跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志祥
研究生(外文):Chih-Hsiang Lin
論文名稱:大氣電漿技術對有機薄膜電晶體特性改善之研究
論文名稱(外文):Enhancing the properties of polymer thin-film transistors using a novel atmospheric-pressure plasma technology
指導教授:張國明
指導教授(外文):Kow-Ming Chang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:114
中文關鍵詞:大氣電漿有機薄膜電晶體表面改質
外文關鍵詞:atmospheric-pressure plasmaOTFTSurface treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
透過旋轉塗佈的方式沉積可溶性共軛高分子,對於製作大面積且低成本的有機薄膜電晶體元件有很大的應用潛力。由於有機薄膜電晶體的效能與半導體及介電層的界面有很大的關係,所以此篇論文的研究目的是藉由控制半導體與介電層之間的界面化學特性,來改善以聚(3-烷基噻吩)作為半導體層的有機薄膜電晶體之特性。因為二氧化矽作為介電層已行之有年,材料特性較易掌控且界面改質容易,因此我們選擇熱氧化方式沉積二氧化矽作為我們的介電層,而由於高規則度聚(3-烷基噻吩)具有較高的結晶排列性,使薄膜電晶體元件能獲得較佳的電子遷移率,所以在此作為我們元件的半導體層。利用六甲基二矽氮烷對二氧化矽絕緣層進行表面處理,已證實對聚(3-烷基噻吩)薄膜電晶體的特性有明顯的改善,而本論文則透過常壓式電漿製程將六甲基二矽氮烷沉積於聚(3-烷基噻吩)與二氧化矽絕緣層間的界面,並探討此種表面處理製程對有機薄膜電晶體效能的影響。常壓電漿系統是一種可以將製程溫度操控於120度以下的低溫,並可工作於一般大氣壓力之下。利用常壓式電漿製程進行表面處理後,有機薄膜電晶體元件的臨界電壓可被降至-10伏特以內,載子遷移率也比沒經表面處理的元件提昇15倍以上,約為0.02-0.03 cm2/Vs,其效果甚至比透過旋塗式或蒸鍍等表面改質方法還好。本論文已證實常壓式電漿系統,確實是一種低溫且高效率的有機薄膜電晶體元件界面改質製程。
Organic thin film transistors made by spin-coating from solution- processable conjugated polymers have potential advantages in fabricating low-cost devices with large areas. Since OTFT performance depends strongly on the interface between the semiconductor and the dielectric layer, this study attempts to demonstrate that the characteristics of P3HT-based OTFT are improved by controlling the chemistry of the dielectric/polymer interface. Thermal SiO2 is adopted as the dielectric because of its well-characterized properties and ease of chemical modification. Regioregular P3HT (of which HT linkages represent more than 98.5% of the linkages) is utilized as the active layer, so it exhibits better ordering and crystallinity in the solid state, and substantially improved electroconductivities. The field-effect mobility was markedly improved by modifying the surface of SiO2 with using a hexamethyldisilazane (HMDS) self-assembled monolayer. Before the active layer was deposited, the surface of SiO2 was modified using atmospheric-pressure plasma technique (APPT). APPT is a new process that can be implemented at atmospheric pressure and at low temperature. The steps of APPT are performed below 120°C and at atmospheric pressure, so the approach is very suited to use on a plastic substrate. After the SiO2 surface has been modified by the APPT process with hexamethyldisilazane (HMDS), it exhibits typical I-V characteristics of TFTs. Calculations reveal that its field effect mobility can reach 0.02-0.03 cm2/Vs, which is about 15 times that before the modification, and the threshold voltage is below -10V. The performance is even better than that obtained following the usual surface treatment of the SiO2 surface by spin-coating or evaporation. This work suggests an interesting direction for preparing high-performance OTFTs with high efficiency and low-temperature surface treatment by APPT.
Abstract (in Chinese)…………….…………….i
Abstract (in English)………………………….iii
Acknowledgment………………………...........v
Contents………………………….……………....vi
Table Captions……………………..…….………ix
Figure Captions……………………………………xi
Chapter 1 Introduction
1.1 General background and motivation……...........…1
1.2 Organic conjugated materials for OTFT…….........3
1.3 Thesis organization……......................…….5

Chapter 2 Property of P3HT and Spin-Coating Technique
2.1 Introduction of P3HT……………...................11
2-1-1 The molecular structure of P3HT………....….11
2.1.2 Conduction mechanism…………..........…....12
2.2 Solution processed deposition………….........….16
2.2.1 Methods of OTFT fabricates…………....……..16
2.2.2 The motivation of spincoating……….......…16
2.2.3 Effect of polymer morphology and solvents….17
2.3 Contact resistance of P3HT OTFT……..............18
2.4 Operation of organic thin filmtransistors…….….19

Chapter 3 Surface Treatment by Atmospheric-Pressure Plasma Technology for Electrical Properties of OTFT………….30
3.1 Modification of oxide surface………………........30
3.2 Introduction of APPT……………...................31
3.2.1 Introduction of plasma………………..........31
3.2.2 Applications of APPT………………............32
3.2.3 Plasma surface modification………….......…34
3.3 Fabrication of OTFT…………………………........…36
3.4 Determination of thershold voltage and mobility………38
3.5 Results and discussions…………......................39
3.5.1 The influence of spin speed for OTFT……........39
3.5.2 Electrical properties of APP surface treatment..40
3.5.3 The other methods of HMDS-treated SiO2…........42

Chapter 4 Surface Treatment by Atmospheric-Pressure Plasma Technology for P3HT Alignment……………..............……83
4.1 Introduction of P3HT alignment………................83
4.2 The methods to provide P3HT alignment………….......84
4.2.1 Crystallization behavior of P3HT………......….84
4.2.2 XRD and UV-vis for highly oriented crystals of P3HT…..................................................85
4.3 Hysteresis………………............……………...…...87
4.4 Anomalous leakage current……......………..………….89

Chapter 5 Conclusions and Future Work…………….…….….104
5.1 Conclusions………......................……………….104
5.2 Future work…………………………..................….106
5.2.1 In-situ passivation layer for protecting the P3HT film……………..........................................106
5.2.2 Novel method for depositing P3HT thin films………………….....................................106
5.2.3 Thermal stability of P3HT OTFT…………………….................................….107
5.2.4 New gate insulator materials for P3HT OTFT……………………....................................107

Reference……………………....………………………………...108
[1] C. J. Drury, C. M. Mutsaers, C. M. Hart, M. Matters and D. M. de Leeuw, Appl. Phys. Lett. 73 (1998) 108.

[2] M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening, C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, L. Jia, L. H. Klauk and T. N. Jackson, IEEE Electron Device Lett. 2 (2001) 534.

[3] W. Fix, A. Ullmann, J. Ficker and Clemens, Appl. Phys. Lett. 81 (2002) 1735.

[4] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl and J. West, Appl. Phys. Lett. 80 (2002) 1088.

[5] Y. Fujisaki, Y. Inoue, H. Sato, T. Kurita, S. Tokito and H. Fujikake, Proc. Int. Display Workshop (2003) (IDW’03), p.291.

[6] Y. Inoue, Y. Fujisaki, T. Suzuki, S. Tokito, T. Kurita, M. Mizukami, N. Hirohata, T. Tada and S. Yagyu, Proc. Int. Display Workshop (2004) (IDW’04), p. 355.

[7] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, New York, (1998), p.11.

[8] H. E. Katz, Z. Bao and S. L. Gilat, Acc. Chem. Res. 34 (2001) 359.

[9] Y. Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson, IEEE Electron Device Lett. 18 (1997) 606.

[10] F. J. Mayer zu Heringdorf, M. C. Reuter and R. M. Tromp, Nature 412 (2001) 517.

[11] D. J. Gundlach, H. Klauk, C. D. Cheraw, C. C. Kuo, J. R. Huang and T. N. Jackson, Electron Devices Meet, 1999, IEDM Tech. Dig.,Washington, D.C., (1999), p.111.

[12] G. Horowitz, J. Mater. Res. 19 (2004) 1946.

[13] H. Sirringhaus, P. J. Brown, R. H. Friend, and M. M. Nielsen, Nature 401 (1999) 685.

[14] M.. Halik, H. Klauk, G. Schmid, and W Weber, Adv. Mater. 15 (2003) 917.

[15] F. Garnier, R. Hajlaoui, A. Elkassmi, G. Horowitz, and F. Provasoli, Chem. Mater. 10 (1998) 3334.

[16] H. E. Katz, W. Li, and A. J. Lovinger, Synth. Metal. 102 (1999) 897.

[17] Chrisos D. Dimitrakopoulos, and D, J. Mascaro, IBM J. RES. & DEV. 45(1), (2001), p.11.

[18] Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69 (1996) 23.

[19] C. D. Dimitrakopoulos, and R. L. Malenfant, Adv. Mater. 14 (2002) 99.

[20] Sirringhaus, Henning, and Tessler, Science 280 (1998) 1741.

[21] Sirringhaus, H. Brown, P. J. Friend, R. H. Nielsen, M. M . Bechgaard, and K. Langeveld-Voss, Synth. Metals 111 (2003) 129.

[22] Guangming Wang, Jmaes Swensen, Daniel Moses, and Alan J. Heeger,
Nanothechnology 93 (2003) 6137.

[23] H. Sirringhaus, P .J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Jannsen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature 401 (1999) 685.

[24] G. Horowitz, Adv. Mater. 10 (1998) 365.

[25] W. R. Salaneck, and S. Stafstrom, Cambridge University Press, Cambridge 1996.

[26] T. Holstein, Ann. Phys. 8 (1959) 343.

[27] P. G. Le Comber, W. E. Spear, Phys. Rev. Lett. 25 (1970) 509.

[28] Chrisos D. Dimitralopoulos, and Parick R. Malenfant, Adv. Mater. 14 (2002) 16.

[29] A. Assadi. C. Svensson, M. Willander, and O. Inganas, Appi. Phys. Lett. 53 (1988) 18.

[30] Howard E. Katz, Joyce G. Laquindanum, and Andrew J. Lovinger, Chem, Mater. 10 (1998) 633.

[31] Giles Lloyd, Munira Raja, Ian Sellers, Naser Sedghi, Raffaclla Di Lucrezia, Simon Higgins, and Bill Eceleston, Microelectronic Engineering 59 (2001) 323.

[32] Cheng Yang, P. Orfino, and Steven Holdcroft, Marcomolecules 29 (1996) 20.

[33] Amundson, Karlr, Sapjeta, B. Joyce, Lovinger, Andrew J., and Bao, Zhenan, Nature 414 (2002) 143.

[34] Hagen Llauk, Gunter Schmid, Wolfgang Radlik, Werner Weber, Lisong Zhou, Chris D. Sheraw, Jonathan A.Nichols, and Thomas Jackson, Solid-State Electronics 47 (2003) 297.

[35] Graciela B. Blanchet, C. R. Fincher, and Micheal Lefenfeld, Appl. Phys. Lett. 84 (2004) 2.

[36] Giles Lloyd, Munira Raja, Ian Sellers, Naser Sedghi, Raffaella Di Lucrezia, Simon Higgins, and Bill Eccleston, Microelectronic Engineering 59 (2001) 323.

[37] Kanan Puntambekar, Jinping Dong, Greg Haugstad, and C. Daniel Frisbie Adv. Funct. Mater. 16 (2006) 879.

[38] Y. Chen, I. Shin, and S. Xiao, Journal of Applied Physics 96 (2004) 31.

[39] A. R. Brown, C. P. Tarrent, and D.M. de Leeuw, Synthetic Metals 88 (1997) 37.

[40] J. Veres, S. Ogier, G. Lloyd, and D. Leeuw, Chem. Mater. 16 (2004) 4543.

[41] A. Facchetti, M. H. Yoon, and T. J. Marks, Adv. Mater. 17 (2005) 1705.

[42] Y. Sun, Y. Liu, and D. Zhu, J. Mater. Chem. 15 (2005) 53.

[43] D. G. Oteyza, E. Barrena, J. Osso, and H. Dosch, Appl. Phys. Lett. 87 (2005) 183504.

[44] I. Yagi, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 86 (2005) 103502.

[45] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa: Nat. Mater. 3 (2004) 317.

[46] P. Too, S. Ahmed, B. J. Sealy, and R. Gwilliam: Appl. Phys. Lett. 80 (2002) 3745.

[47] H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baik: Jpn. J. Appl. Phys. 44 (2005) 4092.

[48] R. H. Tredgold, Cambridge University Press, 1994.

[49] A. Ulman, Academic press, New York,1991.

[50] R.F. Gould (Ed.), Proceeding of the 144th Meeting of the American Chemical Society, Vol.43, Washington, DC, 1964.

[51] R.J. Good, in:K.L. Mimal (Ed.), Contact angle, Wettability and Adhesion, USP, The Netherlands, 1993, pp. 3–36.

[52] H. Klauk, D. J. Gundlach, J. A. Nichols, C. D. Sheraw, M. Bonse, and T. N. Jackson, Solid State Technol. 43 (2000) 63.

[53] H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280 (1998) 1741.

[54] H. Sirringhaus, N. Tessler, and R. H. Friend, Synth. Met. 102, (1999) 85.

[55] S. C. Lim, S. H. Kim, J. H. Lee, M. K. Kim, D. J. Kim, and T. Z., Synth. Met. 148 (2005) 75.

[56] N. Karl in Organic Electronic Materials, Springer Series in Material Science, Vol. 41, edited by R. Farchioni and G. Grosso ~Springer, Berlin (2001).

[57] R. J., M. D., M. L., and M.F. Toney, Nature Materials 5 (2006).

[58] M. Hallk, H. Klauk, U. Zschieschang, G. Schmld, C. Dehm, M. Schutz, S. Malsch, F. Effenberger, M. Brunnnbauer, and F. Stellacci, Nature, 431 (2004) 963.

[59] T. A. Chen, X. Wu, and R. D. Rieke, J. Am. Chem. Soc. 117 (1995) 233.

[60] R. D. McCullough, R. D. Lowe, M. Jayaraman, and D. L. Anderson, J. Org. Chem. 58 (1993) 904 .

[61] Prosa, T. J., Winokur, M. J., Moulton, J., Smith, P. Heeger, and A. J., Macromolecules 25 (1992) 4364.

[62] T. A. Chen, X. M. Wu, and R. D. Rieke, J. Am. Chem. Soc. 117 (1995) 233.

[63] E. J. Samuelsen and J. Mardalen, in Handbook of Organic Conductive Polymers, edited by H. S. Nalwa ~Wiley, Weinheim, 1997, Vol. 3, Conductive Polymers: Spectroscopy and Physical Properties, pp. 100–106.

[64] P. J. Brown, D. S. Thomas, and J. S. Wilson, Physical Review B67 (2003) 064203.

[65] Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69 (1996) 4108.

[66] Y. Sun, Y. Ma, Y. Liu, Z. Wang, and Y. Wang, Adv. Funct. Materials 16 (2006) 426.

[67] Y. Kim, S. Cook, and S. M. Tuladhar, Journal of Applied Physics 93 (2003) 6137.

[68] G. Wang, J. Swensen, D. Moses, and A. J. Heeger, Nat. Mater., 5 (2006) 197.

[69] R. J. Kline, M. D. McGehee, and M. F. Toney, Nat. Mater., 5 (2006) 222.

[70] D. Knipp, R. A. Street, and A. R. Volkel, Appl. Phys. Lett.,82 (2003) 3907.

[71] C. Y. Chang, “ULSI Devices”, Wiley, New York, 2000.

[72] C. S. Kim, S. J. Jo, S. W. Lee, and S. J. Lee, Adv. Funct. Mater. 17 (2007) 958.

[73] S. Y. Park, M. Park, and H. H. Lee, Appl. Phys. Lett. 85 (2004) 2283.

[74] E. M. Muller, and J. A. Marohn, Adv. Mater. 17 (2005) 1410.

[75] A. Salleo, F. Endicott, and R. A. Street, Appl. Phys. Lett. 86 (2005) 263505.

[76] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, Nano Lett. 3 (2003) 193.

[77] D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., Wiley, New York 1998.

[78] G. Wang, D. Moses, and A. J. Heeger, J. Appl. Phys. 95 (2004) 316.

[79] H. Jia, G. K. Pant, E. K. Gross, R. M. Wallace, and B. E. Gnade, Organic Electronics 7 (2006) 16.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以噴射式大氣電漿在低溫下開發高品質二氧化矽應用在低電壓操作之有機薄膜電晶體之研究
2. 利用大氣電漿沉積以氧化鋅為主的透明導電膜其光電特性和熱穩定性的研究
3. 藉由大氣電漿沉積主動層之氧化鋅薄膜電晶體之研究
4. 利用大氣電漿對有機半導體之介電層表面做改質研究
5. 熱退火處理對於大氣電漿沉積銦鎵鋅氧化物薄膜電晶體之特性影響
6. 低溫下利用大氣電漿沉積二氧化矽薄膜作為有機薄膜電晶體之閘極絕緣層在不同基本製程參數之研究
7. 利用大氣常壓電漿輔助化學氣相沉積製備氧化鋅系透明電極與氧化鋅/銦鎵鋅氧薄膜電晶體應用之特性研究
8. 利用大氣電漿技術沉積不同結晶性硒薄膜於堆疊金屬前驅層之硒化製程研究
9. 常壓式電漿系統對有機薄膜電晶體表面之研究
10. 低溫製程技術處理於低溫多晶矽薄膜電晶體及大氣常壓電漿輔助化學氣相沉積製備銦鎵鋅氧薄膜電晶體之探討
11. 用混合氮氧氣體及電漿氟化與氮化處理技術對矽鍺奈米線於生物感測試劑之靈敏度研究與特性
12. 氫、氧與硫對銅銦鎵硒薄膜太陽能電池效能之影響以及AMPS-1D之元件模擬
13. 雙重電漿處理技術應用於具高介電常數閘極絕緣層的金屬-絕緣層-半導體電容及低溫多晶矽薄膜電晶體之特性研究
14. 電阻式記憶體之特性研究及電性探討
15. 低介電係數材料應用於銅導線內連接製程之可靠度研究