跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴振宇
研究生(外文):Chen-Yu Tai
論文名稱:使用金屬閘極的鉿類介電層結構之研究
論文名稱(外文):Investigation on Metal Gate/Hafnium-Based Dielectric Structure
指導教授:張國明桂正楣
指導教授(外文):Kow-Ming ChangCheng-May Kwei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:44
中文關鍵詞:閘極介電層金屬閘極閘極漏電流
外文關鍵詞:gate dielectricsmetal gatetitaniumgate leakage current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
即便是在Intel公司已經引入鉿類高介電係數介電材料製造他們產品的現在,人們仍然尚未清楚地瞭解這個新材料的各種特性。直接將高介電係數材料沉積在矽基板上會導致在兩者界面生成預料之外的中間層,其不好的界面特性將造成載子遷移率的劣化;為了得到較佳的界面特性,在沉積高介電係數材料之前先對矽基板進行某些前處理,藉以形成品質較為良好的中間層是必要的作法。另一方面,在沉積高介電係數材料之後使用一些電機製程方法以改善高介電係數薄膜的品質和提升結構的效能也是近來被廣泛研究的一種新想法;這些電機製程方法同時也可減小前處理形成的中間層厚度,並可抑制閘極漏電流。

本篇研究著重在使用金屬閘極的鉿類介電層結構之特性分析,也同樣重視結構對高溫熱製程的容忍度表現。介電層沉積前的表面處理搭配介電層沉積後的電機製程可以降低使用金屬閘極的鉿類介電層結構它的介電層等效氧化厚度,因而結構可呈現出較高的電容值,此外,還兼具較小的閘極漏電流。
Until today, even if Intel Corporation already manufactured their product with hafnium-based high dielectric constant (high-k) dielectric, the characteristics of it are not totally understood. The unexpected interlayer results from direct deposited high-k gate dielectric film on underlying silicon substrate causes deterioration of carrier mobility due to the inferior interface. For better interface and adhesion consideration, insertion of interlayer between high-k dielectric and silicon substrate by introducing pre-gate dielectric deposition treatment is an inevitable tendency. Moreover, post-gate dielectric deposition engineering is being enthusiastically investigated as a novel method improving gate dielectric quality and aspiration for better performance, in further, reducing interfacial layer thickness and gate leakage current.
Incorporate with thermal tolerance consideration, this investigation focuses on the characterization of metal gate with alternative gate dielectric concurrently. The utility of pre-gate dielectric deposition treatment with added post-gate dielectric deposition engineering is demonstrated. High capacitance or low equivalent oxide thickness thus can be achieved simultaneously with low gate current.
Abstract (Chinese) i
Abstract (English) iii
Acknowledgement (Chinese) v
Contents vi
Table Captions vii
Figure Captions vii
Chapter 1 Introduction 1
1.1 High Dielectric Constant Material 1
1.2 High-k Material Consideration 3
1.3 Metal Gate Electrode 6
1.4 Metal Gate Electrode Consideration 7
1.5 Structure Modification 9
1.6 Thesis Organization 11
Chapter 2 Structure Fabrication 17
2.1 Rapid Thermal Annealing System 17
2.2 Plasma Treatment Engineering 18
2.3 Sample Preparation 18
Chapter 3 Experimental Results and Discussions 20
3.1 Measuring Tools 20
3.2 Effect of Post-Gate Dielectric Deposition Engineering 20
3.3 Effect of Pre-Gate Dielectric Deposition Treatment 22
3.4 Effect of Combined Modification 23
3.5 Sustainability to High Temperature 24
Chapter 4 Reliability Measurement 32
4.1 Hysteresis Characteristic 32
4.2 Stress Induced Leakage Current Characteristic 33
Chapter 5 Conclusions and Recommendation for Future Works 38

Reference 40
[1] D. Kahng and M. M. Atalla, “Silicon-Silicon Dioxide Field Induced Surface Devices”, IRE-AIEE Solid-State Device Conference, Pittsburg, 1960.
[2] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of Ion-Implanted MOSFETs with Very Small Physical Dimensions”, IEEE Journal of Solid-State Circuit, Vol. SC-9, pp. 256-268, 1974.
[3] G. E. Moore, “Lithography and the Future of Moore’s Law”, Eighth Optical/Microlithography Conference, Vol. 2439, 2, pp. 2-17, 1995.
[4] International Technology Roadmap for Semiconductor, Semiconductor Industry Association, 2007 update, Makuhari Messe, Japan, 2007.
[5] S. M. Sze, Physics of Semiconductor Devices, 2nd edition, 1985.
[6] R. Rios, and N. D. Arora, “Determination of Ultra-Thin Gate Oxide Thicknesses for CMOS Structures Using Quantum Effects”, IEDM, pp. 613-616, 1994.
[7] N. Yang, W. K. Henson, and J. J. Wortman, “Analysis of Tunneling Currents and Reliability of MOSFETs with Sub-2nm Gate Oxides”, IEDM, pp. 453-456, 1999.
[8] J. S. Suehle, E. M. Vogel, M. D. Edelstein, C. A. Richter, N. V. Nguyen, I. Levin, D. L. Kaiser, H. Wu, and J. B. Bernstein, “Challenges of High-k Gate Dielectrics for Future MOS Devices”, Plasma- and Process-Induced Damage, 2001 6th International Symposium on, pp. 90-93, 2001.
[9] J. Lee, G. Bosman, K. R. Grenn, and D. Ladwig, “Model and Analysis of Gate Leakage Current in Ultrathin Nitrided Oxide MOSFETs”, IEEE Trans. Electron Devices, Vol. 49, pp. 1232-1241, 2002.
[10] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-Mechnical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFETs”, IEEE Electron Device Letter, Vol. 18, pp. 209-211, 1997
[11] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k Gate Dielectrics: Current Status and Materials Properties Considerations”, Journal of Applied Physics, Vol. 89, pp. 5243-5275, 2001.
[12] E. P. Gusev, D. A. Buchanan, et al., “Ultrathin High-k Gate Stacks for Advanced CMOS Devices”, IEDM, pp. 20.1.1-20.1.4, 2001.
[13] A. Callegari, E. Cartier, M. Gribelyuk, H. K. Okorn-Schmidt, and T. Zabel, “Physical and Electrical Characterization of Hafnium Oxide and Hafnium Silicate Sputtered Films”, Journal of Applied Physics, Vol. 90, pp. 6447-6450, 2001.
[14] K. Yudong, G. Gebara, et al., “Conventional n-Channel MOSFET Devices Using Single Layer HfO2 and ZrO2 as High-k Gate Dielectrics with Polysilicon Gate Electrode”, IEDM, pp. 20.2.1-20.2.4, 2001.
[15] D.G. Schlom, and J.H. Haeni, “A Thermodynamic Approach to Selecting Alternative Gate Dielectrics”, MRS bulletin, pp. 198-204, 2002.
[16] G. C. F. Yeap, S. Krishnan, and M.R. Lin, “Fringing-Induced Barrier Lowering (FIBL) in sub-100-nm MOSFETs with High-k Gate Dielectrics”, IEEE Electron Device Letter, Vol. 34, pp. 1150-1152, 1998.
[17] C. H. Lai, L. C. Hu, H. M. Lee, L. J. Do, and Y. C. King, “New Stack Gate Insulator Structure Reduce FIBL Effect Obviously”, VLSI-TSA, pp. 216-219, 2001.
[18] N. R. Mohapatra, M. P. Desai, and V. R. Rao, “Detailed Analysis of FIBL in MOS Transistors with High-k Gate Dielectrics”, 16th International VLSI Design Conference, pp. 99-104, 2003.
[19] J. Robertson, “Electronic Structure and Band Offsets of High-Dielectric-Constant Gate Oxides”, MRS bulletin, pp. 217-221, 2002.
[20] H. J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan, and J.C. Lee, “Novel Nitrogen Profile Engineering for Improved TaN/HfO2/Si MOSFET Performance”, IEDM, pp. 30.2.1-30.2.4, 2001.
[21] S. Guha, E. Gusev, E. Gusev, M. Copel, L. Ragnarsson, and D. A. Buchanan, “Compatibility Challenge for High-k Materials Integration into CMOS Technology”, MRS bulletin, pp. 226-231, 2002.
[22] T. Kauerauf, R. Degraeve, E. Cartier, and B. Goveoreanu, “Towards Understanding Degradation and Breakdown of SiO2/High-k Stacks”, IEDM, pp. 521-524, 2002.
[23] C. T. Liu, “Circuit Requirement and Integration Challenges of Thin Gate Dielectrics for Ultra Small MOSFETs”, IEDM, pp. 747-750, 1998.
[24] T. M. Wang, C. H. Chang, and J. G. Hwu, “Enhancement of Temperature Sensitivity for MOS Tunneling Temperature Sensors by Utilizing HfO2 Film Added on SiO2”, IEEE Sensors Journal, Vol. 6, pp. 1468-1472, 2006.
[25] F. Y. Yen, C. L. Hung, Y. T. Hou, P. F. Hsu, V. S. Chang, P. S. Lim, L. G. Yao, J. C. Jiang, H. J. Lin, C. C. Chen, Y. Jin, S. M. Jang, H. J. Tao, S. C. Chen, and M. S. Liang, “Effective Work Function Engineering of TaxCy Metal Gate on Hf-Based Dielectrics”, IEEE Electron Device Letter, Vol. 28, pp. 201-203, 2007.
[26] E. J. Lim, T. P. Lee, et al., “Yttrium- and Terbium-Based Interlayer on SiO2 and HfO2 Gate Dielectrics for Work Function Modulation of Nickel Fully Silicided Gate in nMOSFET”, IEEE Electron Device Letter, Vol. 28, pp. 482-485, 2007.
[27] J. Robertson, “Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices”, Journal of Vacuum Science and Technology B, Vol. 18, pp. 1785-1791, 2000.

[28] K. J. Hubbard and D. G. Schlom, “Thermodynamic Stability of Binary Oxides in Contact with Silicon”, Journal of Materials Research, Vol. 11, pp. 2757-2776, 1996.
[29] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. J. Qi, C. Kang, and J. C. Lee, “Characteristics of TaN Gate MOSFET with Ultrathin Hafnium Oxide (8Å-12Å)”, IEDM, pp. 39-42, 2000.
[30] S. H. Lo, D. A. Buchanan, and Y. Taur, “Modeling and Characterization of Quantization, Polysilicon Depletion, and Direct Tunneling Effects in MOSFETs with Ultra Thin Oxides”, IBM Journal of Research and Development, Vol. 43, pp. 327-337, 1999.
[31] J. Y. C. Sun, C. Wong, Y. Taur, C. H. Hsu, “Study of Boron Penetration Through Thin Oxide with p+ Polysilicon Gate”, Symposium on VLSI Technology, 1989.
[32] J. R. Pfiester, K. F. Bake, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The Effects of Boron Penetration on p+ Polysilicon Gates MOS Devices”, IEEE Trans. Electron Devices, Vol.ED-37, 1990.
[33] K. A. Ellis and R. A. Buhrman, “Boron Diffusion in Silicon Oxides and Oxynitrides”, Journal of the Electrochemical Society, Vol.145, pp. 2068-2074, 1998.
[34] C. C. Hobbs et al., “Fermi Level Pinning at the PolySi/Metal Oxide Interface”, Symposium on VLSI Technology, pp. 9-10, 2003.
[35] C. C. Hobbs et al., “Fermi-Level Pinning at the Ploysilicon/Metal-oxide Interface- Part II”, IEEE Trans. Electron Devices, Vol. ED-51, pp. 978-984, 2004.
[36] N. D. Arora, R. Rios, and C. L. Huang, “Modeling the Poly-Si Depletion Effect and its Impact on Submicrometer CMOS Circuit Performance”, IEEE Trans. Electron Devices, Vol. ED-42, 1995.
[37] E. Cartier et al., “Systematic Study of pFET Vt with Hf-Based Gate Stacks with Poly-Si and FUSI Gates”, Symposium on VLSI Technology, pp. 44-45, 2004.
[38] K. Shiraishi et al., “Theory of Fermi Level Pinning of High-k Dielectrics”, Conference on Simulation of Semiconductor Processes and Devices, 2006.
[39] M. Kadoshima, et al., “Symmetrical Threshold Voltage in Complementary Metal-Oxide Semiconductor Field-Effect Transistors with HfAlO(N) Achieved by Adjusting Hf/AI Compositional Ratio", Journal of Applied Physics, 2006.
[40] H. Zhong, S. N. Hong, Y. S. Suh, H. lazar, G. Heuss, and V. Misra, “Properties of Ru-Ta alloys as Gate Electrodes for NMOS and PMOS Silicon Devices”, IEDM, pp. 20.5.1-20.5.4, 2001.


[41] R. Lin, Q. Lu, P. Ranade, T. J. King, and C. Hu, “An Adjustable Work Function Technology Using Mo Gate for CMOS Devices”, IEEE Electron Device Letter, Vol. 23, pp. 49-51, 2002.
[42] I. Polishchuk, P. Ranade, T. J. King, and C. Hu, “Dual Work Function Metal Gate CMOS Transistors by Ni-Ti Interdiffusion”, IEEE Electron Device Letter, Vol. 23, pp. 200-202, 2002.
[43] J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, “Dual Work Function Metal Gates Using Fully Nickel Silicidation of Doped Poly-Si”, IEEE Electron Device Letter, Vol. 24, pp. 631-633, 2003.
[44] H. Y. Yu, H. F. Lim, J. H. Chen, M. F. Li, C. Zhu, C. H. Tung, A. Y. Du, W. D. Wang, D. Z. Chi, and D. L. Kwong, “Physical and Electrical Characteristics of HfN Gate Electrode for Advanced MOS Devices”, IEEE Electron Device Letter, Vol. 24, pp. 230-232, 2003.
[45] B. Y. Tsui and C. F. Huang, “Wide Range Work Function Modulation of Binary Alloys for MOSFETs Application”, IEEE Electron Device Letter, Vol. 24, 2003.
[46] J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, “Work Function Tuning of Fully Silicided NiSi Metal Gates Using a TiN Capping Layer”, IEEE Electron Device Letter, Vol. 25, pp. 610-612, 2004.
[47] J. Lu, H. C. Wen, J. P. Lu, and D. L. Kwong, “Dual-Work-Function Metal Gates by Full Silicidation of Poly-Si with Co-Ni Bi-Layers”, IEEE Electron Device Letter, Vol. 26, pp. 228-230, 2005.
[48] H. B. Michaelson, “The Work Function of the Elements and its Periodicity”, Journal of Applied Physics, Vol. 48, pp. 4423-4856, 1977.
[49] I. De, D. Johri, A. Srivastava, and C. M. Osburn, “Impact of Gate Workfunction on Device Performance at the 50 nm Technology Node”, Solid-State Electronics, Vol. 44, pp. 1077-1080, 2000.
[50] C. Cabral, Jr., C. Lavoic, A.S. Ozcan, R.S. Amos, V. Narayanan, E. P. Gusev, J. L. Jordan-Sweet, and J. M. E. Harper, “Evaluation of Thermal Stability for CMOS Gate metal materials”, Journal of the Electrochemical Society, Vol. 151, pp. F283-F287, 2004.
[51] H. B. Michaelson, “Relation between an Atomic Electronegativity Scale and the Work Function”, IBM Journal of Research and Development, Vol. 22, 1978.
[52] Y. C. Yeo, Q. Lu, P. Ranade, H. Takeuchi, K. J. Yang, I. Polishchuk, T. J. King; C. Hu, S. C. Song, H. F. Luan, and D. L. Kwong, “Dual-Metal Gate CMOS Technology with Ultrathin Silicon Nitride Gate Dielectric”, IEEE Electron Device Letter, Vol. 22, pp. 227-229, 2001.
[53] L. N. Kremer and M. A. Boehmer, “Titanium Etching Solution”, United States Patent 4314876.
[54] K. J. Hanson, B. J. Sapjeta, and K. M. Takahashi, “Process for Etching Titanium at a Controllable Rate”, United States Patent 5376236.
[55] J. Lincks, B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu, D. L. Cochran, D. D. Dean, and Z. Schwartz, “Response of MG63 Osteoblast-Like Cells to Titanium and Titanium Alloy is Dependent on Surface Roughness and Composition”, Biomaterials, pp. 2219-2232, 1998.
[56] T. Kenichi and K. Kazuhiro, “Low Cycle Fatigue Behavior of Commercially Pure Titanium”, Materials Science and Engineering, pp. 81-85, 1996.
[57] T. Nakayama, H. Wake, K. Ozawa, H. Kodama, N. Nakamura, and T. Matsunaga “Use of a Titanium Nitride for Electrochemical Inactivation of Marine Bacteria” Environmental Science and Technology, Vol. 32, pp. 798-801, 1998.
[58] R. Choi, C. S. Kang, B. H. Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan, and J. C. Lee, “High-Quality Ultra-Thin HfO2 Gate Dielectric MOSFETs with TaN Electrode and Nitridation Surface Preparation”, Symposium on VLSI Technology, pp. 15-16, 2001.
[59] M. L. Green, M. Y. Ho, B. Busch, G.D. Wilk, and T. Sorsch, “Nucleation and Growth of Atomic Layer Deposited HfO2 Gate Dielectric Layers on Chemical Oxide (Si-O-H) and Thermal Oxide (SiO2 or Si-O-N) Underlayers”, Journal of Applied Physics, Vol. 92, pp. 7168-7174, 2002.
[60] C. W. Yang, Y. K. Fang, S. F. Chen, C. Y. Lin, M.F. Wang, Y. M. Lin, T. H. Hou, L. G. Yao, S. C. Chen, and M. S. Liang, “Effective Improvement of High-k Hf-Silicate/Silicon Interface with Thermal Nitridation”, IEEE Electron Device Letter, Vol. 39, pp. 168-185, 2003.
[61] M. Saitoh, N. Ikarashi, H. Watanabe, S. Fujieda, H. Watanabe, T. Iwamoto, A. Morioka, T. Ogura, M. Terai, K. Watanbe, M. Miyamura, T. Tatsumi, T. Ikarashi, K. Masuzaki, Y. Saito, and Y. Tabe, “1.2nm HfSiON/SiON Stacked Gate Insulators for 65nm-Node MISFETs”, 2004 International Conference on Solid State Devices and Materials, 2004.
[62] X. Wang, J. Liu, F. Zhu, N. Yamada, and D.L. Kwong, “A Simple Approach to Fabrication of High-Quality HfSiON Gate Dielectrics with Improved nMOSFET Performance”, IEEE Trans. Electron Devices, Vol. 51, pp. 1798-1804, 2004.
[63] J. Barnett, J. J. Peterson, M. Mustafa, S. C. Song, and G. Bersuker, “Cleaning's Role in High-k/Metal Gate Success”, Semiconductor International, pp. 45-48, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以ZrO2和聚合物做為ISFET/REFET之感測材料應用於讀出電路設計之特性與考量研究
2. 電感耦合式電漿氮化和氟化處理對鉿矽化合物薄膜之影響
3. 以Polyimide高分子材料和NafionTM作為REFET感測層之研究
4. 以Polyimide高分子材料/NafionTM質子交換膜為結構作為pH-ISFET之微小化固態電極之研究
5. 常壓式電漿系統沈積之二氧化矽在有機薄膜電晶體應用上之研究
6. 以離子植入矽化物技術製作在矽化鎳與矽介面間形成陡峭接面之熱穩定度相關研究
7. 利用大氣常壓電漿輔助化學氣相沉積製備氧化鋅系透明電極與氧化鋅/銦鎵鋅氧薄膜電晶體應用之特性研究
8. 雙重電漿處理技術應用於具高介電常數閘極絕緣層的金屬-絕緣層-半導體電容及低溫多晶矽薄膜電晶體之特性研究
9. 不同表面處理對二氧化鉿與二氧化鋯推疊式高介電常數材料薄膜之效果
10. 藉由大氣電漿在不同狀態下沉積氧化鋅摻雜鎵薄膜其光電特性與材料分析之研究
11. 電阻式記憶體之特性研究及電性探討
12. 多層堆疊氧化鉿/氧化鋁電阻轉態層之透明電阻式記憶體特性研究
13. 利用大氣電漿沉積以氧化鋅為主的透明導電膜其光電特性和熱穩定性的研究
14. 藉由大氣電漿沉積主動層之氧化鋅薄膜電晶體之研究
15. 雙重電漿處理下二氧化鉿金屬-絕緣層-半導體電容器的電流傳導機制以及可靠度之研究