跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張御傑
論文名稱:影像隱藏、驗證與修復之研究
論文名稱(外文):A Study on Image Hiding, Authentication, and Recovery
指導教授:林志青林志青引用關係
指導教授(外文):Lin, Ja-Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:145
中文關鍵詞:資料隱藏影像驗證影像修復
外文關鍵詞:Data hidingImage authenticationImage recovery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了數種在網路或儲存系統上保護重要或隱私的影像之方法。在保護機密影像或資料方面,我們提出兩個資料隱藏的方法來隱匿隱藏之資料。在傳輸影像前,人們常將影像先進行壓縮以減少接收端的等待時間。有鑑於此,我們所提出的第一種方法是利用搜尋順序編碼法,將機密資料藏於利用向量量化壓縮法所產生的索引檔中,不僅不會對索引檔產生任何的失真,而且接收端在解壓縮的同時亦可以獲得所藏匿的機密資料。為了要隱匿更大的機密影像,第二種方法則是利用改良式搜尋順序編碼法(一種利用周圍像素值常有高度相似性的關係的編碼法)對機密影像進行編碼,並提供一個可調整的門檻值來控制抽取出的影像品質。在嵌入步驟中,利用周圍像素的變異數來決定掩護影像上每個像素的隱藏量,並搭配模運算將上述的MSOC碼嵌入。從實驗結果得知,所產生的偽裝影像與抽取出的影像的視覺品質,與一些已發表的方法相比具有競爭性。
在保護重要影像方面,我們設計兩種具有不同修復能力的影像驗證系統。第一種是應用於保護單張重要影像。我們利用某些相關於影像區塊的性質產生驗證資料,並嵌入影像區塊中,可用來檢測影像的完整性。同時,我們利用向量量化編碼產生關於影像的修復資料,並搭配(r, n)門檻式分享方法,分散地藏到影像本身中。使得影像本身除了能偵測是否遭到惡意的竄改之外,還具有自我修復被破壞區域的能力。第二種是應用於多張影像傳輸或分散式儲存時,可能會有因網路或儲存系統不穩定而導致某些影像遺失的情形。為了解決這個問題,我們提出了一個具有交互修復能力的影像驗證系統,亦即設計一套雙層式分享機制來保存所有影像的修復資訊,使得影像本身除了原有的驗證功能之外,還能藉由其它倖存的影像互相合作,來修復那些遺失影像。
In this dissertation, we propose several techniques to protect important data and private images in a transmission or storage system. For a confidential image or secret data, two hiding methods are proposed to conceal the existence of the hidden data in the cover images. Because people often compress digital images to reduce the waiting time of the receiver before transmitting the images, the first method uses the search-order coding to embed secret data in the index file of the vector quantization compression result. The proposed method causes no distortion to the VQ version of the image, and the receiver end can obtain both the hidden data and the VQ image. To embed a bigger confidential image, the MSOC scheme in the second method utilizes the feature of high correlation among adjacent pixels (i.e. neighboring pixels are often with similar gray-values) to encode the important image. An adjustable threshold T is used in the MSOC; and this T directly controls the quality of the extracted image. In the embedding part, we use a variance-based criterion to estimate the hiding capacity of each pixel in the cover image. Then the MSOC code is embedded in the cover image using two sets of modulus function. Experimental results show that the quality of both the stego-images and extracted important images are competitive to those obtained in many existing steganography methods reported recently.
To protect important images in public environment, we develop two image authentication methods along with different recovery abilities. The first method is used to protect a single image. In the method, the authentication data for each block is generated using some related information within the block, and then embedding it into the block to serve as the attestation for the integrity of the image. Meanwhile, the recovery data obtained by vector quantization technique are shared by using an (r, n)-threshold sharing method, and then scattered all over the image. The proposed method can not only detect whether malicious manipulations have occurred, but also self-recover the tampered parts. In the transmission of multiple images, it is possible that the network connection is unstable; and hence, some images at the receiver end are lost. To solve this problem, we develop an image authentication method with cross-recovery ability to protect a group of images. In the method, a two-layer sharing scheme is designed to preserve the recovery data of all images. The proposed method can not only verify the integrity of each member of the image group, but also reconstruct those lost images by the mutual support of the surviving members.
Abstract in Chinese I
Abstract in English III
Acknowledgements V
Table of Contents VI
List of Figures IX
List of Tables XIII

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Related Studies 5
1.2.1 Data Hiding 5
1.2.2 Image Authentication 7
1.2.3 Secret Sharing 10
1.3 Overview of the Dissertation 11
A. Hiding Data Using VQ Index File 12
B. Hiding Images Using Modified Search-Order Coding and Modulus
Function 13
C. A Sharing-Based Authentication and Self-Recovery Method against
Image Tampering 13
D. Authentication and Cross-Recovery for Multiple Images 14
1.4 Dissertation Organization 15

Chapter 2 Hiding Data Using VQ Index File 16
2.1 Review of the Search-Order Coding (SOC) Tool 16
2.2 The Proposed Method 18
2.3 Experimental Results 21
2.4 Summary 22

Chapter 3 Hiding Images Using Modified Search-Order Coding and Modulus
Function 27
3.1 Review of the Modulus Embedding Function 27
3.2 The Proposed Method 31
3.2.1 The Modified Search-Order Coding (MSOC) 31
3.2.2 The Pseudo-Random Permutation of Location 34
3.2.3 The Modulus Embedding Phase on Partitioned Pixels 37
3.2.4 The Extraction Procedure for the Decoding 40
3.3 Experimental Results 41
3.4 Discussions 47
3.4.1 Parameter Setting 47
3.4.2 Using Pseudo-Random Process to Increase Security Level 48
3.5 Summary 49

Chapter 4 A Sharing-Based Authentication and Self-recovery Method against Image Tampering 58
4.1 Introduction 58
4.2 Review of Secret Image Sharing 59
4.3 The Proposed Method (Encoding) 62
4.3.1 Generation of the Recovery Data 62
4.3.2 Generation of the Authentication Data 65
4.3.3 The Embedding Procedure 67
4.4 The Proposed Method (Decoding) 71
4.4.1 Verification 71
4.4.2 Recovery of Tampered Area 72
4.5 Experimental Results 72
4.6 Discussions 75
4.6.1 Modified Version 75
4.6.2 Comparison 75
4.6.3 Security Analysis of the Recovery Data 80
4.6.4 Recovery in Case of Multiple Users 83
4.7 Conclusions 85

Chapter 5 Authentication and Cross-Recovery for Multiple Images 97
5.1 Introduction 97
5.2 The proposed method (Encoding) 100
5.2.1 Generation of the Recovery Data 101
5.2.2 Two-Layer Sharing 103
5.2.2.1 First-Layer Sharing 103
5.2.2.2 Second-Layer Sharing 104
5.2.3 Generation of the Authentication Data 106
5.3 The Proposed Method (Decoding) 108
5.3.1 Verification 108
5.3.2 Cross-Recovery of Tampered Images through the Cooperation of Authentic Images 109
5.4 Experimental Results and Robustness-Related Issues 112
5.4.1 Experimental Results 112
5.4.1.1 Case 1: one watermarked image is lost 112
5.4.1.2 Case 2: two watermarked images are tampered 113
5.4.2 Robustness-Related Issues 114
5.5 Discussion 115
5.6 Summary 118

Chapter 6 Conclusions and Future Works 129
6.1 Conclusions 129
6.2 Future works 133

References 135
Vita
Publication List of Yu-Jie Chang
[1] National Bureau of Standards, “Data Encryption Standard,” U.S. Department of Commerce, Federal Information Processing Standards Publication 46, January 1977.
[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public key cryptosystems,” Communications of the ACM, Vol. 21, No. 2, pp. 120�{126, 1978.
[3] A. Shamir, “How to share a secret,” Communications of the ACM, Vol. 22, No. 11, pp. 612�{613, 1979.
[4] G. R. Blakey, “Safeguarding cryptography keys,” Proceedings of AFIPS 1979 National Computing Conference, New York, Vol. 48, pp. 313�{317, 1979.
[5] M. Naor and A. Shamir, “Visual cryptography,” Advances in Cryptography - Eurocrypt’94, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Vol. 950, pp. 1�{12, 1995.
[6] G. R. Chen, Y. B. Mao, and C. K. Chui, “A symmetric image encryption scheme based on 3D chaotic cat maps,” Chaos, Solitons & Fractals, Vol. 21, No. 3, pp. 749�{761, 2004.
[7] Hossan El-din H. Ahmed, Hamdy M. Kalash, and Osama S. Farag Allah, “Encryption quality analysis of the RC5 block cipher algorithm for digital images,” Optical Engineering, Vol. 45, No. 10, pp. 107003�{(1�{7), 2006.
[8] R. L. Rivest, “The MD5 message digest algorithm,” Request for Comments (RFC) 1321, Internet Activities Board, Internet Privacy Task Force, April 1992.
[9] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator,” ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3�{30, 1998.
[10] M. Y. Rhee, “Cryptography and Secure Communication,” McGraw-Hill Book Co, Singpore, 1994.
[11] V. Klima, “Finding MD5 collisions - A toy for a notebook,” Cryptology ePrint Archive, Report 2005/075, 2005.
[12] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-1,” Advances in Cryptology – CRYPTO 2005, Lecture Notes in Computer Science, Springer-Verlag, Vol. 3621, pp. 17�{36, 2005.
[13] C. H. Hsieh and J. C. Tsai, “Lossless compression of VQ index with search-order coding,” IEEE Transactions on Image Processing, Vol. 5, No. 11, pp. 1579�{1582, 1996.
[14] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Transactions on Communications, Vol. 28, No. 1, pp. 84�{95, 1980.
[15] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Information Theory, Vol. 44, No. 6, pp. 2325�{2383, 1998.
[16] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding �{ A survey,” Proceedings of the IEEE, Vol. 87, No. 7, pp. 1062�{1078, 1999.
[17] C. C. Chang, G. M. Chen, and M. H. Lin, “Information hiding based on search-order coding for VQ indices,” Pattern Recognition Letters, Vol. 25, No. 11, pp. 1253�{1261, 2004.
[18] R. Z. Wang, C. F. Lin, and J. C. Lin, “Image hiding by optimal LSB substitution and genetic algorithm,” Pattern Recognition, Vol. 34, No. 3, pp. 671�{683, 2001.
[19] C. C. Chang, M. H. Lin, and Y. C. Hu, “A fast and secure image hiding scheme based on LSB substitution,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 16, No. 4, pp. 399�{416, 2002.
[20] C. K. Chan and L. M. Cheng, “Hiding data in images by simple LSB substitution,” Pattern Recognition, Vol. 37, No. 3, pp. 469�{474, 2004.
[21] C. C. Chang, J. Y. Hsiao, and C. S. Chan, “Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy,” Pattern Recognition, Vol. 36, No. 7, pp. 1583�{1595, 2003.
[22] K. L. Chung, C. H. Shen, and L. C. Chang, “A novel SVD- and VQ-based image hiding scheme,” Pattern Recognition Letters, Vol. 22, No. 9, pp. 1051�{1058, 2001.
[23] Y. C. Hu and M. H. Lin, “Secure image hiding scheme based upon vector quantization,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 18, No. 6, pp. 1111�{1130, 2004.
[24] Y. C. Hu, “High-capacity image hiding scheme based on vector quantization,” Pattern Recognition, Vol. 39, No. 9, pp. 1715�{1724, 2006.
[25] C. C. Chang and H. W. Tseng, “A steganographic method for digital images using side match,” Pattern Recognition Letters, Vol. 25, No. 12, pp. 1431�{1437, 2004.
[26] C. C. Chang and T. C. Lu, “Reversible index-domain information hiding scheme based on side-match vector quantization,” The Journal of Systems and Software, Vol. 79, No. 8, pp. 1120�{1129, 2006.
[27] R. Z. Wang and Y. D. Tsai, “An image-hiding method with high hiding capacity based on best-block matching and k-means clustering,” Pattern Recognition, Vol. 40, No. 2, pp. 398�{409, 2007.
[28] D. C. Wu and W. H. Tsai, “A steganographic method for images by pixel-value differencing,” Pattern Recognition Letters, Vol. 24, No. 10, pp. 1613�{1626, 2003.
[29] H. C. Wu, N. I. Wu, C. S. Tsai, and M. S. Hwang, “Image steganographic scheme based on pixel-value differencing and LSB replacement methods,” IEE Proceedings �{ Vision, Image and Signal Processing, Vol. 152, No. 5, pp. 611�{615, 2005.
[30] S. L. Li, K. C. Leung, L. M. Cheng, and C. K. Chan, “A novel image-hiding scheme based on block difference,” Pattern Recognition, Vol. 39, No. 6, pp. 1168�{1176, 2006.
[31] C. C. Thien and J. C. Lin, “A simple and high-hiding capacity method for hiding digit-by-digit data in images based on modulus function,” Pattern Recognition, Vol. 36, No. 12, pp. 2875�{2881, 2003.
[32] S. J. Wang, “Steganography of capacity required using modulo operator for embedding secret image,” Applied Mathematics and Computation, Vol. 164, No. 1, pp. 99�{116, 2005.
[33] C. C. Chang, C. S. Chan, and Y. H. Fan, “Image hiding scheme with modulus function and dynamic programming strategy on partitioned pixels,” Pattern Recognition, Vol. 39, No. 6, pp. 1155�{1167, 2006.
[34] C. C. Chang, T. S. Chen, and L. Z. Chung, “A steganographic method based upon JPEG and quantization table modification,” Information Sciences, Vol. 141, No. 1, pp. 123-138, 2002.
[35] Y. C. Tseng, Y. Y. Chen, and H. K. Pan, “A secure data hiding scheme for binary images,” IEEE Trans. Communications, Vol. 50, No. 8, pp. 1227�{1231, 2002.
[36] S. S. Maniccam and N. Bourbakis, “Lossless compression and information hiding in images,” Pattern Recognition, Vol. 37, No. 3, pp. 475�{486, 2004.
[37] M. Y. Wu, Y. K. Ho, and J. H. Lee, “An iterative method of palette-based image steganography,” Pattern Recognition Letters, Vol. 25, No. 3, pp.301�{309, 2004.
[38] Xinpeng Zhang and Shuozhong Wang, “Steganography using multiple-base notational system and human vision sensitivity,” IEEE Signal Processing Letters, Vol. 12, No. 1, pp. 67�{70, 2005.
[39] Y. H. Yu, C. C. Chang, and Y. C. Hu, “Hiding secret data in images via predictive coding,” Pattern Recognition, Vol. 38, No. 5, pp. 691�{705, 2005.
[40] E. Besdok, “Hiding information in multispectral spatial images,” AEU – International Journal of Electronics and Communications, Vol. 59, No. 1, pp. 15�{24, 2005.
[41] R. Z. Wang and Y. S. Chen, “High-payload image steganography using two-way block matching,” IEEE Signal Processing Letters, Vol. 13, No. 3, pp. 161�{164, 2006.
[48] C. Y. Yang and J. C. Lin, “Image hiding by base-oriented algorithm,” Optical Engineering, Vol. 45, No. 11, pp. 117001�{(1�{10), 2006.
[49] T. Y. Liu and W. H. Tsai, “A new steganographic method for data hiding in Microsoft Word documents by a change tracking technique,” IEEE Trans. Information Forensics and Security, Vol. 2, No. 1, pp. 24�{30, 2007.
[50] Y. H. Yu, C. C. Chang, and I. C. Lin, “A new steganographic method for color and grayscale image hiding,” Computer Vision and Image Understanding, Vol. 107, No. 3, pp.183�{194, 2007.
[51] N. F. Johnson and S. Jajodia, “Steganalysis of images created using current steganography software,” Lecture Notes in Computer Science, Vol. 1525, Springer, Berlin, pp. 273–289, 1998.
[52] A. Westfeld and A. Pfitzmann, “Attack on steganographic systems,” Lectures Notes in Computer Science, Vol. 1768, pp. 61–75, 2000.
[53] P. A. Watters, F. Martin, and S. H. Stripf, “Visual steganalysis of LSB-encoded natural images,” International Conference on Information Technology and Applications, Vol. 1, pp. 746–751, 2005.
[54] B. B. Zhu, M. D. Swanson, and A. H. Tewfik, “When seeing isn’t believing,” IEEE Signal Processing Magazine, Vol. 21, No. 2, pp. 40�{49, 2004.
[55] C. Y. Lin and S. F. Chang, “Robust digital signature for multimedia authentication: a summary,” IEEE Circuits and Systems Magazine, October 2003.
[56] C. S. Lu, S. K. Huang, C. J. Sze, and H. Y. M. Liao, “Cocktail watermarking for digital image protection,” IEEE Trans. Multimedia, Vol. 2, No. 4, pp. 209�{224, 2000.
[57] Y. Wang, J. F. Doherty, and R. E. Van Dyck, “A wavelt-based watermarking algorithm for ownership verification of digital images,” IEEE Trans. Image Process., Vol. 11, No. 2, pp. 77�{88, 2002.
[58] D. C. Lou, J. M. Shieh, and H. K. Tso, “A robust buyer-seller watermarking scheme based on DWT,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 20, No. 1, pp. 79�{90, 2006.
[59] C. S. Lu and H. Y. M. Liao, “Multipurpose watermarking for image authentication and protection,” IEEE Trans. Image Processing, Vol. 10, No. 10, pp. 1579�{1592, 2001.
[60] Z. M. Lu, D. G. Xu, and S. H. Sun, “Multipurpose image watermarking algorithm based on multistage vector quantization,” IEEE Trans. Image Processing, Vol. 14, No. 6, pp. 822�{831, 2005.
[61] C. S. Lu and H. Y. M. Liao, “Structural digital signature for image authentication: An incidental distortion resistant scheme,” IEEE Trans. Multimedia, Vol. 5, No. 2, pp. 161�{173, 2003.
[62] C. W. Wu, “On the design of content-based multimedia authentication systems,” IEEE Trans. Multimedia, Vol. 4, No. 3, pp. 385�{393, 2002.
[63] C. Y. Lin and S. F. Chang, “A robust image authentication method distinguishing JPEG compression from malicious manipulation,” IEEE Trans. Circuits Syst. Video Technol., Vol. 11, No. 2, pp. 153�{168, 2001.
[64] P. Tsai, Y. C. Hu, and C. C. Chang, “Using set partitioning in hierarchical tree to authenticate digital images,” Signal Process.: Image Comm., Vol. 18, No. 9, pp. 813�{822, 2003.
[65] A. H. Paquet, R. K. Ward, and I. Pitas, “Wavelet packets-based digital watermarking for imge verification and authentication,” Signal Processing, Vol. 83, No. 10, pp. 2117�{2132, 2003.
[66] C. C. Chang, Y. S. Hu, and T. C. Lu, “A watermarking-based image ownership and tampering authentication scheme,” Pattern Recognition Letters, Vol. 27, No. 5, pp. 439�{446, 2006.
[67] M. U. Ceilk, G. Sharma, E. Saber, and A. M. Tekalp, “Hierarchical watermarking for secure image authentication with localization,” IEEE Trans. Image Process., Vol. 11, No. 6, pp. 585�{594, 2002.
[68] P. W. Wong, “A public key watermark for image verification and authentication,” in Proc. IEEE Int. Conf. Image Processing, Chicago, IL, USA, pp. 425�{429, October 1998.
[69] P. W. Wong and N. Memon, “Secret and public key image watermarking schemes for image authentication and ownership verification,” IEEE Trans. Image Process., Vol. 10, No. 10, pp. 1593�{1601, 2001.
[70] H. C. Wu and C. C. Chang, “Detection and Restoration of Tampered JPEG Compressed Images,” The Journal of Systems and Software, Vol. 64, No. 2, pp. 151�{161, 2002.
[71] P. L. Lin, C. K. Hsieh, and P. W. Huang, “A hierarchical digital watermarking method for image tamper detection and recovery,” Pattern Recognition, Vol. 38, No. 12, pp. 2519�{2529, 2005.
[72] H. Luo, S. C. Chu, and Z. M. Lu, “Self embedding watermarking using halftoning technique,” Circuits Systems and Signal Processing, Vol. 27, No. 2, pp. 155�{170, 2008.
[73] S. S. Wang and S. L. Tsai, “Automatic image authentication and recovery using fractal code embedding and image inpainting,” Pattern Recognition, Vol. 41, No. 2, pp. 701�{712, 2008.
[74] F. H. Yeh and G. C. Lee, “Content-based watermarking in image authentication allowing remedying of tampered images,” Optical Engineering, Vol. 45, No. 7, pp. 077004-1�{10, 2006.
[75] C. S. Chan and C. C. Chang, “An efficient image authentication method based on Hamming code,” Pattern Recognition, Vol. 40, No. 2, pp. 681�{690, 2007.
[76] S. J. Lin (Supervised by J. C. Lin), “Image Recovery by using Sharing,” Mater thesis, National Chiao Tung University, 2006.
[77] M. S. Wang and W. C. Chen, “A majority-voting based watermarking scheme for color image tamper detection and recovery,” Computer Standards and Interfaces, Vol. 29, No. 5, pp. 561�{570, 2007.
[78] K. H. Chiang, K. C. Chang-Chien, R. F. Chang, and H. Y. Yen, “Tamper detection and restoring system for medical images using wavelet-based reversible data embedding,” Journal of Digital Imaging, Vol. 21, No. 1, pp. 77�{90, 2008.
[79] Z. F. Yang and W. H. Tsai, “Watermark approach to embedded signature-based authentication by channel statistics,” Optical Engineering, Vol. 42, No. 4, pp. 1157�{1165, 2003.
[80] H. T. Lu, R. M. Shen, and F. L. Chung, “Fragile watermarking scheme for image authentication,” Electronics Letters, Vol. 39, No. 12, pp. 898�{900, 2003.
[81] Chang-Tsun Li, “Digital fragile watermarking scheme for authentication of JPEG images,” IEE Proceedings �{ Vision, Image and Signal Processing, Vol. 151, No. 6, pp. 460�{466, 2004.
[82] S. Suthaharan, “Fragile image watermarking using a gradient image for improved localization and security,” Pattern Recognition Letters, Vol. 25, No. 16, pp. 1893�{1903, 2004.
[83] M. U. Celik, G. Sharma, and A. M. Tekalp, “Lossless watermarking for image authentication: a new framework and an implementation,” IEEE Trans. Image Processing, Vol. 15, No. 4, pp. 1042�{1049, 2006.
[84] C. H. Tzeng, Z. F. Yang, and W. H. Tsai, “Adaptive data hiding in palette images by color ordering and mapping with security protection,” IEEE Trans. Communications, Vol. 52, No. 5, pp. 791�{800, 2004.
[85] C. H. Tzeng and W. H. Tsai, “A combined approach to integrity protection and verification of palette images using fragile watermarks and digital signatures,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E87-A, No. 6, pp. 1612�{1619, 2004.
[86] C. C. Chang and P. Y. Lin, “A color image authentication method using partitioned palette and morphological operations,” IEICE Transactions on Information and Systems, Vol. E91-D, No. 1, pp. 54�{61, 2008.
[87] M. Holliman and N. Memon, “Counterfeiting attacks on oblivious block-wise independent invisible watermarking schemes,” IEEE Trans. Image Processing, Vol. 9, No. 3, pp. 432�{441, 2000.
[88] J. Fridrich, M. Goljan, and N. Memon, “Further attacks on Yeung-Mintzer fragile watermarking scheme,” in Proceedings of SPIE Conference on Security and Watermarking of Multimedia Contents, Vol. 3971, pp. 428�{437, 2000.
[89] C. C. Chang and R. J. Huang, “Sharing secret images using shadow codebooks,” Information Sciences, Vol. 111, No. 1-4, pp. 335�{345, 1998.
[90] C. C. Thien and J. C. Lin, “Secret image sharing,” Computers and Graphics, Vol. 26, No. 5, pp. 765�{770, 2002.
[91] C. C. Thien and J. C. Lin, “An image-sharing method with user-friendly shadow images,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 12, pp. 1161�{1169, 2003.
[92] C. C. Lin and W. H. Tsai, “Secret image sharing with steganography and authentication,” The Journal of Systems and Software, Vol. 73, No. 3, pp. 405�{414, 2004.
[93] S. K. Chen and J. C. Lin, “Fault-tolerant and progressive transmission of images,” Pattern Recognition, Vol. 38, No. 12, pp. 2466�{2471, 2005.
[94] R. Z. Wang and S. J. Shyu, “Scalable secret image sharing,” Signal Processing: Image Communication, Vol. 22, No. 4, pp. 363�{373, 2007.
[95] S. J. Lin and J. C. Lin, “VCPSS: A two-in-one two-decoding-options image sharing method combining visual cryptography (VC) and polynomial-style sharing (PSS) approaches,” Pattern Recognition, Vol. 40, No. 12, pp. 3652-3666, 2007.
[96] C. C. Lin and W. H. Tsai, “Secret image sharing with capability of share data reduction,” Optical Engineering, Vol. 42, No. 8, pp. 2340�{2345, 2003.
[97] J. B. Feng, H. C. Wu, C. S. Tsai, and Y. P. Chu, “A new multi-secret images sharing scheme using Largrange’s interpolation,” The Journal of Systems and Software, Vol. 76, No. 3, pp. 327�{339, 2005.
[98] C. S. Tsai, C. C. Chang, and T. S. Chen, “Sharing multiple secrets in digital images,” The Journal of Systems and Software, Vol. 64, No. 2, pp. 163�{170, 2002.
[99] C. C. Lin and W. H. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recognition Letters, Vol. 24, No. 1�{3, pp. 349�{358, 2003.
[100] H. C. Wu and C. C. Chang, “Sharing visual multi-secrets using circle shares,” Computer Standards and Interfaces, Vol. 28, No. 1, pp. 123�{135, 2005.
[101] R. Z. Wang and C. H. Su, “Secret image sharing with smaller shadow images,” Pattern Recognition Letters, Vol. 27, No. 6, pp. 551�{555, 2006.
[102] C. N. Yang, T. S. Chen, K. H. Yu, and C. C. Wang, “Improvements of image sharing with steganography and authentication,” The Journal of Systems and Software, Vol. 80, No. 7, pp. 1070�{1076, 2007.
[103] C. Y. Lin and C. C. Chang, “Hiding data in VQ-compressed images using dissimilar pairs,” Journal of Computers, Vol. 17, No. 2, pp. 3�{10, 2006.
[104] C. C. Chang, T. D. Kieu, and Y. C. Chou, “Reversible information hiding for VQ indices based on locally adaptive coding,” Journal of Visual Communication and Image Representation, Vol. 20, No. 1, pp. 57�{64, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊