|
[1] J. Reunamäki, “Nokia PHY submission to Task Group 4,” IEEE 802.15-01/231r2, July 2001. [2] L.-F. Chen, Y. Chen, L.-C. Chien, Y.-H. Ma, C.-H. Lee, Y.-W. Lin, C.-C. Lin, H.-Y. Liu, T.-Y. Hsu, and C.-Y. Lee, “A 1.8V 250mW COFDM baseband receiver for DVB-T/H applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2006, pp. 262, 263, 652. [3] A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, NJ: Prentice-Hall, 1999. [4] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, NJ: Prentice-Hall, 1975. [5] S. Bouguezel, M. O. Ahmad, and M. N. S. Swam, “Improved radix-4 and radix-8 FFT algorithms,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2004, pp. III561–564. [6] S. He, and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation” in Proc. IEEE URSI Int. Symp. Signals, Syst., and Electron., Oct. 1998, pp. 257–262. [7] P. Dunamel, H. Hollmann, “Split radix FFT algorithm,” Electronics Letters, vol. 20, no. 1, pp. 14–16, Jan. 1984. [8] P. Duhamel, “Algorithms meeting the lower bounds on the multiplicative complexity of length-2n DFT’s and their connection with practical algorithms,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, no. 9, pp. 1504–1511, Sep. 1990. [9] I. J. Good, “The interaction algorithm and practical Fourier series,” J. Royal Stat. Soc., ser. B, vol. 20, no. 2, pp. 361–372, 1958. [10] D. P. Kolba and T. W. Parks, “A prime factor FFT algorithm using high-speed convolution,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25, no. 4, pp. 281–294, Aug. 1977. [11] R. N. Bracewell, The Fourier Transform and Its Applications, NY: McGraw-Hill, second edition, 1986. [12] Z.-X. Yang, Y.-P. Hu, C.-Y. Pan, and L. Yang, “Design of a 3780-point IFFT processor for TDS-OFDM,” IEEE Trans. Broadcast., vol. 48, no.1, pp. 57–61, Mar. 2002. [13] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An application specific DSP chip set for 100 MHz data rates,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, Apr. 1988, pp. 1989–1992. [14] B. M. Baas, “A low-power, high-performance, 1024-point FFT processor,” IEEE J. Solid-State Circuits, vol. 34, no.3, pp. 380–387, Mar. 1999. [15] S. He and M. Torkelson, “Design and implementation of a 1024-point pipeline FFT processor,” in Proc. IEEE Custom Integrated Circuits Conf., May 1998, pp. 131–134. [16] P. A. Ruetz and M. M. Cai, “A real time FFT chip set: architectural issues,” in Proc. Int. Conf. Pattern Recognition, June 1990, pp. 385–388. [17] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single-chip implementation of 8192 complex point FFT,” IEEE J. Solid-State Circuits, vol. 30, no.3, pp. 300–305, Mar. 1995. [18] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A 1-GS/s FFT/IFFT processor for UWB applications,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1726–1735, Aug. 2005. [19] L. Jia, Y. Gao, and H. Tenhunen, “A pipelined shared-memory architecture for FFT processors,” in Proc. IEEE Int. Midwest Symp. on Circuits and Syst. (MWSCAS), Aug. 1999, pp. 804–807. [20] WiMAX Forum, Mobile WiMAX-Part I: A Technical Overview and Performance Evaluations, Feb. 21, 2006. [21] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A dynamic scaling FFT processor for DVB-T applications,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 2005–2013, Nov. 2004. [22] B. M. Baas, “An approach to low-power, high-performance, fast Fourier transform processor design,” PhD Dissertation, Stanford University, Stanford, CA, 1999. [23] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 484–493, Mar. 2003. [24] B. G. Jo and M. H. Sunwoo, “New continuous-flow mixed radix (CFMR) FFT using novel in-place strategy,” IEEE Trans. Circuits Syst., vol. 52, no. 5, pp. 911–919, May. 2005. [25] G. Zhong, F. Xu, and A. N. Willson Jr., “A power-scalable reconfigurable FFT/IFFT IC based on a multi-processor ring,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 483–495, Feb. 2006. [26] Y.-T. Lin, P.-Y. Tsai, and T.-D. Chiueh, “Low-power variable-length fast Fourier transform processor,” Proc. IEE Comput. Digit. Tech., vol. 152, no. 4, pp. 499–506, July 2005. [27] H. Harada et al. “New PHY layer and enhancement of MAC for mmwave system proposal,” IEEE 802.15-07-0934-01-003c, Nov. 2007. [28] G. Baldwin et al. “Proposal for HD AV and data support,” IEEE 802.15-07-0942-02-003c, Nov. 2007. [29] Y. Tang, X. Yi, W. Shieh and R. Evans, “Optimum design for coherent optical OFDM transmitter,” in Proc. OFC/NFOEC, Mar. 2007, paper JThA47. [30] D. F. Hewitt, “Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation,” in Proc. OFC/NFOEC, Mar. 2007, paper OME7. [31] W. Shieh, X. Yi, and Y. Tang, “Experimental demonstration of transmission of coherent optical OFDM systems,” in Proc. OFC/NFOEC, Mar. 2007, paper OMP2. [32] A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for optical dispersion compensation,” in Proc. OFC/NFOEC, Mar. 2007, paper OTuA4. [33] N. Cvijetic, L. Xu, T. Wang, “Adaptive PMD compensation using OFDM in long-haul 10Gb/s DWDM systems,” in Proc. OFC/NFOEC, Mar. 2007, paper OTuA5. [34] Y.-M. Lin, “Demonstration and design of high spectral efficiency 4Gb/s OFDM system in passive optical networks in Proc. OFC/NFOEC, Mar. 2007, paper OThD7. [35] J. Lee, H. Lee, S.-I. Cho, and S.-S. Choi, “A high-speed, low-complexity radix-24 FFT processor for MB-OFDM UWB systems,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2006, pp. 4719–4722. [36] Y. Chen, Y.-C. Tsao, Y.-W. Lin, C.-H. Lin, and C.-Y. Lee, “An indexed-scaling pipelined FFT processor for OFDM-based WPAN applications,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 55, no. 2, pp. 146–150, Feb. 2008. [37] Y. Chen, Y.-W. Lin, Y.-C. Tsao, and C.-Y. Lee, “A 2.4-Gsample/s DVFS FFT processor for MIMO OFDM communication systems,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1260–1273, May, 2008. [38] N. Miyamoto, L. Karnan,. K. Maruo, K. Kotani, and T. Ohmi, “A small-area high performance 512-point 2-dimensional FFT single-chip processor,” in Proc. IEEE European Solid-State Circuits Conf. (ESSCIRC), Sep. 2003, pp. 603–606. [39] Y. Chen, Y.-W. Lin, and C.-Y. Lee, “A block scaling FFT/IFFT processor for WiMAX applications,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2006, pp. 203–206. [40] Y.-W. Lin and C.-Y. Lee, “Design of an FFT/IFFT processor for MIMO OFDM systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 4, pp. 807–815, Apr. 2007. [41] K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C. Brock, K. I. Ishii, T. Y. Nguyen, and J. L. Burns, “A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1441–1447, Nov. 2002. [42] T. Fujiyoshi, S. Shiratake, S. Nomura, T. Nishikawa, Y. Kitasho, H. Arakida, Y. Okuda, Y. Tsuboi, M. Hamada, H. Hara, T. Fujita, F. Hatori, T. Shimazawa, K. Yahagi, H. Takeda, M. Murakata, F. Minami, N. Kawabe, T. Kitahara, K. Seta, M. Takahashi, Y. Oowaki, and T. Furuyama, “A 63-mW H.264/MPEG-4 audio/visual codec LSI with module-wise dynamic voltage/frequency scaling,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 54–62, Jan. 2006. [43] M. Nakai, S. Akui, K. Seno, T. Meguro, T. Seki, T. Kondo, A. Hashiguchi, H. Kawahara, K. Kumano, and M. Shimura, “Dynamic voltage and frequency management for a low-power embedded microprocessor,” IEEE J. Solid-State Circuits, vol. 40, no.1, pp. 28–35, Jan. 2005. [44] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama, “Variable supply-voltage scheme for low-power high-speed CMOS digital design,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 454–462, Mar. 1998. [45] M. Nomura, Member, Y. Ikenaga, K. Takeda, Y. Nakazawa, Y. Aimoto, and Y. Hagihara, “Delay and power monitoring schemes for minimizing power consumption by means of supply and threshold voltage control in active and standby modes,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 805–814, Apr. 2006. [46] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementations, New York: Wiley, 1999. [47] L. G. Johnson, “Conflict free memory addressing for dedicated FFT hardware,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 39, no. 5, pp. 312–316, May 1992. [48] B. Giebel, J. Lutz, and P.L. O'Leary, “Digitally controlled oscillator,” IEEE J. Solid-State Circuits, vol. 24, no. 3, pp. 640–645, Jun. 1989. [49] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James, M. Floyd, V. Pokala, “A distributed critical-path timing monitor for a 65nm high-performance microprocessor,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 398–399. [50] A. Wang and A. Chandrakasan, “A 180-mV subthreshold FFT processor using a minimum energy design methodology,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 310–319, Jan. 2005. [51] DVB, “Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2),” DVB Document A122 (TM 3980 Rev. 5), June 2008. [52] Standardization Administration of the People’s Republic of China, “Frame structure, channel coding and modulation for a digital television terrestrial broadcasting system,” Chinese National Standard GB 20600, Aug. 2006.
|