|
[1] D. Kahng and M. M. Atalla, “Silicon-Silicon Dioxide Field Induced Surface Devices”, IRE-AIEE Solid-State Device Conference, Pittsburg, 1960. [2] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of Ion-Implanted MOSFETs with Very Small Physical Dimensions”, IEEE Journal of Solid-State Circuit, Vol. SC-9, pp. 256-268, 1974. [3] G. E. Moore, “Lithography and the Future of Moore’s Law”, Eighth Optical/Microlithography Conference, Vol. 2439, 2, pp. 2-17, 1995. [4] International Technology Roadmap for Semiconductor, Semiconductor Industry Association, 2007 update, Makuhari Messe, Japan, 2007. [5] S. M. Sze, Physics of Semiconductor Devices, 2nd edition, 1985. [6] R. Rios, and N. D. Arora, “Determination of Ultra-Thin Gate Oxide Thicknesses for CMOS Structures Using Quantum Effects”, IEDM, pp. 613-616, 1994. [7] N. Yang, W. K. Henson, and J. J. Wortman, “Analysis of Tunneling Currents and Reliability of MOSFETs with Sub-2nm Gate Oxides”, IEDM, pp. 453-456, 1999. [8] J. S. Suehle, E. M. Vogel, M. D. Edelstein, C. A. Richter, N. V. Nguyen, I. Levin, D. L. Kaiser, H. Wu, and J. B. Bernstein, “Challenges of High-k Gate Dielectrics for Future MOS Devices”, Plasma- and Process-Induced Damage, 2001 6th International Symposium on, pp. 90-93, 2001. [9] J. Lee, G. Bosman, K. R. Grenn, and D. Ladwig, “Model and Analysis of Gate Leakage Current in Ultrathin Nitrided Oxide MOSFETs”, IEEE Trans. Electron Devices, Vol. 49, pp. 1232-1241, 2002. [10] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-Mechnical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFETs”, IEEE Electron Device Letter, Vol. 18, pp. 209-211, 1997 [11] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k Gate Dielectrics: Current Status and Materials Properties Considerations”, Journal of Applied Physics, Vol. 89, pp. 5243-5275, 2001. [12] E. P. Gusev, D. A. Buchanan, et al., “Ultrathin High-k Gate Stacks for Advanced CMOS Devices”, IEDM, pp. 20.1.1-20.1.4, 2001. [13] A. Callegari, E. Cartier, M. Gribelyuk, H. K. Okorn-Schmidt, and T. Zabel, “Physical and Electrical Characterization of Hafnium Oxide and Hafnium Silicate Sputtered Films”, Journal of Applied Physics, Vol. 90, pp. 6447-6450, 2001. [14] K. Yudong, G. Gebara, et al., “Conventional n-Channel MOSFET Devices Using Single Layer HfO2 and ZrO2 as High-k Gate Dielectrics with Polysilicon Gate Electrode”, IEDM, pp. 20.2.1-20.2.4, 2001. [15] D.G. Schlom, and J.H. Haeni, “A Thermodynamic Approach to Selecting Alternative Gate Dielectrics”, MRS bulletin, pp. 198-204, 2002. [16] G. C. F. Yeap, S. Krishnan, and M.R. Lin, “Fringing-Induced Barrier Lowering (FIBL) in sub-100-nm MOSFETs with High-k Gate Dielectrics”, IEEE Electron Device Letter, Vol. 34, pp. 1150-1152, 1998. [17] C. H. Lai, L. C. Hu, H. M. Lee, L. J. Do, and Y. C. King, “New Stack Gate Insulator Structure Reduce FIBL Effect Obviously”, VLSI-TSA, pp. 216-219, 2001. [18] N. R. Mohapatra, M. P. Desai, and V. R. Rao, “Detailed Analysis of FIBL in MOS Transistors with High-k Gate Dielectrics”, 16th International VLSI Design Conference, pp. 99-104, 2003. [19] J. Robertson, “Electronic Structure and Band Offsets of High-Dielectric-Constant Gate Oxides”, MRS bulletin, pp. 217-221, 2002. [20] H. J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan, and J.C. Lee, “Novel Nitrogen Profile Engineering for Improved TaN/HfO2/Si MOSFET Performance”, IEDM, pp. 30.2.1-30.2.4, 2001. [21] S. Guha, E. Gusev, E. Gusev, M. Copel, L. Ragnarsson, and D. A. Buchanan, “Compatibility Challenge for High-k Materials Integration into CMOS Technology”, MRS bulletin, pp. 226-231, 2002. [22] T. Kauerauf, R. Degraeve, E. Cartier, and B. Goveoreanu, “Towards Understanding Degradation and Breakdown of SiO2/High-k Stacks”, IEDM, pp. 521-524, 2002. [23] C. T. Liu, “Circuit Requirement and Integration Challenges of Thin Gate Dielectrics for Ultra Small MOSFETs”, IEDM, pp. 747-750, 1998. [24] T. M. Wang, C. H. Chang, and J. G. Hwu, “Enhancement of Temperature Sensitivity for MOS Tunneling Temperature Sensors by Utilizing HfO2 Film Added on SiO2”, IEEE Sensors Journal, Vol. 6, pp. 1468-1472, 2006. [25] F. Y. Yen, C. L. Hung, Y. T. Hou, P. F. Hsu, V. S. Chang, P. S. Lim, L. G. Yao, J. C. Jiang, H. J. Lin, C. C. Chen, Y. Jin, S. M. Jang, H. J. Tao, S. C. Chen, and M. S. Liang, “Effective Work Function Engineering of TaxCy Metal Gate on Hf-Based Dielectrics”, IEEE Electron Device Letter, Vol. 28, pp. 201-203, 2007. [26] E. J. Lim, T. P. Lee, et al., “Yttrium- and Terbium-Based Interlayer on SiO2 and HfO2 Gate Dielectrics for Work Function Modulation of Nickel Fully Silicided Gate in nMOSFET”, IEEE Electron Device Letter, Vol. 28, pp. 482-485, 2007. [27] J. Robertson, “Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices”, Journal of Vacuum Science and Technology B, Vol. 18, pp. 1785-1791, 2000.
[28] K. J. Hubbard and D. G. Schlom, “Thermodynamic Stability of Binary Oxides in Contact with Silicon”, Journal of Materials Research, Vol. 11, pp. 2757-2776, 1996. [29] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. J. Qi, C. Kang, and J. C. Lee, “Characteristics of TaN Gate MOSFET with Ultrathin Hafnium Oxide (8Å-12Å)”, IEDM, pp. 39-42, 2000. [30] S. H. Lo, D. A. Buchanan, and Y. Taur, “Modeling and Characterization of Quantization, Polysilicon Depletion, and Direct Tunneling Effects in MOSFETs with Ultra Thin Oxides”, IBM Journal of Research and Development, Vol. 43, pp. 327-337, 1999. [31] J. Y. C. Sun, C. Wong, Y. Taur, C. H. Hsu, “Study of Boron Penetration Through Thin Oxide with p+ Polysilicon Gate”, Symposium on VLSI Technology, 1989. [32] J. R. Pfiester, K. F. Bake, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The Effects of Boron Penetration on p+ Polysilicon Gates MOS Devices”, IEEE Trans. Electron Devices, Vol.ED-37, 1990. [33] K. A. Ellis and R. A. Buhrman, “Boron Diffusion in Silicon Oxides and Oxynitrides”, Journal of the Electrochemical Society, Vol.145, pp. 2068-2074, 1998. [34] C. C. Hobbs et al., “Fermi Level Pinning at the PolySi/Metal Oxide Interface”, Symposium on VLSI Technology, pp. 9-10, 2003. [35] C. C. Hobbs et al., “Fermi-Level Pinning at the Ploysilicon/Metal-oxide Interface- Part II”, IEEE Trans. Electron Devices, Vol. ED-51, pp. 978-984, 2004. [36] N. D. Arora, R. Rios, and C. L. Huang, “Modeling the Poly-Si Depletion Effect and its Impact on Submicrometer CMOS Circuit Performance”, IEEE Trans. Electron Devices, Vol. ED-42, 1995. [37] E. Cartier et al., “Systematic Study of pFET Vt with Hf-Based Gate Stacks with Poly-Si and FUSI Gates”, Symposium on VLSI Technology, pp. 44-45, 2004. [38] K. Shiraishi et al., “Theory of Fermi Level Pinning of High-k Dielectrics”, Conference on Simulation of Semiconductor Processes and Devices, 2006. [39] M. Kadoshima, et al., “Symmetrical Threshold Voltage in Complementary Metal-Oxide Semiconductor Field-Effect Transistors with HfAlO(N) Achieved by Adjusting Hf/AI Compositional Ratio", Journal of Applied Physics, 2006. [40] H. Zhong, S. N. Hong, Y. S. Suh, H. lazar, G. Heuss, and V. Misra, “Properties of Ru-Ta alloys as Gate Electrodes for NMOS and PMOS Silicon Devices”, IEDM, pp. 20.5.1-20.5.4, 2001.
[41] R. Lin, Q. Lu, P. Ranade, T. J. King, and C. Hu, “An Adjustable Work Function Technology Using Mo Gate for CMOS Devices”, IEEE Electron Device Letter, Vol. 23, pp. 49-51, 2002. [42] I. Polishchuk, P. Ranade, T. J. King, and C. Hu, “Dual Work Function Metal Gate CMOS Transistors by Ni-Ti Interdiffusion”, IEEE Electron Device Letter, Vol. 23, pp. 200-202, 2002. [43] J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, “Dual Work Function Metal Gates Using Fully Nickel Silicidation of Doped Poly-Si”, IEEE Electron Device Letter, Vol. 24, pp. 631-633, 2003. [44] H. Y. Yu, H. F. Lim, J. H. Chen, M. F. Li, C. Zhu, C. H. Tung, A. Y. Du, W. D. Wang, D. Z. Chi, and D. L. Kwong, “Physical and Electrical Characteristics of HfN Gate Electrode for Advanced MOS Devices”, IEEE Electron Device Letter, Vol. 24, pp. 230-232, 2003. [45] B. Y. Tsui and C. F. Huang, “Wide Range Work Function Modulation of Binary Alloys for MOSFETs Application”, IEEE Electron Device Letter, Vol. 24, 2003. [46] J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, “Work Function Tuning of Fully Silicided NiSi Metal Gates Using a TiN Capping Layer”, IEEE Electron Device Letter, Vol. 25, pp. 610-612, 2004. [47] J. Lu, H. C. Wen, J. P. Lu, and D. L. Kwong, “Dual-Work-Function Metal Gates by Full Silicidation of Poly-Si with Co-Ni Bi-Layers”, IEEE Electron Device Letter, Vol. 26, pp. 228-230, 2005. [48] H. B. Michaelson, “The Work Function of the Elements and its Periodicity”, Journal of Applied Physics, Vol. 48, pp. 4423-4856, 1977. [49] I. De, D. Johri, A. Srivastava, and C. M. Osburn, “Impact of Gate Workfunction on Device Performance at the 50 nm Technology Node”, Solid-State Electronics, Vol. 44, pp. 1077-1080, 2000. [50] C. Cabral, Jr., C. Lavoic, A.S. Ozcan, R.S. Amos, V. Narayanan, E. P. Gusev, J. L. Jordan-Sweet, and J. M. E. Harper, “Evaluation of Thermal Stability for CMOS Gate metal materials”, Journal of the Electrochemical Society, Vol. 151, pp. F283-F287, 2004. [51] H. B. Michaelson, “Relation between an Atomic Electronegativity Scale and the Work Function”, IBM Journal of Research and Development, Vol. 22, 1978. [52] Y. C. Yeo, Q. Lu, P. Ranade, H. Takeuchi, K. J. Yang, I. Polishchuk, T. J. King; C. Hu, S. C. Song, H. F. Luan, and D. L. Kwong, “Dual-Metal Gate CMOS Technology with Ultrathin Silicon Nitride Gate Dielectric”, IEEE Electron Device Letter, Vol. 22, pp. 227-229, 2001. [53] L. N. Kremer and M. A. Boehmer, “Titanium Etching Solution”, United States Patent 4314876. [54] K. J. Hanson, B. J. Sapjeta, and K. M. Takahashi, “Process for Etching Titanium at a Controllable Rate”, United States Patent 5376236. [55] J. Lincks, B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu, D. L. Cochran, D. D. Dean, and Z. Schwartz, “Response of MG63 Osteoblast-Like Cells to Titanium and Titanium Alloy is Dependent on Surface Roughness and Composition”, Biomaterials, pp. 2219-2232, 1998. [56] T. Kenichi and K. Kazuhiro, “Low Cycle Fatigue Behavior of Commercially Pure Titanium”, Materials Science and Engineering, pp. 81-85, 1996. [57] T. Nakayama, H. Wake, K. Ozawa, H. Kodama, N. Nakamura, and T. Matsunaga “Use of a Titanium Nitride for Electrochemical Inactivation of Marine Bacteria” Environmental Science and Technology, Vol. 32, pp. 798-801, 1998. [58] R. Choi, C. S. Kang, B. H. Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan, and J. C. Lee, “High-Quality Ultra-Thin HfO2 Gate Dielectric MOSFETs with TaN Electrode and Nitridation Surface Preparation”, Symposium on VLSI Technology, pp. 15-16, 2001. [59] M. L. Green, M. Y. Ho, B. Busch, G.D. Wilk, and T. Sorsch, “Nucleation and Growth of Atomic Layer Deposited HfO2 Gate Dielectric Layers on Chemical Oxide (Si-O-H) and Thermal Oxide (SiO2 or Si-O-N) Underlayers”, Journal of Applied Physics, Vol. 92, pp. 7168-7174, 2002. [60] C. W. Yang, Y. K. Fang, S. F. Chen, C. Y. Lin, M.F. Wang, Y. M. Lin, T. H. Hou, L. G. Yao, S. C. Chen, and M. S. Liang, “Effective Improvement of High-k Hf-Silicate/Silicon Interface with Thermal Nitridation”, IEEE Electron Device Letter, Vol. 39, pp. 168-185, 2003. [61] M. Saitoh, N. Ikarashi, H. Watanabe, S. Fujieda, H. Watanabe, T. Iwamoto, A. Morioka, T. Ogura, M. Terai, K. Watanbe, M. Miyamura, T. Tatsumi, T. Ikarashi, K. Masuzaki, Y. Saito, and Y. Tabe, “1.2nm HfSiON/SiON Stacked Gate Insulators for 65nm-Node MISFETs”, 2004 International Conference on Solid State Devices and Materials, 2004. [62] X. Wang, J. Liu, F. Zhu, N. Yamada, and D.L. Kwong, “A Simple Approach to Fabrication of High-Quality HfSiON Gate Dielectrics with Improved nMOSFET Performance”, IEEE Trans. Electron Devices, Vol. 51, pp. 1798-1804, 2004. [63] J. Barnett, J. J. Peterson, M. Mustafa, S. C. Song, and G. Bersuker, “Cleaning's Role in High-k/Metal Gate Success”, Semiconductor International, pp. 45-48, 2006.
|