|
References [1] Isaacson, E. I; Delgado, J. N. In Burger’s Medicinal Chemistry, 4th ed.; Wolff, M. E., Ed.; Wiley: New York, 1981; Part 111, p 829. [2] S. M. Nanavati, R. B. Silverman, Design of potential anticonvulsant agents: Mechanistic classification of GABA aminotransferase inactivatorst, Journal of Medicinal Chemistry 32 (11) (1989) 2413-2421. [3] M. G. Wong, J. A. Defina, P. R. Andrews, Conformational analysis of clinically active anticonvulsant drugs, Journal of Medicinal Chemistry 29 (4) (1986) 562-572. [4] D. A. Groves, V. J. Brown, Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects, Neuroscience Biobehavior 29 (2005) 493–500. [5] P. Boon, V De Herdt, V, K Vonck, D Van Roost, Clinical experience with vagus nerve stimulation and deep brain stimulation in epilepsy. Acta Neurochirurgica l 97 (2007) 273–280. [6] E. Stamboulis, N. Catsaros, S. Gatzonis, A. Siafakas, N. Georgacoulias, D. Sakas, Cardiac vagal tests and vagus nerve stimulation in epilepsy, Clinical Autonomic Research 15(1) (2005) 54-56. [7] L. Venkatraghavan, V. Chinnapa, P. Peng, R. Brull, Non-cardiac implantable electrical devices: brief review and implications for anesthesiologists, Journal canadien Anesthesia 56(4) (2009) 320-326. [8] Tamer Ghanem, Stephen V., Vagal nerve stimulator implantation: An otolaryngologist’s perspective, Otolaryngology-Head and Neck Surgery 135 (2006) 46-51. [9] A. Peterson, T. Lopez, E. Ortiz Islas, R. D. Gonzalez, Pore structures in an implantable sol–gel titania ceramic device used in controlled drug release applications: A modeling study, Applied Surface Science 253 (2007) 5767–5771. [10] Ambikanandan Misra, Ganesh S., Aliasgar Shahiwala, Drug delivery to the ceantral nervous system : a review, Journal of Pharmaceutical Sciences 6(2) (2003) 252-273. [11] K. A. Witt and T. P. Daves, CNS drug delivery: Opioid peptides and the blood-brain barrier, The AAPS Journal 8(1) (2006) E76-E88. [12] A. Domb, M. Maniar, S. Bogdansky, M. Chasin, Drug delivery to the brain using polymers, Critcal Review in Therapeutic Drug Carrier Systems 8 (1991) 1–17. [13] A.J. Domb, Implantable biodegradable polymers for site-specific drug delivery, in: A.J. Domb et al., Polymeric site-specific pharmacotherapy, Journal of Controlled Release 34(3) (1995) 273-274. [14] M. J. Kubek, D. Liang, K. E. Byrd, A. J. Domb, Prolonged seizure suppression by a single implantable polymeric-TRH microdisk preparation, Brain Research 809 (1998) 189-197. [15] T. Lopez, E. Ortiz Islas, P. Quintana, R.D. Gonzalez, A nanostructured titania bioceramic implantable device capable of drug delivery to the temporal lobe of the brain, Colloids and Surfaces A: Physicochemical and Engineering Aspects 300 (2007) 3-10. [16] T. Lopez, J. Navarette, R. Conde, J.A. Ascencio, J. Manjarrez, R.D. Gonzalez, A molecular vibrational analysis and MAS-NMR spectroscopy study of epilepsy drugs encapsulated in TiO2–sol–gel reservoirs, Journal of Biomedical Materials 78 (2006) 446–448. [17] T. Lopez, E. Ortiz Islas, A. Hernandez, J. Manjarrez, F. Rodriguez- Reinoso, A. Sepulveda, R.D. Gonzalez, Biocompatible titania microtubes formed by nanoparticles and its application in the drug delivery of valproic acid, Optical Materials 29 (2006) 70–74. [18] T. Lopez, E. I. Basaldella, M. L. Ojeda, J. Manjarrez, R. Alexander-Katz, Encapsulation of valproic acid and sodic phenytoin in ordered mesoporous SiO2 solids for the treatment of temporal lobe epilepsy, Optical Materials 29(1) (2006) 75-81. [19] J. E. Lopez and N. A. Peppas, Cellular evaluation of insulin transmoucosal delivery, Journal of Biomaterials Science, Polymer Edition 15(4) (2004) 385-396. [20] G. Burillo, E. Bucio, E. Arenas, G. P. Lopez, Temperature and pH-sensitive swelling behavior of binary DMAEMA/4VP grafts on poly(propylene) films, Macromolecular Materials and Engineering 292 (2007) 214-219. [21] V. C. Lopez, J. Hadgraft, M. J. Snowden, The use of colloidal microgels as a (trans)dermal drug delivery system, International Journal of Pharmaceutics 292 (2005) 137-147. [22] K. Juntanon, S. Niamlang, R. Rujiravanit, A. Sirivat, Electrically controlled release of sulfosalicylic acid from crosslinked poly(vinyl alcohol) hydrogel, International Journal of Pharmaceutics 356 (2008) 1-11. [23] G. A. Husseini, W. G. Pitt, Ultrasonic-activated micellar drug delivery for cancer treatment, Journal of Pharmaceutical Sciences 98(3) (2009) 795-810. [24] R. J. Mart, K. P. Liem, S. J. Webb, Magnetically-controlled release from hydrogel-supported vesicle assemblies, Chemical Communication (2009) 2287-2289. [25] M. Zrnyi, D. Szabo, H-G kilian, Kinetics of the shape change of magnetic field sensitive polymer gels, Polymer Gels and Networks 6(6) (1998) 441-454. [26] R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, A. Lendlein, Initiation of shape-memory effect by inductive heating of magnetic nanoparticles, Proceedings of the National Academy of Sciences 103(10) (2005) 3540-3545. [27] A. H. Lu, W. C. Li, A. Kiefer, W. Schmidt, E. Bill, G. Fink, F. Schu¨th, Fabrication of magnetically separable mesostructured silica with an open pore system, Journal of American Chemical Society 126 (2004) 8616-8617. [28] A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bo¨nnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schu¨th, Nanoengineering of a magnetically separable hydrogenation catalyst, Angewandte Chemie 43 (2004) 4303-4306. [29] W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, Fabication of uniform magnetic nanocomposite spheres with a core/mesoporous silica shell structure, Journal of American Chemical Society 127 (2005) 8916-8917. [30] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical Reviews 108 (2008) 2064-2110.. [31] M. Mahmoudi, A. Simchi, M. Imani, U. O. Hafeli, Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery, Journal of Physical Chemistry C 113(19) (2009) 8124-8131. [32] F. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard, J. Degrouard, J. Hoebeke, E. Duguet, P. Colombo, P. Couvreur, Folate-conjugated Iron Oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments, Bioconjugate Chemistry 16(5) 2005 1181-1188. [33] Z. Lu, M. D. Prouty, Z. Guo, V. O. Golub, C. S. S. R. Kumar, ,Y. M. Lvov, Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles, Langmuir 21(5) (2005) 2042–2050. [34] S. H. Hu, C. H. Tsai, C. F. Liao, D. M. Liu, S. Y. Chen, Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery, Langmuir 24 (2008) 11811-11818. [35] O. Saslawski, C. Weingarten, JP. Benoit, P. Couvreur, Magnetically responsive microspheres for the pulsed delivery of insulin, Life Sciences 42(16) (1988) 1521-1528. [36] C.J. Whiting, A.M. Voice, P.D. Olmsted, T.C.B. McLeish, Shear modulus of polyelectrolyte gels under electric field, Journal of Physics: Condensed Matter 13 (2001) 1381-1393. [37] T. Tanaka, I. Nishio, S.T. Sun, S. Ueno-Nishio, Collapse of gels in and electric field, Science 218 (1982) 467-469. [38] S. Ramanathan, L.H. Block, The use of chitosan gels as matrices for electrically-modulated drug delivery, Journal of Controlled Release 70 (2001) 109-123. [39] S.H. Gehrke, Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels, Advances in Polymer Science 110 (1993) 81-144. [40] J.P. Gong, T. Nitta, Y. Osada, Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels-one dimensional capillary model, Journal of Physics Chemristy 98 (1994) 9583-9587. [41] T. Budtove, I. Suleimenov, S. Frenkel, Polym. Electrokinetics of the contraction of a polyelectrolyte hydrogel under the influence of constant electric current gels and networks 3 (1995) 387-393. [42] S.J. Kim, S.J. Park, M.-S. Shin, S.I. Kim, Characteristics of electrical responsive chitosan/polyallylamine interpenetrating polymer network hydrogel, Journal of Applied Polymer Science 86 (2002) 2290-2295. [43] S.J. Kim, S.J. Park, M.-S. Shin, S.I. Kim, Electric stimuli responses to poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogel in NaCl solutions, Journal of Applied Polymer Science 86 (2002) 2285-2289. [44] S.J. Kim, S.G. Toon, S.I. Kim, J. Effect of the water state on the electrical bending behavior of chitosan/poly(diallyldimethylammonium chloride) hydrogels in NaCl solutions, Journal of Polymer Science Part:B 42 (2004) 914-921. [45] S.J. Kim, S.G. Toon, K.B. Lee, Y.D. Park, S.I. Kim, Solid State Ionics 164 (2003) 199-204. [46] S. K. Deo, E. A. Moschou, S. F. Peteu, L. G. Bachas, S. Daunert, Resposive drug delivery systems, Analytical Chemistry (2003) 207A-212A [47] M. Madou, J. Florkey, From batch to continuous manufacturing of microbiomedical devices, Chemical Reviews 100 (2000) 2679-2692. [48] F. Xiao, J. Sun, O. Coban, P. Schoen, J. C.-Y. Wang, R. H. Cheng, P. Guo, Fabrication of massive sheets of single layer patterned arrays using lipid directed reengineered Phi29 motor dodecamer, ACS Nano 3(1) 100-107. [49] K. M. Ainslie, S. L. Tao, K. C. Popat, T. A. Desai, In vitro immunogenicity of silicon-based micro- and nanostructured surfaces, ACS nano 2(50) (2008) 1076-1084. [50] C. S. Pan, Microelectromechanical system technology for bio-medical applications, Department of Mechanical Engineering, National Chin-Yi Institute of Technology. [51] B. Ma, S. Liu, Z. Y. Gan, G. J. Liu, X. X. Cai, H. H. Zhang, Z. G. Yang, A Pzt Insulin pump integrated with a silicon microneedle array for transdermal drug delivery, Microfluidics and Nanofluidics 2 (2006) 417–423. [52] E. E. Nuxoll, M. A. Hillmyer, R. Wang, C. Leighton, R. A. Siegel, Composite block polymer-microfabricated silicon nanoporous membrane, ACS Applied Materials and Interfaces 1(4) (2009) 888-893. [53] Eva M. Martin del Valle, M. A. Galan, R. G. Carbonell, Drug delivery technologies: The way forward in the new decade, Industrial & Engineering Chemistry Research 48 (2009) 2475-2486. [54] J. T. Santini, M. J. Cima, R. Langer, A controlled-release microchip. Nature 397 (1999) 335–338. [55] J. H. Jang, S.J. Jhaveri, B. rasin, C. Y. Koh, C. K. Ober, E. L. Thomas, Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications, Nano Letters 8(5) (2008) 1456-1460. [56] S. H. Hu, T. Y. Liu, Y. H. Huang, D. M. Liu, S. Y. Chen, Stimuli-responsive controlled drug release from magnetic-sensitive silica nanospheres, Journal of Nanoscience Nanotechnology 8 (2008) 1–5. [57] S. Santra, R. P. Bagwe, D. Dutta, J. T. Stanley, G. A. Walter, W. Tan, B. M. Moudgil, R. A. Mericle, Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications, Advanced Materials 17 (2005) 2165-2169. [58] J. G. Sarver, K. A. Bachmann, D. Zhu, W. A. Klis, Ethosuximide is primarily metabolized by CYP3A when incubated with isolated rat liver microsomes, Dru. Mat. And Dep. 26 (1) (1998) 78-82. [59] T.Y. Liu, S.Y. Chen, Y.L. Lin, D.M. Liu, Synthesis and characterization of amphiphatic carboxymethyl-hexanoyl chitosan hydrogel: water-retention ability and drug encapsulation, Langmuir 22 (2006) 9740–9745. [60] S. Santra, R. P. Bagwe, D. Dutta, J. T. Stanley, G. A. Walter, W. Tan, B. M. Moudgil, R. A. Mericle, Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications, Advanced Materials 17 (2005) 2165-2169. [61] J. G. Sarver, K. A. Bachmann, D. Zhu, W. A. Klis, Ethosuximide is primarily metabolized by CYP3A when incubated with isolated rat liver microsomes, Dru. Mat. And Dep. 26 (1) (1998) 78-82. [62] M. Stjerndahl, M. Andersson, H. E. Hall, D. M. Pajerowski, M. W. Meisel, R. S. Duran, Superparamagnetic Fe3O4/SiO2 nanocomposites: enabling the tuning of both the Iron Oxide load and the size of the nanoparticles, Langmuir 24(7) (2008) 3532-3536. [63] J. P. Manning, D. A. Richards, N. Leresche, V. Crunelli, N. G. Bowery, Cortical-area specific block of genetically determined absence seizures by ethosuximide, Neuroscience 123 (2004), 5-9. [64] K. H. Liu, T. Y. Liu, S. Y. Chen, D. M. Liu, Electrical-sensitive nanoparticle composed of chitosan and TEOS for controlled drug release, Journal of Nanoscience and Nanotechnology 2008 (accepted) [65] S. Ramanathan, L. H. Block, The use of chitosan gels as matrices for electrically-modulated drug delivery, Journal of Controlled Release 70 (2001) 109-123. [66] T. Tanaka, Gels, Sci. Am 244 (1981) 124-138. [67] J. P. Gong, T. Nitta, Y. Osada, Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. one-dimensional capillary model, Journal of Physical Chemistry 98 (1994) 9583-9587. [68] F. L. Mi, S. S. Su, C. K. Peng, Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin, Journal of Polymer Science : Part A: Polymer Chemistry, 43 (2005) 1985-2000. [69] M. Lee, J. W. Nah, Y. Kwon, J. J. Koh, K. S. Lo, S. W. Kim, Pharm. Res. 18 (2001) 427–431.
|