跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王怡倫
研究生(外文):Wang, Yi-Lun
論文名稱:多重假設檢定問題下t統計量的行為
論文名稱(外文):Behavior of t-statistic in Multiple Hypothesis Testing Problem
指導教授:洪慧念洪慧念引用關係
指導教授(外文):Hung, Hui-Nien
學位類別:碩士
校院名稱:國立交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:24
中文關鍵詞:多重檢定過程t-檢定量t-分配
外文關鍵詞:Multiple testing proceduret-statisticst-distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
在基因晶片資料的分析中,通常我們會同時考慮數以千計或數萬個t-檢定統計量用以區別個別基因之重要性。在這種多重檢定的過程中,這些檢定統計量常常會存在一些相關性,因此他們的分配將不會是一般的常用的t分配。在這篇論文,我們討論這許多t-檢定統計量的分配不為t分配的可能原因。這些可能原因分別是不同基因間存在某些相關,不同基因晶片間存在某些相關,以及基因表現不是來自常態分配的假設。在分析的過程中,我們會考慮一些特殊模型並且運用統計模擬分析之技巧來探討這些可能原因的影響。

關鍵字:多重檢定過程,t-檢定量,t-分配
Microarray data has been studied widely, with thousands or even millions of test statistics ti's to be considered at the same time. These test statistics ti's are correlated or not regular distributed on multiple testing procedure. In this paper, we discussed three possible reasons for the distribution of test statistics ti's differing from t-distribution. The three reasons are correlation between genes, correlation among microarrays, and various distribution assumptions. Then, we consider several models and conclude that correlation among microarrays and various distribution assumptions are most important effects which make the distribution of test statistics ti's differing from t-distribution.
Key words: Multiple testing procedure, t-statistics,
t-distribution.
1 Introduction 1
2 Literature Review 2
2.1 Multiple Hypothesis Testing in a Microarray Experiment 2
2.2 Microarray Experiments 4
2.2.1 The Breast Cancer Study 4
2.2.2 The HIV Study 4
3 The Empirical Distribution of the zi's 7
4 The Models and Simulation Study 8
4.1 Models of correlation between genes 9
4.1.1 Model 1 9
4.1.2 Model 2 9
4.1.3 Model 3 11
4.2 Models of correlation among microarrays 12
4.2.1 Model 4 12
4.2.2 Model 5 13
4.2.3 Model 6 14
4.3 Various Distribution Assumptions 15
4.3.1 Model 7 15
4.3.2 Model 8 16
4.3.3 Model 9 16
4.3.4 Model 10 17
4.3.5 Model 11 17
4.3.6 Model 12 18
4.4 Results of Simulation 19
5 Real Data 20
6 Conclusions and Future Research 22
[1] Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Ser. B, 57, 289-300.
[2] Chan N. H. (2001). Time series applications to finance. Wiley, New York.
[3] Dudoit, S., Shaffer, J., and Boldrick, J. (2003). Multiple hypothesis testing in microarray experiments. Statistical Science, 18, 71-103.
[4] Efron, B. (2003). Robbins, empirical bayes, and microarrays. The Annals of Statistics.
[5] Efron, B. (2004). Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. Journal of the American Statistical Association, 99, 96-104.
[6] Efron, B. (2005). Local false discovery rates. Available at www-stat.stanford.edu/
ckirby/brad/papers/2005LocalFDR.pdf
[7] Efron, B. (2006). Size, power, and false discovery rates. The Annals of Statistics.
[8] Efron, B. (2007). Correlation and large-scale simultaneous significance testing. Journal of the American Statistical Association, 102, 93-103.
[9] Efron, B., Tibshirani, R., Storey, J., and Tusher, V. (2001). Empirical bayes analysis of a microarray experiment. Journal of the American Statistical Association,
96, 1151-1160.
[10] Ge, Y., Dudoit, S., and Speed, T. (2003). Resampling-based multiple testing for microarray data analysis, Test, 12, 1-77.
[11] Gentleman, R, Carey, V., Huber, W., Irizarry, R., and Dudoit, S. (2005). Bioinformatics and computational biology solutions using R and bioconductor. Springer-
Verlag, New York.
[12] Gottardo, R., Raftery, A., Yeung, K., and Bumgarner, R. (2006). Bayesian robust inference for differential gene expression in microarrays with multiple samples.
Biometrics, 62, 10-18.
[13] Hedenfalk, I., Duggen, D., Chen, Y., et al. (2001). Gene expression profiles in hereditary breast cancer. New England Journal of Medicine, 344, 539-548.
[14] Lockhart, D. J., Dong, H.l., Byrne, M. C., Follettie, M.T., Gallo, M. V. Chee, M. S., Mittmann, M., Wang, C.,Kobayashi, M., Horton, H. & Brown, E.L. (1996).
Expression monitoring by hybridization to high-density oligonucleotide arrays, Nature Biotechnology 14: 1675-1680.
[15] Qiu, X., Brooks, A., Klebanov, L., and Yakovlev, A. (2005a). The effects of normalization on the correlation structure of microarray data. BMC Bioinformatics, 6.
[16] Shumway, R. H., and Stoffer, D. (2005). Time series analysis and its applications. 2nd ed. Springer-Verlag, New York.
[17] van't Wout, A., Lehrma, G., Mikheeva, S., O'Keeffe, G., Katze, M., Bumharner, R., Geiss, G., and Mullins, J. (2003). Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4+-T-Cell lines. Journal of Virology,
77, 1392-1402.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top