成法包括:雷射蒸發法、電弧法以及化學氣相沈積法,作為觸媒之用的過渡金屬(鐵、鈷、鎳)對於採用化學氣相沈積法尤其重要。
本研究論文採用偏壓輔助微波電漿化學沈積系統合成多種結晶性奈米碳材料於碳布以及不鏽鋼片上,包括垂直以及交錯成長的奈米碳管、接合奈米碳薄片的奈米碳管以及二維和三維結構的奈米碳薄片,這多樣的奈米碳結構可以經由通入不同的氣氛系統而達到,包含了甲烷/氫氣以及甲烷/二氧化碳系統; 甲烷/氫氣(1:4)的系統可用作在含有鐵觸媒的基板上成長純奈米碳管的前驅物氣體來源。當中,交錯成長的奈米碳管是在沒有施加外部偏壓的情況下可以得到,而垂直成長的奈米碳管則是藉由施加相對於在系統上電極的-150 伏特偏壓而得到,除此之外,有趣的是,接合奈米碳薄片的碳管也可以藉由相同的系統得到,只是鍍有鐵觸媒的基材在氮氣的氣氛下需先經過400℃退火5小時,類似的接合結構也可以在不鏽鋼基材上藉由甲烷/二氧化碳(3:2) 的系統得到,同樣地考慮施加偏壓,這樣的接合結構只有在施加-150 伏特偏壓 的情形下才能達到,相較之下,在不施加偏壓以及-100 伏特的情形下會得到奈米碳薄片以及球狀奈米碳薄片的結構;在相同的甲烷/二氧化碳系統之下,我們利用沒有觸媒的沈積方式,藉由碳原子間碰撞的原理,可以在碳布上得到二維的碳薄片結構,在不用觸媒的考慮下,我們也嘗試著將二維的結構轉為三維的堆疊,利用醋酸在90℃下進酸化6個小時,便可以在原本的二維結構上繼續碳的沈積以轉變為具有花簇狀碳薄片的第二層堆疊。這些碳結構則是藉由掃描式、穿透式電子顯微鏡、拉曼光譜儀以及X光繞射儀進行量測。
論文的第二部份則事先藉由不同濃度的醋酸(2M及14M)在90�aC以及不同的時間條件下對垂直成長的奈米碳管進行酸化以探究官能基的數量極限,我們發現官能基的數量極限在2M以及14M的條件下分別可以在12小時以及6小時候得到。應用在超高電容器上,有著奈米碳薄片接合的碳管,其電容量則會有效的提昇,可以達到將近194 F/g,幾乎是純碳管電極的兩倍;在不用觸媒沈積的碳薄片方面,三維碳薄片結構的電極顯示出較二維碳薄片結構近四倍大的電容量,這主要是因為孔洞的尺寸分佈趨近於3 nm,這樣的結果是有利於電荷的儲存;在本論文研究中,所有的含碳結構的電極其循環效率在經過2000次的循環之後都還可以超過90%,我們認為含有奈米碳薄片的碳結構也許在能量儲存系統的應用上可以提供一個另外的選擇,尤其是在電化學電容器上。
Carbon nanotubes (CNTs) have unique properties that make them suitable for use in various applications, such as field emission displays, energy storage, chemical sensors, nano-electronic devices, and composite materials. The available methods for synthesizing CNTs include arc-discharging, laser vaporization, and chemical vapor deposition using transition metals (e.g., Fe, Co, Ni) as catalysts.
In the studies reported in this Thesis, we used a bias-assisted microwave plasma-enhanced chemical vapor deposition (MPCVD) system to synthesize various crystalline carbon nanomaterials, including aligned and interlaced CNTs, CNTs decorated with carbon nanowalls (CNWs), and two- and three-dimensional CNWs on carbon cloth (CC) and stainless-steel (SS) substrates. The nature of the resulting carbon structures varied depending on the choice of the gaseous system (CH4/H2, CH4/CO2). The CH4/H2 system at a ratio of 1:4 served as a precursor for the synthesis of pure CNTs on both the CC and SS substrates, with Fe as the catalyst. Interlaced CNTs formed in the absence of an applied external bias; aligned CNTs formed when applying an external bias of at least –150 V with respect to the upper electrode in the MPCVD system. Interestingly, CNTs decorated with CNWs on their surfaces were synthesized on the Fe-coated CC subjected to annealing under a N2 atmosphere at 400 °C for 5 h; an analogous structure was formed on the SS substrate when introducing the mixture of CH4 and CO2 at a specific flow ratio of 3:2. CNTs decorated with CNWs were obtained when applying a negative bias of –150 V, whereas CNW sheets and spherical CNWs resulted at biases of 0 and –100 V, respectively. In the same CH4/CO2 system, but without any added catalyst, normal 2D CNWs were formed on the CC substrate through the collision of carbon atoms. Using catalyst-free conditions, we turned these 2D structures into 3D constructions by stacking flower-like aggregates of CNWs onto the 2D sheets, which had been functionalized under the influence of HNO3 at ca. 90 �aC for 6 h. The structures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and X-ray diffraction (XRD).
The second part of this Thesis describes the quantitative limitations of the number of functional groups that could be formed on aligned CNTs after oxidizing them with various concentrations of HNO3 at 90 �aC for various periods of time. Using 2 and 14 M HNO3, the maximum number of functional groups was obtained after 12 and 6 h, respectively, as measured in terms of quantity of Pt particles. Subsequently, the different kinds of carbon materials described in this Thesis were functionalized with 14 M HNO3 over 6 h to test their applicability for use as supercapacitors. The capacitance was increased dramatically to ca. 194 F/g after attaching the CNWs to the CNTs, almost doubling the value of the electrode formed from pure CNTs (ca. 100 F/g). The 3D construction of CNWs exhibited an enormous increase in capacitance to ca. 200 F/g—over four times larger than that of the 2D sheets of the pure CNWs—because of their optimal pore size distribution (ca. 3 nm). For all of the electrodes tested in this study, the supercapacitor efficiency remained greater than 90% after 2000 cycles. The unique structures of the CNT-CNF and 3D CNW electrodes may provide another route for the application of carbon-based materials to energy storage systems, especially electrochemical capacitors.
Abstract(Chinese) ………. ……………………………………………………………………………..... i
Abstract(English) …………………………………………………………………....... iii
Acknowledgement …………………………………………………………………....... v
Contents …………………………………………………………………....... vi
Table Captions …………………………………………………………………....... x

Figure Captions …………………………………………………………………....... xi

Chapter 1 Introduction……………………………………………………........ 1
1.1 Carbon nanomaterials…………………………………………........ 1
1.1.1 Carbon nanotubes (CNTs)………………………………………..... 2
1.1.1.1 Structures and properties of CNTs………………………………..... 3
1.1.1.1.1 Structures of CNTs……………………………………………........ 3
1.1.1.1.2 Electronic properties of CNTs…………………………………....... 6
1.1.1.1.3 Mechanical properties of CNTs…………………………………..... 8
1.1.2 Carbon nanowalls (CNWs)……………………………………........ 9
1.1.2.1 Structures and properties of CNWs……………………………....... 9
1.1.2.1.1 Structures of CNWs……………………………………………....... 10
1.1.2.1.2 Properties of CNWs……………………………………………....... 11
1.1.3 Application of carbon nanomaterials……………………………..... 12
1.1.3.1 Energy storage…………………………………………………....... 12
1.1.3.2 Supercapacitors…………………………………………………...... 12
1.1.3.3 Hydrogen storage………………………………………………....... 13
1.1.3.4 Lithium intercalation……………………………………………...... 13
1.1.3.5 Field emission devices…………………………………………....... 14
1.1.3.6 Composite materials……………………………………………...... 14
1.1.3.7 Transistors………………………………………………………...... 15
1.1.3.8 Templates………………………………………………………....... 16
1.1.3.9 Nanoprobes and sensors…………………………………………..... 16
1.1.4 Carbon nanomaterial synthesis…………………………………...... 17
1.1.4.1 Arc discharging…………………………………………………...... 18
1.1.4.2 Laser ablation…………………………………………………......... 19
1.1.4.3 Catalyst chemical vapor deposition……………………………....... 20
1.1.4.4 Catalytic growth mechanisms of CNTs…………………………..... 24
1.2 Electrochemical capacitors……………………………………….... 27
1.2.1 Faradaic and non-faradaic processes……………………………..... 30
1.2.1.1 Non-faradaic process……………………………………………..... 30
1.2.1.2 Faradaic process…………………………………………………..... 30
1.2.2 Classification of electrochemical capacitors……………………...... 31
1.2.2.1 Traditional capacitors……………………………………………..... 31
1.2.2.2 Electric double-layer capacitor…………………………………...... 31
1.2.2.3 Pseudocapacitor…………………………………………………..... 34
1.2.2.4 Conducting polymer capacitor…………………………………....... 35
1.3 Motivation for this Thesis………………………………………...... 35
Chapter 2 Literature Review………………………………………………...... 36
2.1 Purification of CNTs……………………………………………...... 36
2.1.1 Thermal oxidation………………………………………………...... 36
2.1.2 Microfiltration and ultrasonically assisted filtration……………...... 36
2.1.3 Acid treatment…………………………………………………........ 37
2.1.4 Thermal oxidation combined with acid treatment………………..... 38
2.2 Fundamentals and structures of ECs……………………………...... 38
2.2.1 Principle of energy storage……………………………………….... 40
2.2.2 Electrode material………………………………………………...... 42
2.2.2.1 Carbonaceous material…………………………………………....... 42
2.2.2.2 Metal oxides……………………………………………………....... 44
2.2.2.3 Polymers………………………………………………………….... 44
2.2.3 Electrolyte………………………………………………………...... 45
2.2.3.1 Non-aqueous electrolytes………………………………………....... 45
2.2.3.2 Aqueous electrolytes……………………………………………...... 46
2.3 Electrochemical characteristic of porous electrodes……………...... 47
Chapter 3 Experimental Details……………………………………………...... 52
3.1 Experimental flow chart for the growth and characterization of carbon nanomaterials…………………………………………….....
52
3.2 Deposition system: Bias-assisted MPCVD……………………........ 53
3.3 Analytical instruments…………………………………………....... 55
3.3.1 XPS……………………………………………………………….... 55
3.3.2 Energy dispersive X-ray (EDX) analysis………………………....... 55
3.3.3 SEM……………………………………………………………....... 56
3.3.4 TEM……………………………………………………………....... 57
3.3.5 Raman spectroscopy……………………………………………...... 58
3.3.6 XRD……………………………………………………………....... 58
3.3.7 Infrared (IR) spectroscopy………………………………………..... 59
3.3.8 Cyclic voltammetry (CV)………………………………………...... 60
3.3.9 Brunauer–Emmit–Teller (BET) surface area……………………..... 61
Chapter 4 Synthesis of Carbon Nanomaterials by MPCVD system………...... 63
4.1 Synthesis of MWCNTs on carbon cloth and stainless steel……....... 63
4.1.1 Sample preparation and experimental procedures………………..... 63
4.1.2 The effect of external bias on the formation of MWCNTs……….... 63
4.1.3 Characteristics of the aligned MWCNTs………………………....... 65
4.1.4 Summary………………………………………………………….... 70
4.2 Synthesis of coral-like MWCNTs………………………………...... 71
4.2.1 Sample preparation and experimental procedures………………..... 71
4.2.2 Characteristics of the coral-like MWCNTs…………………............ 72
4.2.3 Formation mechanisms of coral-like MWCNTs………………........ 81
4.2.4 Summary………………………………………………………….... 83
4.3 Synthesis of graphitic CNWs on carbon cloth…………………....... 84
4.3.1 Catalyst-free fabrication of 2-D and quasi-3-D CNWs electrode on carbon cloth…………………………………………………............
84
4.3.2 The effect of supplied power on the formation and properties of CNWs……………………………………………………………....
85
4.3.3 Fabrication and characteristics of stacking 3-D CNWs………......... 94
4.3.4 Formation mechanism of the stacking 3-D CNWs……………….... 101
4.3.5 Summary............................................................................................ 102
Chapter 5 Electrochemical properties of carbon nanomaterials......................... 103
5.1 Chemical treatment on carbon nanomaterials.................................... 103
5.1.1 Experimental procedures for acid treatment...................................... 103
5.1.2 Characteristics.................................................................................... 104
5.1.2.1 FTIR and XPS measurements............................................................ 104
5.1.2.2 Deposition of Pt on the MWCNTs..................................................... 106
5.1.2.3 Quantitative limitation of active sites on carbon material................. 108
5.1.3 Summary............................................................................................ 110
5.2 Electrochemical investigations of carbon nanomaterials.................. 111
5.2.1 Aligned MWCNTs and coral-like CNTs in aqueous solution (H2SO4/H2O).....................................................................................
111
5.2.1.1 Experimental details.......................................................................... 111
5.2.1.2 Electrochemical measurements......................................................... 112
5.2.2 2-D and 3-D CNWs in aqueous solution (H2SO4/H2O).................... 116
5.2.2.1 Experimental details.......................................................................... 116
5.2.2.2 Electrochemical measurements.......................................................... 117
5.2.3 Entangled MWCNTs and coral-like materials in non-aqueous electrolyte (GBL ion solution)...........................................................
119
5.2.3.1 Experimental details.......................................................................... 119
5.2.3.2 Electrochemical measurements.......................................................... 119
5.2.4 Summary............................................................................................ 125
Chapter 6 Conclusions........................................................................................ 126
Reference Reference........................................................................................... 129
1. http://www.enterprisemission.com/images_v2/Iapetus5/carbon-allotropes.jpg
2. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Imperical College Press, London (1998)
3. R.E. Smalley. Formation and properties of C60 and the fullerences, National Institute of Standards and Technology, Dec. 6-7, 1990.
4. S. Iijima, Nature 354 (1991) 56
5. S. Iijima, T. Ichihashi, Nature 363 (1993) 603
6. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60 (1992) 2204.
7. J.-M. Bonard, H. Kind, T. Stöckli, L.O. Nilsson, Solid State Electronics 45 (2001) 893.
8. E.T. Thostenson, Z. Ren, T.-W. Chou, Composites Science and Technology 61 (2001) 1899.
9. K. Tanaka, K. Okahara, M. Okada, T. Yamab, Chem. Phys. Lett. 191 (1992) 469.
10. D. Bernaerts, M. Op De Beeck, S. Amelinckx, J. Van Landuyt, G. Van Tendeloo, Philos. Mag. A 74 (1996) 723.
11. X.F. Zhang, X.B. Zhang, G. Van Tendeloo, S. Amelinckx, M. Op de Beeck, J. Van Landuyt, J. Cryst. Growth 130 (1993) 3.
12. S. Iijima, T. Ichihashi, Y. Ando, Nature 356 (1992) 776.
13. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 76 (1996) 971.
14. N. Hamada, S.-I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.
15. X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72 (1994) 1878.
16. J.W. Mintmire, C.T. White, Carbon 33 (1995) 893.
17. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 78 (1997) 1932.
18. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Academic Press, Boston (1996).
19. P.R. Wallace, Phys. Rev. 71 (1947) 622.
20. J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391 (1998) 59.
21. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature 391 (1998) 62.
22. L.C. Venema, J.W.G. Wildöer, C. Dekker, A.G. Rinzler, R.E. Smalley, Appl. Phys. A 66 (1998) S153.
23. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, J. Phys. Chem. B 104 (2000) 2794.
24. L.C. Venema, J.W.G. Wildöer, J.W. Janssen, S.J. Tans, H.L.J. Temminck Tuinstra, L.P. Kouwenhoven, C. Dekker, Science 283 (1999) 52.
25. P. Kim, T.W. Odom, J.-L. Huang, C.M. Lieber, Phys. Rev. Lett. 82 (1999) 1225.
26. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393 (1998) 49.
27. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73 (1998) 2447.
28. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Science 275 (1997) 1922.
29. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386 (1997) 474.
30. S.J. Tans, M.H. Devoret, R.J.A. Groeneveld, C. Dekker, Nature 394 (1998) 761.
31. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Nature 397 (1999) 598.
32. A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forró, T. Nussbaumer, C. Schönenberger, Nature 397 (1999) 673.
33. H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong, H. Dai, Appl. Phys. Lett. 75 (1999) 627.
34. C. Schönenberger, A. Bachtold, C. Strunk, J.-P. Salvetat, L. Forró, Appl. Phys. A 69 (1999) 283.
35. J. Kong, C. Zhou, A. Morpurgo, H.T. Soh, C.F. Quate, C. Marcus, H. Dai, Appl. Phys. A 69 (1999) 305.
36. K. Liu, M. Burghard, S. Roth, P. Bernier, Appl. Phys. Lett. 75 (1999) 2494.
37. P.L. McEuen, M. Bockrath, D.H. Cobden, Y.-G. Yoon, S.G. Louie, Phys. Rev. Lett. 83 (1999) 5098.
38. H. Dai, E.W. Wong, C.M. Lieber, Science 272 (1996) 523.
39. L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. Van Haesendonck, Y. Bruynseraede, Phys. Rev. Lett. 76 (1996) 479.
40. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54.
41. B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76 (1996) 2511.
42. B.I. Yakobson, G. Samsonidze, G.G. Samsonidze, Carbon 38 (2000) 1675.
43. M.M.J. Treacy, T.W. Ebbesen, T. M. Gibson, Nature 381 (1996) 678.
44. E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277 (1997) 1971.
45. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Appl. Phys. Lett. 74 (1999) 3803.
46. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287 (2000) 637.
47. M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Appl. Phys. Lett. 84 (2000) 5552.
48. http:// 140.114.18.223/~hcshih/diamond/nanotube.html (2000).
49. T.W. Ebbesen, P.M. Ajayan, Nature 358 (1992) 220.
50. Yihong Wu, Bingjun Yang, Nano Letters 2 (2002) 355.
51. Alexander N. Obraztsov, Alexander P. Volkov, Igor Pavlovsky, Diamond and Related Materials 9 (2000) 1190.
52. C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett. 77 (2000) 830.
53. C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Appl. Phys. Lett. 77 (2000) 2767.
54. J. B. O. Caughman, L. R. Baylor, M. A. Gulliorn, V. I. Merkulov, D. H. Lowndes, and L. F. Allard, Appl. Phys. Lett. 83 (2003) 1207.
55. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Cobert, and R. E. Smalley, Science 269 (1995) 1550
56. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature 386 (1997) 377
57. G. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature 393 (1998) 346
58. W. A. de Heer, A. Chatelain, and D. Ugarrte, Science 270 (1995) 1179.
59. Y. Ando, X. Zhao, and M. Ohkohchi, Carbon 35 (1997) 153.
60. Y.H. Wu, P.W. Qiao, T.C. Chong, and Z.X. Shen, Adv. Mater. 14 (2002) 64.
61. S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, and M. Tachibana, J. Appl. Phys. 97 (2005) 104320
62. B. L. French, J. J. Wang, M. Y. Zhu, and B. C. Holloway, J. Appl. Phys. 97 (2005) 114317.
63. X. Zhao, R. A. Outlaw, J. J. Wang, M. Y. Zhu, G. D. Smith, and B. C. Holloway, J. Chem. Phys. 124 (2006) 194704.
64. Y. Ando, X. Zhao, M. Ohkohchi, Carbon 35 (1997) 153.
65. Y. Wu, B. Yang, B. Zong, Z. Shen, Y. Feng, J. Mater. Chem. 14 (2004) 496.
66. P.M. Ajayan, O.Z. Zhou, Carbon Nanotubes 80 (2001) 391
67. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297 (2002) 787
68. D. Rotman, Nature & Techniek 70 (2002) 30
69. T.W. Ebbesen, P.M. Ajayan, Nature 358 (1992) 220.
70. S. Iijima, T. Ichihashi, Nature 363 (1993) 603.
71. D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363 (1993) 605.
72. J. Abrahamson, P.G. Wiles, B.L. Rhoades, Carbon 37 (1999) 1873.
73. P.A. Thrower, Carbon 37 (1999) 1677.
74. X.K. Wang, X.W. Lin, V.P. Dravid, J.B. Ketterson, R.P.H. Chang, Appl. Phys. Lett. 66 (1995) 2430
75. P.J.F. Harris, “Carbon nanotubes and related structure”, Cambridge university press (1999).
76. T.W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, K. Tanigaki, Chem. Phys. Lett. 209 (1993) 83.
77. G.H. Taylor, J.D. Fitz Gerald, L. Pang, M.A. Wilson, J. Cryst. Growth 135 (1994) 157.
78. D.T. Colbert, J. Zhang, S.M. McClure, P. Nikolaev, Z. Chen, J.H. Hafner, D.W. Owens, P.G. Kotula, C.B. Cater, J.H. Weaver, A.G. Rinzler, R.E. Smalley, Science 266 (1994) 1218.
79. W.K. Maser, J.M. Lambert, P.M. Ajayan, O. Stephan, P. Bernier, Synthetic Metals 77 (1996) 243.
80. C. Journet, P. Bernier, Appl. Phys. A 67 (1998) 1.
81. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162.
82. T. Guo, P. Nikolaev, A.G. Rinzler, D. Tománek, D.T. Colbert, R.E. Smalley, J. Phys. Chem. 99 (1995) 10694.
83. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Science 273 (1996) 483.
84. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Appl. Phys. A 67 (1998) 29.
85. B.I. Yakobson, R.E. Smalley, Am. Sci. 85 (1997) 324.
86. P.L. Walker Jr, J.F. Rakszawski, G.R. Imperial, J. Phys. Chem. 63 (1959) 133.
87. M.S. Kim, N. M. Rodriguez, R.T.K. Baker, J. Catal. 131 (1991) 60.
88. M. José-Yacamán, M. Miki-Yoshida, L. Rendón, J.G. Santiesteban, Appl. Phys. Lett. 62 (1993) 657.
89. V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, Chem. Phys. Lett. 223 (1994) 329.
90. K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, J. Riga, A. Lucas, Synthetic Metals 77 (1996) 31.
91. A. Fonseca, K. Hernadi, P. Piedigrosso, J.-F. Colomer, K. Mukhopadhyay, R. Doome, S. Lazarescu, L.P. Biro, Ph. Lambin, P.A. Thiry, D. Bernaerts, J.B. Nagy, Appl. Phys. A 67 (1998) 11.
92. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Chem. Phys. Lett. 313 (1999) 91.
93. J. Kong, A.M. Cassell, H. Dai, Chem. Phys. Lett. 292 (1998) 567.
94. M. Ge, K. Sattler, Appl. Phys. Lett. 64 (1994) 710.
95. G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, R.S. Rouff, Chem. Mater. 10 (1998) 260
96. S. Seraphin, J. Electrochem. Soc. 142 (1995) 290.
97. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274 (1996) 1701.
98. Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Nature 394 (1998) 631.
99. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Nature 388 (1997) 52.
100. O.M. Küttel, O. Groening, C. Emmenegger, L. Schlapbach, Appl. Phys. Lett. 73 (1998) 2113.
101. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282 (1998) 1105.
102. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283 (1999) 512.
103. C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, W.B. Choi, N.S. Lee, G.-S. Park, J.M. Kim, Chem. Phys. Lett. 312 (1999) 461.
104. H. Araki, H. Kajii, K. Yoshino, Jpn. J. Appl. Phys. 38 (1999) L1351.
105. H. Kind, J.-M. Bonard, C. Emmenegger, L.-O. Nilsson, K. Hernadi, E. Maillard-Schaller, L. Schlapbach, L. Forró , K. Kern, Adv. Mater. 11 (1999) 1285.
106. Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, I.T. Han, W.B. Choi, N.S. Lee, J.M. Kim, Synthetic Metals 108 (2000) 159.
107. Y. Chen, D.T. Shaw, L. Guo, Appl. Phys. Lett. 76 (2000) 2469.
108. H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Appl. Phys. Lett. 76 (2000) 1776.
109. Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal, P. N. Provencio, Appl. Phys. Lett. 73 (1998) 3845.
110. M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Appl. Phys. Lett. 77 (2000) 3468.
111. C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett. 77 (2000) 830.
112. Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G.S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 76 (2000) 2367.
113. A. Gorbunov, O. Jost, W. Pompe and A. Graff, Carbon 40 (2002) 113.
114. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89.
115. G. G. Tibbetts, J. Cryst. Growth 66 (1984) 632.
116. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita and T. Hayashi, Chem. Phys. Lett. 204 (1993) 277.
117. Y. Saito, Carbon 33 (1995) 979.
118. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C.Gibbons and W. E. Buhro, Science 270 (1995) 1791.
119. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C.Gibbons, W. E. Buhro, M. Y. Chiang and A. M. Beatty, J. Am. Chem. Soc. 119 (1997) 2172.
120. John R. Miller, Patrice Simon The Electrochemical Society Interface, Spring 2008
121. B. E. Conway, in “Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications,” Kluwer Academic/Plenum Publishers, New York, (1999).
122. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna, Science 313 (2006) 1760.
123. R. De Levie, Electrochim. Acta 8 (1963) 751.
124. J. R. Miller, Proceedings of the Second International Symposium on EDLC and Similar Energy Storage Sources, S. P. Wolsky and N. Marincic, Editors, Florida Educational Seminars, Boca Raton (1992).
125. J. R. Miller, Proceedings of the 8th International Symposium on EDLC and Similar Energy Storage Sources, S. P. Wolsky and N. Marincic, Editors, Florida Educational Seminars, Boca Raton (1998).
126. P. L. Taberna, P. Simon, and J. F. Fauvarque, J. Electrochem. Soc. 150, A292 (2003).
127. H.E. Becker, U.S. patent 2,800,616 (to General Electric Co.) (1957)
128. Z. Samec, J. Electroanal. Chem. 103 (1979) 1
129. R. Andrews, D. Jacques. D. Qian, E. C. Dickey, Carbon 39 (2001) 1681.
130. P. X. Hou, S. Bai, Q. H. Yang, C. Lin, H. M. Cheng, Carbon 40 (2002) 81.
131. M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki, Y. Saito, S. Uemura, Diamond and Relat. Mater. 8 (1999) 785.
132. Y. Saito, K. Hamaguchi, K. Hata, K. Tohji, A. Kasuya, Y. Nishina, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, Ultramicroscopy 73 (1998) 1.
133. Y. Ando, X. Zhao, H. Kataura, Y. Achiba, K. Kaneto, M. Tsuruta, S. Uemura, S. Iijima, Diamond and Relat. Mater. 9 (2000) 847.
134. Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Y. H. Lee, Carbon 39 (2001) 655.
135. S.C. Tsang, P.J.F. Harris, M.L.H. Green, Nature 362(1993) 520.
136. T. Y .Ebbesen, P. M. Ajaya, F .H .Liou, H. Hiura, K. Tangaki, Nature 367(1997) 519.
137. K. Tohji, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Y. Saito, A.Kasuya, S. Ito, Y. Nishina, J. Phys. Chem. B 101 (1997) 1974.
138. B. Liu, T. Wagberg, E. Olssen, R. Yang, H. Li, S. Zhang, H. Yang, G. Zou, B. Sundqvist, Chem. Phys. Lett. 321 (2000)365.
139. K.B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, R. E. Smalley, Chem. Phys. Lett. 282 (1998) 429.
140. J. M. Moon, K. H. An, Y. H. Lee, Y. S. Park, D. J. Bae, G. S. Park, J. Phys. Chem. B105 (2001) 5677.
141. M. Zhang, M. Yudasaka, A. Koshio, S. Iijima, Chem. Phys, Lett. 349 (2001) 25.
142. D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, Carbon 40 (2002) 985.
143. X. H. Chen, C. S. Chen, Q. Chen, F. Q. Cheng, G. Zhang, Z. Z. Chen, Materials Lett. 57 (2002) 734.
144. H. Kajiura, S. Tsutsui, H. Huang, Y. Murakami, Chem. Phys, Lett. 364 (2002) 586.
145. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, J. Phys. Chem. B 101 (1997) 8839.
146. Y. Ando, X. Zhao, S. Inoue, S. Iijima, Journal of Crystal Growth 237-239 (2002) 1926.
147. I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley, R. H. Hauge, J. Phys. Chem. B 105 (2001) 8297.
148. D.I. Boos, U.S. Patent 3 536 963 (to Standard Oil, SOHIO) (1970).
149. T.C. Murphy, R.B. Wright, R.A. Sutula, in: F.M. Delnick, D. Ingersoll, X. Andrieu, K. Naoi (Eds.), Electrochemical Capacitors II, Proceedings, vols. 96–25, The Electrochemical Society, Pennington, NJ, (1997) 258.
150. S. Sarangapani, B.V. Tilak, C.P. Chen, J. Electrochem. Soc. 143 (1996) 3791.
151. M. Sullivan, R. Ko¨ tz, O. Haas, in: F.M. Delnick, M. Tomkiewicz (Eds.), Electrochemical Capacitors, Proceedings, vols. 95–29, The Electrochemical Society, Pennington, NJ, 1996, 198–209.
152. M.G. Sullivan, M. Ba¨rtsch, R. Ko¨ tz, O. Haas, in: F.M. Delnick, D. Ingersoll, X. Andrieu, K. Naoi (Eds.), Electrochemical Capacitors II, Proceedings Volume, vols. 96–25, The Electrochemical Society, Pennington, NJ, 1997, pp. 192–201.
153. M. Nakamura, M. Nakanishi, K. Yamamoto, J. Power Sources 60 (1996) 225.
154. A.G. Pandolfo, A.M. Vasallo, G.L. Paul, Proceedings of The 7th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminar, December 1997.
155. S. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta 35 (1990) 263.
156. R. Ko¨ tz, S. Stucki, Electrochim. Acta 31 (1986) 1311.
157. J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 142 (1995) 2699.
158. S. Trasatti, P. Kurzweil, Platinum Met. Rev. 38 (1994) 46.
159. T.J. Guther, R. Oesten, J. Garche, in: F.M. Delnick, D. Ingersoll, X. Andrieu, K. Naoi (Eds.), Electrochemical Capacitors II, Proceedings, vols. 96–25, The Electrochemical Society, Pennington, NJ, 1997, p. 16.
160. T.C. Liu, W.G. Pell, B.E. Conway, S.L. Roberson, J. Electrochem. Soc. 145 (1998) 1882.
161. X. Ren, S. Gottesfeld, J.P. Ferraris, in: F.M. Delnick, M. Tomkiewicz (Eds.), Electrochemical Capacitors, Proceedings, vols. 95–29, The Electrochemical Society, Pennington, NJ, 1996, p. 138.
162. C. Arbizzani, M. Mastragostino, L. Meneghello, Electrochim. Acta 41 (1996) 21.
163. K. Naoi, Extended Abstracts, 49th Annual Meeting of the International Society of Electrochemistry, Kitakyushu, Japan, September, pp. 647, 1998.
164. A. Yoshida, K. Nishida, S. Nonaka, S. Nomoto, M. Ikeda, S. Ikuta, Japanese Patent 9-266143, (to Matsushita Electric), 1997.
165. M. Ue, K. Ida, S. Mori, J. Electrochem. Soc. 141 (1994) 2989.
166. Y. Kibi, T. Saito, M. Kurata, J. Tabuchi, A. Ochi, J. Power Sources 60 (1996) 219.
167. R. Ko¨ tz, M. Ba¨rtsch, A. Braun, O. Haas, Proceedings of The 7th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminar, December 1997.
168. J.P. Zheng, T.R. Jow, J. Electrochem. Soc. 144 (1997) 2417.
169. B.E. Conway, W.G. Pell, Proceedings of the 8th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminar, December, 1998.
170. R. De Levie, in: P. Delahay (ed.), Advances in Electrochemistry and Electrochemical Engineering, vol. 6, 1967, pp. 329, Interscience Publishers, New York.
171. R.E. DeLaRue, C.W. Tobias, J. Electrochem. Soc. 106 (1959) 827.
172. T. Hertel, R. E. Walkup, P. Avouris, Phys. Rev. B 58 (1998) 13870
173. B. Chapman, Glow Discharge Process, Wiley, New York, 1980
174. C.C. Chen, C.F. Chen, I.H. Lee, C. L. Lin, Diamond and related materials 14 (2005) 1897
175. S. Trasobares, C. P. Ewels, J. Birrell, O. Stephan, B. Q. Wei, J. A. Carlisle, D. Miller, P. Keblinski, P. M. Ajayan, Adv. Mater. 16 (2004) 610
176. N.G. Shang, C.P. Li, W.K. Wong, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 81 (2002) 5024
177. S. Trasobares, C. P. Ewels, J. Birrell, O. Stephan, B. Q. Wei, J. A. Carlisle, D. Miller, P. Keblinski, and P. M. Ajayan, Adv. Mater. 16 (2004) 610
178. S. B. Sinnott, R. Andrews, D. Quian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire, Chem. Phys. Lett. 315 (1999) 25
179. N. M. Rodriguez, A. Chambers, R. T. K. Baker, Langmuir 11 (1995) 3862
180. M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota, S. Yoshimura, Appl. Phys. Lett. 70 (1997) 1817
181. S. K. Srivastava, A. K. Shukla, V. D. Vankar, V. Kumar, Thin Solid Films 492 (2005) 124
182. M. Chen, C. M. Chen, L. K. Wu, J. Mater. Sci. 37 (2002) 3561
183. Chatei, M. Belmahi, M. B. Assouar, L. Le Brizoual, P. Bourson, J. Bougdira, Diamond Relat. Mater. 15 (2006) 1041
184. T. Kawai, Y. Miyamoto, O. Sugino, Y. Koga, Phys. Rev. B 66 (2002) 033404
185. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53 (1970) 1126
186. R. J. Nemanich and S. A. Solin, Phys. Rev. B 20 (1979) 392
187. R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26 (1982) 4514
188. P. Lespade, R. Al-Jishi, and M. S. Dresselhaus, Carbon 20 (1982) 427
189. R. Vidano and D. B. Fischbach, J. Am. Ceram. Soc. 61 (1978) 13
190. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martinez-Alonso, and J. M. D. Tascon, Carbon 32 (1994) 1523
191. G.H. Chen, W.G. Weng, D.J. Wu, C.L. Wu, J.R. Lu, P.P. Wang, X.F. Chen, Carbon 42 (2004) 753
192. C.R. Lin, C.H. Su, C.Y. Chang, C.H. Hung, Y.F. Huang, Surf. Coat. Technol. 200 (2006) 3190
193. A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095
194. Z. L. Wang, Z.C. Kang, Carbon 35 (1997) 419
195. Alfred T.H. Chuang, J. Robertson, Bojan O. Boskovic. Krzysztof K.K. Koziol, Appl. Phys. Lett. 90 (2007) 123107
196. E. Auer, A. Freund, J. Pietsch, T. Tacke, Applied Catalysis A: General 173 (1998) 259
197. K. Babel, K. Jurewicz, Journal of Physics and Chemistry of Solids 65 (2004) 275
198. C.M. Yang, Y.J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, J. AM. Chem. Soc. 129 (2007) 20
199. M.A. Ellott, P.W. May, J. Petherbridge, S.M. Leeds, M.N.R Ashfold, W.N. Wang, Diamond Relat. Mater. 9 (2000) 311
200. E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoro, F. Beguin, Chem. Phys. Lett. 361 (2002) 35
201. C.S. Li, D.Z. Wang, T.X. Liang, X.F. Wang, J. Liang, Mater. Lett. 58 (2004) 3774
202. C. Li, D. Wang, T. Liang, X. Wang, J. Wu, X. Hu, J. Liang, Powder Technol. 142 (2004) 175
203. M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray, A.H. Windle, Adv. Mater. 14 (2002) 382
204. M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Chem. Mater. 14 (2002) 1610
205. Y.K. Zhou, B.L. He, W.J. Zhou, J. Huang, X.H. Li, B. Wu, H.L. Li, Electrochim. Acta 49 (2004) 257
206. Y.K. Zhou, B.L. He, F.B. Zhang, H.L. Li, J. Solid State Electrochem. 8 (2004) 482
207. X. Qin, S. Durbach, G.T. Wu, Carbon 42 (2004) 451
208. J.H. Park, J.M. Ko, O.O. Park, J. Electrochem. Soc. 150 (2003) A864
209. J.S. Ye, X. Liu, H.F. Cui, W.-D. Zhang, F.-S. Sheu, T.M. Lim, Electrochem. Commun. 7 (2005) 249
210. K.C. Park, T. Hayashi, H. Tomiyasu, M. Enbo, M.S. Dresselhaus, J. Mater. Chem. 15 (2005) 407
211. T.I.T. Okpalugo, P.Papakonstantinou, H.Murphy, J.McLaughlin, N.M.D. Brown and T.McNally, Fullerenes, Nanotubes, and Carbon Nanostructures 13 (2005) 477
212. T. Teranishi, M. Hosoe, T. Tanaka, and M.Miyake, J. Phys. Chem. B 103 (1999) 3818
213. C.M. Chen, M. Chen, F.C. Leu, S.Y. Hsu, S.C. Wang, S.C. Shi, C.F. Chen, Diamond and Related Materials 13 (2004) 1182
214. S. M. Lipka, IEEE AES Systems Magazine, July 1997
215. T. Momma, X. Liu, T. Osaka, Y. Ushio, and Y. Sawada, J. Power Source 60, 249 (1996)
216. Z. Wu, Charles U. Pittman, Carbon 33 (1995) 597
217. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, J. Electrochem. Soc. 148 (2001) A910
218. A´ lvarez S., Blanco-Lo´pez M.C., Miranda-Ordieres A.J., Fuertes A.B. and Centeno T.A., Carbon 43 (2005) 866
219. Keiser H., Beccu K.D. and Gutjahr M.A., Electrochim. Acta 12 (1976) 539
220. B.E. Conway, Electrochim. Acta, 138 (1991) 1539
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊