跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉韋廷
研究生(外文):Wei-Ting Liu
論文名稱:運用在低功率微電磁致動元件上之銅鎳奈米複合物製程分析
論文名稱(外文):Process Characterization of Cu-Ni Nanocomposite for Low Power Micro-actuator Application
指導教授:鄭裕庭
指導教授(外文):Yu-Ting Cheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:29
中文關鍵詞:複合物最佳化低功率致動器
外文關鍵詞:nanocompositeoptimizationlow poweractuator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在先前的研究中,銅鎳奈米複合材料已經被製造出來並應用在低功率微電磁致動元件上。在此我們提出一種製程最佳化的方法,透過最佳化萃取出最適當的製程參數並應用在微型致動器上,可以製作出更為省電的微型致動器元件。實驗結果顯示鎳粉在銅基材裡面的含量與線寬以及電鍍液中鎳粉濃度有關,我們製備了每升電鍍液分別加入2克、5克及8.5克100nm的鎳粉,並且利用微影製程在矽基板上製作出分別為10μm、50μm、200μm、500μm線寬的溝槽,藉由DC電阻率以及SQUID的磁性量測可以判斷出200μm在2g/L濃度所電鍍的銅鎳複合物具有最佳的省電特性,將此製程條件用於製造低功率電磁微型致動器發現:相較於純銅所製作的微電磁致動器元件,利用最佳化製程條件所製作的致動器可減少約20%的功率消耗。
In this thesis, process optimization of electroplated Cu-Ni nanocomposite has been developed for the fabrication of low power magnetic microactuators. Experimental results show the concentration of embedded Ni nanopowders in Cu matrix will depend on the size of device structure and the concentration of Ni powders in electroplating bath. Three different concentrations of 100nm Ni in Cu based electroplating solutions, which are 2, 5 and 8.5 g/L, are prepared for line structural plating in which the widths of the line pattern are designed with 10, 50, 200, and 500μm, respectively. DC conductivity and superconducting quantum interference device (SQUID) measurements show that the Cu-Ni composite line with the width of 200μm plated in the bath of 2g/L Ni powders exhibits best power saving characteristics. By applying the optimized process condition to the fabrication of inductive microcoil for microactuation, the nanocomposite coil can have about 20% power saving in comparison with that made of copper-made actuator.
Contents
摘要...................................................i
Abstract...............................................ii
Acknowledgment.........................................iii
Contents...............................................iv
Figure Captions........................................v
Table Captions.........................................v

Contents
Chapter 1 Introduction...........................................1

Chapter 2 Cu-Ni Nanocomposite Characetrization and Optimization...........................................4
2.1 Experiment Design of Cu-Ni Optimization............4
2.2 Analysis of Ni Nanopowder..........................5
2.3 Preparation of Cu-Ni Electroplating Solution.......5
2.4 Process Flow of Cu-Ni Composite Deposition.........8
2.5 Electrical and Magnetic Measurement of Cu-Ni Composite
...................................................11
2.5.1 DC Resistivity and Ni Weight Percentage Measurement
...................................................12
2.5.2 Surface Roughness Measurement...................13
2.5.3 SEM Images of Cu-Ni Composite...................16
2.5.4 SQUID Measurement of Cu-Ni Composite............16
2.5.5 Calculation of Power Saving Ratio...............16

Chapter 3 Fabrication and Discussion of Magnetic Actuator
...................................................19
3.1 Structure of Micoactuator..........................19
3.2 Fabrication of Microactuator.......................20
3.3 Measurement and Discussion of Microacuator.........22

Chapter 4 Conclusion and Future Work...................26
4.1 Conclusion.........................................26
4.2 Future Work........................................26

References.............................................27
[1] Yu Wen Huang, Tzu-Yuan Chao, C. C. Chen, and Y. T. Cheng, “Power consumption reduction scheme of magnetic microactuation using electroplated Cu–Ni nanocomposite,” APPLIED PHYSICS LETTERS 90, 244105 (2007)
[2] D. G. Han and G. M. Choi, Solid State Ionics 106, 71 (1998)
[3] B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, New York, 1973), p. 191
[4] J.-W. Lim, K. Mimura, M. Isshiki, “Thickness dependence of resistivity for Cu films deposited by ion beam deposition”, Applied Surface Science 217 (2003) 95–99
[5] S. M. Rossnagel, T. S. Kuan, “Alteration of Cu conductivity in the size effect regime”, J. Vac. Sci. Technol. B, Vol. 22, No. 1, Jan/Feb 2004
[6] Patrick C. Lewis and Eugenia Kumacheva, Mathieu Allard and Edward H. Sargent, “Colloidal Crystallization accomplished by Elctrodeposition on Patterned Substrates”, Journal of Dispersion Science and Technology, 26:259–265, 2005
[7] H.-D. Liu, Y.-P. Zhao, G. Ramanath, S.P. Murarka, G.-C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films”, Thin Solid Films 384 (2001) 151-156
[8] http://www.ebprober.com.tw/product-index.htm
[9] F.E. Rasmussen, J.T. Ravnkilde, P.T. Tang, O. Hansen, S. Bouwstra, “Electroplating and characterization of cobalt-nickel-iron and nickel-iron for magnetic microsystems applications,” Sensors and Actuators A 92 (2001) 242-248
[10] Bendong Liu, DeSheng Li, Xiaobo Yang and Xiang Li, “Design and Fabrication of a Micro Electromagnetic Actuator,” Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems January 18 - 21, 2006, Zhuhai, China
[11] http://www.ansys.com/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊