跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/01 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃薇蓁
研究生(外文):Huang, Wei-Chen
論文名稱:具環境敏感之可撓性藥物釋放元件的設計,合成與特性研究
論文名稱(外文):Environmental Responsive, Flexible Drug Delivery Chip - Design, Synthesis, and Characterization
指導教授:陳三元陳三元引用關係
指導教授(外文):Chen, San-Yuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:81
中文關鍵詞:藥物釋放元件植入式
外文關鍵詞:Drug DeliveryChipImplanted
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植入式治療在神經疾病中扮演重要的角色,本論文提供了兩種植入式藥物可控制性釋放元件的設計與特性研究。第一部分為利用電沈積法將攜帶藥物的磁性二氧化矽氧化鐵核殼結構奈米粒子沈積在可撓性的導電基板上製作成可撓性的磁控制藥物釋放元件。首先,將導電的塑膠基板以真空膠帶隔成具凹槽圖形的結構當作藥物的閘口,再將導電磁性奈米粒子均勻地沈積在凹槽內形成緻密堆疊的薄層結構;將此整合性的薄膜兩兩合併,可形成厚度在0.5公分以下的可控制性單開口藥物釋放元件。此元件可回應調控外在磁場的大小將所包覆的癲癇藥物乙琥胺(ethosuximide, ESM)以緩慢釋放、持久型釋放、階段式釋放或突放的模式釋放出來,並可呈現不同磁場下的藥物釋放動力學結果。另外,在大鼠的實驗結果也顯示,在磁場開啟下可使元件釋放出ESM並有效地抑制住癲癇鼠腦中的不正常地棘徐波放電,証實此元件有一定的療效。此種植入式可撓性磁敏感型生物晶片式元件不但具生物相容性,並可針對腦內傷口提供目標性且有效又快速藥物釋放治療。
  另一方面,針對大腦神經疾病一般都以電訊號偵測腦部活動的方式為前提,為了能結合快速偵測病徵並馬上給予藥物的治療以達時效性處理發展出一種可控制性的電敏感型藥物釋放元件。首先利用改質過後具良好親疏水性的雙性幾丁聚醣,加入不同比例的交聯劑Genipin與結構強化劑TEOS以製備成水膠型態,實驗中証實Genipin與TEOS可以改善雙性幾丁聚醣水膠的膨潤性,並擁有良好的藥物釋放行為,並且利用單開口導電的透明塑膠載裝載其水膠,發現在不同外加電場的刺激下會有抑制藥物釋放的效果。其原因在於ESM分子在電場的作用下會呈現較穩定的電子共振態,使得帶負電的藥分子同時經歷反作用方向的電泳運動與電滲透作用,此相反兩力造成藥物分子從水膠擴散出的量減少因而減少了釋放速率。再者,隨著水膠中Genipin的量增加,導致原本帶負電的雙性幾丁聚醣鍊更加負電化,過盛的電滲透作用使水膠收縮力增強,大大將藥量擠出,因此在電場作用下Genipin含愈多,藥物受電場的限制便愈小。而帶負電的TEOS也會造成相同的結果。因此,控制水膠合成的Genipin與TEOS量再配合外加電場,此種可控制藥物釋放的元件應用性便大大提升。
Implanted therapy has played an important role in the field of neurobiology. A flexible magnetically-controllable drug delivery device was designed and fabricated using electrophoretic deposition of drug-carrying magnetic core-shell Fe3O4@SiO2 nanoparticles onto an electrically conductive flexible PET substrate. The PET substrate was first patterned to a desired layout and subjected to deposition. In doing so, a uniform and nanoporous membrane could be produced. After lamination of the patterned membranes, a final chip-like device of thickness less than 0.5 mm is formed that is used for controlled delivery of an anti-epileptic drug, i.e., ethosuximide (ESM). The release of useful drugs can be controlled by directly modulating the magnetic field, and the chip is capable of demonstrating a variety of release profiles (i.e., slow release, sustained release, step-wise release and burst release profiles). These profiles can follow a wide spectrum of patterns ranging from zero to pulsatile release kinetics depending on the mode of magnetic operation. When the magnetic field was removed, the release behavior was instantly ceased, and vice versa. A preliminary in-vivo study using Long-Evans rat model has demonstrated a significant reduction in spike-wave discharge after the ESM was burst released from the chip under the same magnetic induction as in vitro, indicating the potential application of the drug delivery chip. The flexible and membrane-like drug delivery chip utilizes drug-carrying magnetic nanoparticles as the building blocks that ensure a rapid and precise response to magnetic stimulus. Moreover, the flexible chip may offer advantages over conventional drug delivery devices by improvement of dosing precision, ease of operation, wider versatility of elution pattern, and better compliance.
Based on the CNS disease, in order to give a sudden treatment as a response to the signal detected, a flexible electrically-controllable drug delivery device was designed and fabricated by incorporating electrically sensitive CHC (modified chitosan) hydrogels into the electrically-conductive transparent plastic container. Si#CHC hydrogel membrane was first prepared by the addition of genipin and TEOS with different weight ratios. In doing so, the thin and brittle hydrogel membranes with different cross-linked density or interpenetration degree displayed excellent swelling behavior and drug release behavior. Membrane-based device is fabricated by the combination of Si#CHC hydrogels and a transparent plastic container with a single small open hole designed as an outlet for drug elution and two rectangle-shaped platinum plate placed in a constant distance with two parallel sides. Upon the application of an electrical stimulus, the dehygrogenated ESM displayed the electrophoretic movement toward the anode and the electroosmosis toward the cathode. Since the opposite force restricted the net drug release from the hydrogels, the rate of drug release out of the device is decreased. Moreover, the increase of in the degree of which CHC hydrogels crosslinked with genipin leads to the stronger negatively charged polymer. The effect of electroosmotsis, which also facilitates gel shrinkage and force drugs to move out, is enhanced in the presence of the electric voltage. Hence the release profiles under elecltrical stimuli showed the more the contents of genipin, the faster the rate of drug release. Similarly, interpenetration of negatively charged TEOS inside the CHC chains provided more negative charge to the CHC networks. It also give rise to the enhancement of hydrogel shrinkage. So under the induction of the electric field, the rate of ESM release is increased when the content of TEOS is increased.
Contents
中文摘要………………………………………………i
Abstract……………………………………………………………….……………..iii
Acknowledgments…………………………………………………………….. ....vi
Contents…………………………………………………………………………….vii
Figure Captions………….…………………………………………………………x Table Captions…………………………………………………………………....xiv
Chapter 1 Introduction…………………………………………………………....1
1-1 Introduction and Motivation……….………………………………………1
Chapter 2 Literature Reviews………………………………………………..…..4
2-1 Epilspsy……………………………………………………………………..4
2-1-1 Definition………………………………………………………..…..4
2-1-2 Mechanism………………………………………………….………5
2-1-3 Classification………………………..…………………….……..…5
2-1-4 Therapeutic Treatments………………………………...…………7
2-2 Therapeutic Implanted Device for Epilepsy………………….….………8
2-2-1 Physical Implanted Device for Epilepsy…….…………….……..8
2-2-2 Chemical Implanted Device for Epilepsy………..………………9
2-3 Magnetic Sensitive Nanoparticles..………………………….….……...11
2-3-1 Controllable Drug Delivery System……………………..………11
2-3-2 Magnetic Sensitive Drug Delivery System…………………….12
2-3-3 Iron Oxide Hybrid Nanoparticles……………………………......13
2-4 Electrical Sensitive Hydrogels………………………………..…………16
2-5 Three-Dimensional Drug Delivery Device…………..…………………18
2-5-1 Three-Dimensional Biomedical Device………………………...18
2-5-2 Microelectromechanical Systems in Bio-Appications……......18
2-5-3 Drug Delivery Microchip……………………………………..…..20
Chapter 3 Experimental Procedures………………………………………….22
3-1 A Flexible Drug Delivery Chip for the Magnetically-Controlled Release of Anti-Epileptic Drugs…………………………………………………...22
3-1-1 Synthesis of Core-Shell Fe3O4@SiO2 Nanoparticles..............22
3-1-2 Drug Encapsulation………………………………………...….…23
3-1-3 Electrophoretic Deposition of ESM Nanocarriers…………..…23
3-1-4 In-Vitro Drug Release Study………………………………..…...25
3-1-5 In-Vivo Study…………………………………...……...…….……27
3-2 A Flexible Drug Delivery Chip for the Electrically-Controlled Release of Anti-Epileptic Drugs……………………………………………...……….28
3-2-1 Synthesis of CHC………………………………………………...28
3-2-2 Preparation of Si#CHC Hydrogels………………………………29
3-2-3 Characterization…………………………………………… ….…30
3-2-4 Assembly of Membrane-Based Device…………………..…….31
3-2-5 Drug Release under Electrical Stimulation…………………….32
Chapter 4 Results and Discussion………………………………………….…33
4-1 A Flexible Drug Delivery Chip for the Magnetically-Controlled Release of Anti-Epileptic Drugs…………………………………………..………33
4-1-1 Core-Shell Nanoparticle Synthesis………………...…………...33
4-1-2 Drug Release Profile from Fe3O4@SiO2 Nanoparticles……....35
4-1-3 Characterization of the Fe3O4@SiO2 Membrane…………...…37
4-1-4 Magnetic-Driven Drug Release Behavior………………………40
4-1-5 In-Vivo Study………………………………………………………46
4-2 Controlled Anti-Epileptic Drug Release from the Device………….....49
4-2-1 Microstructural Analysis………………………………………….49
4-2-2 Drug Release Behavior from Si#CHC Hydrogels.……….……54
4-2-3 Drug Release Behavior of Chip-like Device under an Applied Electric Field………………………………..……………………..56
Chapter 5 Conclusion……………………………………………………………69
References…………………………………………………………………………72
Curriculum Vitae………………………………………...………………………..81
Publications……………………………………………………………………….81
References
[1] Isaacson, E. I; Delgado, J. N. In Burger’s Medicinal Chemistry, 4th ed.; Wolff, M. E., Ed.; Wiley: New York, 1981; Part 111, p 829.
[2] S. M. Nanavati, R. B. Silverman, Design of potential anticonvulsant agents: Mechanistic classification of GABA aminotransferase inactivatorst, Journal of Medicinal Chemistry 32 (11) (1989) 2413-2421.
[3] M. G. Wong, J. A. Defina, P. R. Andrews, Conformational analysis of clinically active anticonvulsant drugs, Journal of Medicinal Chemistry 29 (4) (1986) 562-572.
[4] D. A. Groves, V. J. Brown, Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects, Neuroscience Biobehavior 29 (2005) 493–500.
[5] P. Boon, V De Herdt, V, K Vonck, D Van Roost, Clinical experience with vagus nerve stimulation and deep brain stimulation in epilepsy. Acta Neurochirurgica l 97 (2007) 273–280.
[6] E. Stamboulis, N. Catsaros, S. Gatzonis, A. Siafakas, N. Georgacoulias, D. Sakas, Cardiac vagal tests and vagus nerve stimulation in epilepsy, Clinical Autonomic Research 15(1) (2005) 54-56.
[7] L. Venkatraghavan, V. Chinnapa, P. Peng, R. Brull, Non-cardiac implantable electrical devices: brief review and implications for anesthesiologists, Journal canadien Anesthesia 56(4) (2009) 320-326.
[8] Tamer Ghanem, Stephen V., Vagal nerve stimulator implantation: An otolaryngologist’s perspective, Otolaryngology-Head and Neck Surgery 135 (2006) 46-51.
[9] A. Peterson, T. Lopez, E. Ortiz Islas, R. D. Gonzalez, Pore structures in an implantable sol–gel titania ceramic device used in controlled drug release applications: A modeling study, Applied Surface Science 253 (2007) 5767–5771.
[10] Ambikanandan Misra, Ganesh S., Aliasgar Shahiwala, Drug delivery to the ceantral nervous system : a review, Journal of Pharmaceutical Sciences 6(2) (2003) 252-273.
[11] K. A. Witt and T. P. Daves, CNS drug delivery: Opioid peptides and the blood-brain barrier, The AAPS Journal 8(1) (2006) E76-E88.
[12] A. Domb, M. Maniar, S. Bogdansky, M. Chasin, Drug delivery to the brain using polymers, Critcal Review in Therapeutic Drug Carrier Systems 8 (1991) 1–17.
[13] A.J. Domb, Implantable biodegradable polymers for site-specific drug delivery, in: A.J. Domb et al., Polymeric site-specific pharmacotherapy, Journal of Controlled Release 34(3) (1995) 273-274.
[14] M. J. Kubek, D. Liang, K. E. Byrd, A. J. Domb, Prolonged seizure suppression by a single implantable polymeric-TRH microdisk preparation, Brain Research 809 (1998) 189-197.
[15] T. Lopez, E. Ortiz Islas, P. Quintana, R.D. Gonzalez, A nanostructured titania bioceramic implantable device capable of drug delivery to the temporal lobe of the brain, Colloids and Surfaces A: Physicochemical and Engineering Aspects 300 (2007) 3-10.
[16] T. Lopez, J. Navarette, R. Conde, J.A. Ascencio, J. Manjarrez, R.D. Gonzalez, A molecular vibrational analysis and MAS-NMR spectroscopy study of epilepsy drugs encapsulated in TiO2–sol–gel reservoirs, Journal of Biomedical Materials 78 (2006) 446–448.
[17] T. Lopez, E. Ortiz Islas, A. Hernandez, J. Manjarrez, F. Rodriguez- Reinoso, A. Sepulveda, R.D. Gonzalez, Biocompatible titania microtubes formed by nanoparticles and its application in the drug delivery of valproic acid, Optical Materials 29 (2006) 70–74.
[18] T. Lopez, E. I. Basaldella, M. L. Ojeda, J. Manjarrez, R. Alexander-Katz, Encapsulation of valproic acid and sodic phenytoin in ordered mesoporous SiO2 solids for the treatment of temporal lobe epilepsy, Optical Materials 29(1) (2006) 75-81.
[19] J. E. Lopez and N. A. Peppas, Cellular evaluation of insulin transmoucosal delivery, Journal of Biomaterials Science, Polymer Edition 15(4) (2004) 385-396.
[20] G. Burillo, E. Bucio, E. Arenas, G. P. Lopez, Temperature and pH-sensitive swelling behavior of binary DMAEMA/4VP grafts on poly(propylene) films, Macromolecular Materials and Engineering 292 (2007) 214-219.
[21] V. C. Lopez, J. Hadgraft, M. J. Snowden, The use of colloidal microgels as a (trans)dermal drug delivery system, International Journal of Pharmaceutics 292 (2005) 137-147.
[22] K. Juntanon, S. Niamlang, R. Rujiravanit, A. Sirivat, Electrically controlled release of sulfosalicylic acid from crosslinked poly(vinyl alcohol) hydrogel, International Journal of Pharmaceutics 356 (2008) 1-11.
[23] G. A. Husseini, W. G. Pitt, Ultrasonic-activated micellar drug delivery for cancer treatment, Journal of Pharmaceutical Sciences 98(3) (2009) 795-810.
[24] R. J. Mart, K. P. Liem, S. J. Webb, Magnetically-controlled release from hydrogel-supported vesicle assemblies, Chemical Communication (2009) 2287-2289.
[25] M. Zrnyi, D. Szabo, H-G kilian, Kinetics of the shape change of magnetic field sensitive polymer gels, Polymer Gels and Networks 6(6) (1998) 441-454.
[26] R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, A. Lendlein, Initiation of shape-memory effect by inductive heating of magnetic nanoparticles, Proceedings of the National Academy of Sciences 103(10) (2005) 3540-3545.
[27] A. H. Lu, W. C. Li, A. Kiefer, W. Schmidt, E. Bill, G. Fink, F. Schu¨th, Fabrication of magnetically separable mesostructured silica with an open pore system, Journal of American Chemical Society 126 (2004) 8616-8617.
[28] A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bo¨nnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schu¨th, Nanoengineering of a magnetically separable hydrogenation catalyst, Angewandte Chemie 43 (2004) 4303-4306.
[29] W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, Fabication of uniform magnetic nanocomposite spheres with a core/mesoporous silica shell structure, Journal of American Chemical Society 127 (2005) 8916-8917.
[30] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical Reviews 108 (2008) 2064-2110..
[31] M. Mahmoudi, A. Simchi, M. Imani, U. O. Hafeli, Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery, Journal of Physical Chemistry C 113(19) (2009) 8124-8131.
[32] F. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard, J. Degrouard, J. Hoebeke, E. Duguet, P. Colombo, P. Couvreur, Folate-conjugated Iron Oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments, Bioconjugate Chemistry 16(5) 2005 1181-1188.
[33] Z. Lu, M. D. Prouty, Z. Guo, V. O. Golub, C. S. S. R. Kumar, ,Y. M. Lvov, Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles, Langmuir 21(5) (2005) 2042–2050.
[34] S. H. Hu, C. H. Tsai, C. F. Liao, D. M. Liu, S. Y. Chen, Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery, Langmuir 24 (2008) 11811-11818.
[35] O. Saslawski, C. Weingarten, JP. Benoit, P. Couvreur, Magnetically responsive microspheres for the pulsed delivery of insulin, Life Sciences 42(16) (1988) 1521-1528.
[36] C.J. Whiting, A.M. Voice, P.D. Olmsted, T.C.B. McLeish, Shear modulus of polyelectrolyte gels under electric field, Journal of Physics: Condensed Matter 13 (2001) 1381-1393.
[37] T. Tanaka, I. Nishio, S.T. Sun, S. Ueno-Nishio, Collapse of gels in and electric field, Science 218 (1982) 467-469.
[38] S. Ramanathan, L.H. Block, The use of chitosan gels as matrices for electrically-modulated drug delivery, Journal of Controlled Release 70 (2001) 109-123.
[39] S.H. Gehrke, Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels, Advances in Polymer Science 110 (1993) 81-144.
[40] J.P. Gong, T. Nitta, Y. Osada, Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels-one dimensional capillary model, Journal of Physics Chemristy 98 (1994) 9583-9587.
[41] T. Budtove, I. Suleimenov, S. Frenkel, Polym. Electrokinetics of the contraction of a polyelectrolyte hydrogel under the influence of constant electric current gels and networks 3 (1995) 387-393.
[42] S.J. Kim, S.J. Park, M.-S. Shin, S.I. Kim, Characteristics of electrical responsive chitosan/polyallylamine interpenetrating polymer network hydrogel, Journal of Applied Polymer Science 86 (2002) 2290-2295.
[43] S.J. Kim, S.J. Park, M.-S. Shin, S.I. Kim, Electric stimuli responses to poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogel in NaCl solutions, Journal of Applied Polymer Science 86 (2002) 2285-2289.
[44] S.J. Kim, S.G. Toon, S.I. Kim, J. Effect of the water state on the electrical bending behavior of chitosan/poly(diallyldimethylammonium chloride) hydrogels in NaCl solutions, Journal of Polymer Science Part:B 42 (2004) 914-921.
[45] S.J. Kim, S.G. Toon, K.B. Lee, Y.D. Park, S.I. Kim, Solid State Ionics 164 (2003) 199-204.
[46] S. K. Deo, E. A. Moschou, S. F. Peteu, L. G. Bachas, S. Daunert, Resposive drug delivery systems, Analytical Chemistry (2003) 207A-212A
[47] M. Madou, J. Florkey, From batch to continuous manufacturing of microbiomedical devices, Chemical Reviews 100 (2000) 2679-2692.
[48] F. Xiao, J. Sun, O. Coban, P. Schoen, J. C.-Y. Wang, R. H. Cheng, P. Guo, Fabrication of massive sheets of single layer patterned arrays using lipid directed reengineered Phi29 motor dodecamer, ACS Nano 3(1) 100-107.
[49] K. M. Ainslie, S. L. Tao, K. C. Popat, T. A. Desai, In vitro immunogenicity of silicon-based micro- and nanostructured surfaces, ACS nano 2(50) (2008) 1076-1084.
[50] C. S. Pan, Microelectromechanical system technology for bio-medical applications, Department of Mechanical Engineering, National Chin-Yi Institute of Technology.
[51] B. Ma, S. Liu, Z. Y. Gan, G. J. Liu, X. X. Cai, H. H. Zhang, Z. G. Yang, A Pzt Insulin pump integrated with a silicon microneedle array for transdermal drug delivery, Microfluidics and Nanofluidics 2 (2006) 417–423.
[52] E. E. Nuxoll, M. A. Hillmyer, R. Wang, C. Leighton, R. A. Siegel, Composite block polymer-microfabricated silicon nanoporous membrane, ACS Applied Materials and Interfaces 1(4) (2009) 888-893.
[53] Eva M. Martin del Valle, M. A. Galan, R. G. Carbonell, Drug delivery technologies: The way forward in the new decade, Industrial & Engineering Chemistry Research 48 (2009) 2475-2486.
[54] J. T. Santini, M. J. Cima, R. Langer, A controlled-release microchip. Nature 397 (1999) 335–338.
[55] J. H. Jang, S.J. Jhaveri, B. rasin, C. Y. Koh, C. K. Ober, E. L. Thomas, Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications, Nano Letters 8(5) (2008) 1456-1460.
[56] S. H. Hu, T. Y. Liu, Y. H. Huang, D. M. Liu, S. Y. Chen, Stimuli-responsive controlled drug release from magnetic-sensitive silica nanospheres, Journal of Nanoscience Nanotechnology 8 (2008) 1–5.
[57] S. Santra, R. P. Bagwe, D. Dutta, J. T. Stanley, G. A. Walter, W. Tan, B. M. Moudgil, R. A. Mericle, Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications, Advanced Materials 17 (2005) 2165-2169.
[58] J. G. Sarver, K. A. Bachmann, D. Zhu, W. A. Klis, Ethosuximide is primarily metabolized by CYP3A when incubated with isolated rat liver microsomes, Dru. Mat. And Dep. 26 (1) (1998) 78-82.
[59] T.Y. Liu, S.Y. Chen, Y.L. Lin, D.M. Liu, Synthesis and characterization of amphiphatic carboxymethyl-hexanoyl chitosan hydrogel: water-retention ability and drug encapsulation, Langmuir 22 (2006) 9740–9745.
[60] S. Santra, R. P. Bagwe, D. Dutta, J. T. Stanley, G. A. Walter, W. Tan, B. M. Moudgil, R. A. Mericle, Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications, Advanced Materials 17 (2005) 2165-2169.
[61] J. G. Sarver, K. A. Bachmann, D. Zhu, W. A. Klis, Ethosuximide is primarily metabolized by CYP3A when incubated with isolated rat liver microsomes, Dru. Mat. And Dep. 26 (1) (1998) 78-82.
[62] M. Stjerndahl, M. Andersson, H. E. Hall, D. M. Pajerowski, M. W. Meisel, R. S. Duran, Superparamagnetic Fe3O4/SiO2 nanocomposites: enabling the tuning of both the Iron Oxide load and the size of the nanoparticles, Langmuir 24(7) (2008) 3532-3536.
[63] J. P. Manning, D. A. Richards, N. Leresche, V. Crunelli, N. G. Bowery, Cortical-area specific block of genetically determined absence seizures by ethosuximide, Neuroscience 123 (2004), 5-9.
[64] K. H. Liu, T. Y. Liu, S. Y. Chen, D. M. Liu, Electrical-sensitive nanoparticle composed of chitosan and TEOS for controlled drug release, Journal of Nanoscience and Nanotechnology 2008 (accepted)
[65] S. Ramanathan, L. H. Block, The use of chitosan gels as matrices for electrically-modulated drug delivery, Journal of Controlled Release 70 (2001) 109-123.
[66] T. Tanaka, Gels, Sci. Am 244 (1981) 124-138.
[67] J. P. Gong, T. Nitta, Y. Osada, Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. one-dimensional capillary model, Journal of Physical Chemistry 98 (1994) 9583-9587.
[68] F. L. Mi, S. S. Su, C. K. Peng, Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin, Journal of Polymer Science : Part A: Polymer Chemistry, 43 (2005) 1985-2000.
[69] M. Lee, J. W. Nah, Y. Kwon, J. J. Koh, K. S. Lo, S. W. Kim, Pharm. Res. 18 (2001) 427–431.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top