跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 02:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳依廷
研究生(外文):Chen, Yi-Ting
論文名稱:手持裝置行人追蹤系統
論文名稱(外文):Pedestrian Tracking System for Handheld Devices - Using Accelerometers and Magnetometers
指導教授:曾煜棋曾煜棋引用關係易志偉易志偉引用關係
指導教授(外文):Tseng, Yu-CheeYi, Chih-Wei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:51
中文關鍵詞:個人導航系統全球定位系統加速度計磁力計計步器微機電系統室內/室外定位行動定位服務
外文關鍵詞:Personal navigation systemglobal positioning systemaccelerometermagnetometerpedometerMEMSindoor/outdoor locationlocation based services
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了改進全球定位系統的缺點,例如:定位準確度、室內訊號不良,近年來個人導航系統成為了一個熱門的研究題目。大部份的個人導航系統均以計步器為基礎並利用微機電系統實作,藉由在使用者身上黏貼微機電系統來收集、分析資料,來計算使用者行走的步數、距離及方向,以便追蹤使用者的移動路徑。微機電系統黏貼的位置可分為:腳或腳踝、腰間、手持…等,由於使用者的手會產生不規則的抖動或振動,因此實作手持裝置定位的難度,相較於其他黏貼位置來得更加困難。
在本研究中,利用微機電系統實作了手持裝置行人追蹤系統,所使用的裝置包括加速度計及磁力計;此系統包含了三個模組:計步模組、步距模組及方向模組。計步模組藉由檢查加速度資訊並抓取步行樣本,來偵測使用者是否有走路的行為,同時濾除使用者手部的振動對裝置造成的雜訊;步距模組利用計步模組所抓取的步行樣本來估算此樣本所對應的步距;方向模組則利用磁力強度和加速度資訊來計算手持裝置的歐拉角和手持角度。
藉由整合上述三個模組的輸出資訊,我們實作了行人追蹤系統。使用者只需手持此系統的硬體裝置(約一般手持裝置大小),系統即可追蹤使用者的移動軌跡並輸出;此系統可應用在各種手持裝置上,進行室內及室外的個人定位;未來將會與全球定位系統整合,以改善全球定位系統之缺點,對於都市、室內及室外的個人導航都相當有幫助,同時也可應用於提供行動定位服務與家庭看護上。
The Personal Navigation System (PNS) becomes a popular research topic recently because people want to improve the shortcomings of Global Positioning System (GPS) such as accuracy and indoor usability. A lot of such systems are pedometer-based system which could be implemented using Micro Electro-Mechanical Systems (MEMS) and attached to different positions on a human body. The handheld pedometer is less than other locations such as foot and waist because the device held by one's hand has more noises and it is more difficult to model the human walking pattern.
In this paper, a Pedestrian Tracking System (PTS) is designed for handheld devices and implemented using accelerometers and magnetometers. It is composed of three modules: stepping module, stride module and direction module. The stepping module detects a step occurrence of user through pattern matching in acceleration and filters the noises like shaking and vibrations. The stride module acquires the parameters of a step pattern from stepping module, and calculate the corresponding stride length of the step pattern. The direction module uses magnetic intensity and accelerations to evaluate the Euler angles and holding angles of a device.
By integrating the outputs of stepping module, stride module and direction module, the Pedestrian Tracking System is implemented. This system, which can be embedded into cellphones or PDAs easily, is feasible for indoor or outdoor personal positioning with a given initial position. In the future, the PTS could be integrated with the GPS for improving the positioning accuracy of both. It is very helpful for personal navigation in urban areas, indoor and outdoor environments and could be applied in providing location based services and home healthcare, etc.
1 Introduction 1
2 Related Work 6
2.1 Step Detection . . . . . . . . . . . . . . . . . . . 6
2.2 Stride Length Estimation . . . . . . . . . . . . . . 7
2.3 Walking Direction Calculation . . . . . . . . . . . 8
3 System Architecture 10
3.1 Instrumentation . . . . . . . . . . . . . . . . . . 10
3.2 System Module . . . . . . . . . . . . . . . . . . . 10
4 Stepping Module 14
4.1 Acceleration Decomposition . . . . . . . . . . . . 14
4.2 Step Detection - Flat Case . . . . . . . . . . . . 15
4.3 Step Detection - Stair Case . . . . . . . . . . . . 17
4.4 Noise Filtering . . . . . . . . . . . . . . . . . . 19
4.5 Experimental Results . . . . . . . . . . . . . . . 22
4.5.1 Step Detection Accuracy . . . . . . . . . . . . 24
4.5.2 Noise Resistance . . . . . . . . . . . . . . . 26
5 Stride Module 27
5.1 Variable Selection . . . . . . . . . . . . . . . . 27
5.2 Regression Analysis . . . . . . . . . . . . . . . . 29
5.3 Experimental Results . . . . . . . . . . . . . . . 32
6 Direction Module 33
6.1 Rotation Matrices . . . . . . . . . . . . . . . . . 33
6.2 Euler Angle Calculation . . . . . . . . . . . . . . 35
6.3 Forward Acceleration Calculation . . . . . . . . . 38
6.4 Holding Angle Calculation . . . . . . . . . . . . . 40
6.5 Experimental Results . . . . . . . . . . . . . . . 41
6.5.1 Yaw Angle Accuracy . . . . . . . . . . . . . . 42
6.5.2 Holding Angle Accuracy . . . . . . . . . . . . 42
7 Pedestrian Tracking System 46
8 Conclusions 48
[1] F. Cavallo, A. M. Sabatini, and V. G. Sabatini, "A step toward GPS/INS personal navigation systems: real-time assessment of gait by foot inertial sensing," in Proceedings of the 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2005), 2-6 August 2005, pp. 1187-1191.
[2] X. Yun, E. R. Bachmann, H. Moore, and J. Calusdian, "Self-contained position tracking of human movement using small inertial/magnetic sensor modules," in Proceedings of the 2007 IEEE International Conference on Robotics and Automation, 10-14 April 2007, pp. 2526-2533.
[3] J.-A. Lee, S.-H. Cho, J.-W. Lee, K.-H. Lee, and H.-K. Yang, "Wearable accelerometer system for measuring the temporal parameters of gait," in Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2007), 22-26 August 2007, pp. 483-486.
[4] S. H. Shin, C. G. Park, J. W. Kim, H. S. Hong, and J. M. Lee, "Adaptive step length estimation algorithm using low-cost MEMS inertial sensors," in Proceedings of the 2007 IEEE Sensors Applications Symposium (SAS 2007), 6-8 February 2007, pp. 1-5.
[5] M. Kourogi and T. Kurata, "Personal positioning based on walking locomotion analysis with self-contained sensors and a wearable camera," in Proceedings of the 2003 Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 7-10 October 2003, pp. 103-112.
[6] A. Y. Jeon, J. H. Kim, I. C. Kim, J. H. Jung, S. Y. Ye, J. H. Ro, S. H. Yoon, J. M. Son, B. C. Kim, B. J. Shin, and G. R. Jeon, "Implementation of the personal emergency response system using a 3-axial accelerometer," in Proceedings of the 2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine (ITAB 2007), 8-11 November 2007, pp. 223-226.
[7] S. Ramat, D. Pr¶e, and G. Magenes, "An internal model of self-motion based on inertial signals," in Proceedings of the 2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS
2006), 30 August-3 September 2006, pp. 4961-4964.
[8] A. Fleury, N. Noury, and N. Vuillerme, "A fast algorithm to track changes of direction of a person using magnetometers," in Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2007), 22-26 August 2007, pp. 2311-2314.
[9] Y. Chai, W. Feng, C. Jiang, and K. Liu, "Design and realization of digital compass with magnetometers," in Proceedings of the 2008 7th World Congress on Intelligent Control and Automation (WCICA 2008), 25-27 June 2008, pp.
7672-7675.
[10] K.-H. Lee, J.-W. Lee, K.-S. Kim, D.-J. Kim, K. Kim, H.-K. Yang, K. Jeong, and B. Lee, "Tooth brushing pattern classi‾cation using three-axis accelerometer and magnetic sensor for smart toothbrush," in Proceedings of the 2007
29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2007), 22-26 August 2007, pp. 4211-4214.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊