跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 11:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃勻珮
研究生(外文):Huang, Yun-Pei
論文名稱:氮化鈦/氧化鋁鉿/氮化鈦金氧金電容之電性分析與電壓電容係數物理模型
論文名稱(外文):Electrical Analysis and Physical Model of the Voltage Coefficient of Capacitance of the TiN/HfAlO/TiN MIM Capacitors
指導教授:崔秉鉞
指導教授(外文):Tsui, Bing-Yue
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:73
中文關鍵詞:高介電常數電容密度漏電機制
外文關鍵詞:high kHfAlOVCCcapacitance denistyMIM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們採用摻雜鋁金屬之二氧化鉿之高介電材料作為金屬-氧化物-金屬(MIM)電容的介電質,摻雜兩種比例的鋁金屬,分別為10%與14.7%。試片厚度分為三種:15nm、25nm、35nm。鋁摻雜為10%且厚度為15nm的試片,在3V頻率為1MHz的量測條件下,得到電容密度約13.6 fF/μm2,其所對應的介電常數約為23;而鋁摻雜為14%且厚度為15nm的試片中,電容密度約為11.3 fF/μm2而其所對應的介電常數約為19.5。兩者相比,鋁摻雜濃度越低(即鉿元素含量較高),介電常數較高,所得到的電容密度也較高。本篇論文之電容密度達到2013年 ITRS的規格。而在改良漏電流方面,於1V的偏壓下,兩種不同鋁摻雜量且厚度皆為15nm的試片,其漏電流分別為1.88×10-8 (A/cm2) 及1.72×10-8 (A/cm2)。漏電流機制,於非常低電場下呈現歐姆傳導機制(Ohmic conduction);中等電場下呈現蕭基發射傳導機制(Schottky Emission);高電場則呈現Frenkel-Poole傳導機制。
降低電容電壓係數(VCC)為金氧金電容之一大挑戰,在本篇論文中,我們製作的鋁摻雜14%且厚度35nm的試片,其VCC僅有259(ppm/V2),然而,造成VCC現象之基本機制目前尚無定論,由已知的實驗結果顯示,VCC與本身材料種類、薄膜厚度有關。本篇論文提出一個修改過的物理模型,藉由邊界缺陷電容值與量測頻率和偏壓之間的關係式,也可經由適當的轉換,成為自矽基底表面的穿隧距離和自氧化鋁鉿之導帶邊緣的缺陷能階深度。以一穿透梯形位能障礙的彈性直接穿隧物理模型為理論基礎,我們能夠藉由一平滑的三維網線,來描述在氧化鋁鉿的邊界缺陷之空間與能階分佈。而所萃取之結果介於1×1015~3×1017 (cm-3eV-1)之間,且與VCC成正相關。推測此種邊界缺陷是VCC的成因之ㄧ。最後,我們也討論了此方法的限制。
In this thesis, we use HfAlO as the dielectric layer in MIM capacitors. HfAlO films with two different Al percentages were deposited. The Al percentages are 10% and 14.7%. The thickness of samples is divided into three kinds of thickness: 15nm, 25nm, and 35nm. The capacitance density is 13.6 fF/μm2 with 10% Al content and the dielectric constant is about 23 at 3V and 1MHz. The capacitance density is 11.3 fF/μm2 with 14.7% Al content and the dielectric constant is about 19.5. The lower Al percentage is (Hf content is higher), the higher capacitance density is. The capacitance density meets the requirement of 2013 ITRS. The leakage current densities of the samples with 15nm-thick HfAlO and 10% and 14.7% Al content are 1.88×10-8 and 1.72×10-8 (A/cm2) at 1V bias, respectively. The leakage current mechanism is identified to be Ohmic Conduction at low electric field, Schottky Emission Conduction at moderate electric field, and Frenkel-Poole conduction at high electric field.
The lowest parabolic voltage coefficient of capacitance (VCC-��) in this thesis is about 259(ppm/V2) with Al content of 14% Al content and thickness of 35nm. A physical model considering the pre-existing border traps was proposed to account for the VCC-��. From the frequency and electrode bias voltage dependences the spatial and energy distribution from Si substrate surface and from HfAlO conduction band edge could be extracted, respectively. The orders of the magnitude of the extracted border trap volume densities are around 3×1017 (cm-3eV-1), which have positive correlation with the VCC-��. Increasing the Al content can reduce the trap density and the VCC-��. The limitations of detectable space and energy depth of the physical model are also discussed briefly.
Abstract (in Chinese) i
Abstract (in English) iii
Acknowledgement v
Contents vi
Figure captions viii
Table captions 1

Chapter 1 Introduction 1
1.1 Historical Perspective 1
1.2 Present issue of Mental-Insulator-Metal capacitor 2
1.3 Motivation 3
1.4 The Organization of This Thesis 4

Chapter 2 Experimental Procedure 8
2.1 Device Fabrication 8
2.2 Material and Electrical Analysis 9
2.3 Physical Models 9

Chapter 3 Analysis of HfAlO MIM Capacitor 18
3.1 Introduction 18
3.2 Material analysis 19
3.3 Analysis of Capacitance Dependence on Voltage and Frequency 19
3.4 Leakage current mechanism 21
3.5 The trap density extracted from the improved physical model 24
3.6 Limitation of the modified Physical model 27

Chapter 4 Conclusions 63
4.1 Summary 63
4.2 Future works 64

Reference 66
[1-1] P. Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M Petras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, S. Straub, T. Sparks, M. Tarabbia, H. Thibieroz, and M. Miller“ Integration of Thin Film MIM Capacitors and Resistors into Copper Metallization based RF-CMOS and Bi-CMOS Technologies,” IEDM pp. 7.3.1-7.3.4, 2000
[1-2] International Technology Roadmap for Semiconductors (ITRS), 2007 edition.
[1-3] V. Dover, R. B. Fleming, R. M. Schneemeyer, L.F. Alers, and G.B Werder, “Advanced dielectrics for gate oxide, DRAM and RF capacitors” IEDM Tech. Dig., issue, 6-9, pp. 823–826, 1998
[1-4] G. B. Alers, V. Dover, R.B, Schneemeyer, L.F., L. Stirling, C. Y. Sung, P. W. Diodato, R. Liu, Y. H. Wong, R. M. Fleming, D. V. Lang, and J. P. Chang “ Advanced amorphous dielectrics for embedded capacitor,” in IEDM Tech. Dig, pp. 797–800., 1999
[1-5] H. S. P. Wong, “Beyond the conventional transistor,” IBM J. Res. Develop., vol. 46, no. 2/3, pp. 133-168, 2002
[1-6] S. B. Chen, C. H. Lai, and A. Chin, “High-density MIM capacitors using AlO and AlTiOx dielectrics” IEEE Electron Device Lett., vol. 23, pp. 185–187, Apr. 2002
[1-7] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, “A high performance MIM capacitor using HfO dielectrics” IEEE Electron Device Lett., vol. 23, pp. 514–516, 2002
[1-8] T. Ishikawa, D. Kodama, and Y. Matsui, “High-capacitance Cu/Ta2O5/Cu MIM structure for SoC applicationsfeaturing a single-mask add-on process” IEDM Tech. Dig., pp. 940–944, 2002
[1-9] X. Yu, C. Zhu, H. Hu, A. Chin, M. F. Li, B. J. Cho, D.-L. Kwong, F. D.Foo, and M. B. Yu, “A high density MIM capacitor (13 fF/um ) using ALD/HfO dielectrics” IEEE Electron Device Lett., vol. 24, pp. 63–65, 2003
[1-10] K. S. Tan, S. Kiriake, M. de Wit, J. W. Fattaruso, C. Y. Tsay, W. E. Matthews, and R. K. Hester “Error correction techniques for high-performance differential A/D converters” IEEE J. Solid-State Circuits, vol.25, pp. 1318-1327, 1990
[1-11] H. Hu, S. J. Ding, H. F. Lim, Z. Chunxiang, M. F. Li, S. J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, J. C. Byung, D. S. H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, D. Anyan, M. Doan, P. D. Foot, A. Chin, and L. K. Dim, “High-Performance MIM Capacitor Using ALD High-K HfO2–Al2O3 Laminate Dielectrics” IEEE Electron Device Lett., vol. 24, No. 12, pp. 15.6.1-15.6.4, 2003
[1-12] Y. K. Chioua, C. H. Changa, and C. C. Wanga, “Effect of Al incorporation in the thermal stability of atomic-layer-deposited HfO2 for gate dielectric applications” J. Electron chem. Soc., Vol. 154, Issue 4, pp. G99-G102, 2007
[1-13] K. Takeda, R. Yamada, T. Imai, T. Fujiwara, T. Hashimoto, and T. Ando, “DC-stress-induced Degradation of Analog Characteristics in HfxAl(1-x)O MIM Capacitors” IEDM , 2006
[1-14] C. Besset, S. Bruyère, S. Blonkowski, S. Crémer and E. Vincent, “MIM capacitance variation under electrical stress” Microelectronics Reliability, vol. 43, pp. 1227-1240, 2003
[1-15] J. A. Babcock, S. G. Balstr, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. E. Kareh, “Analog Characteristics of Metal-Insulator-Metal Capacitors Using PECVD Nitride Dielectrics” IEEE electron Device Lett. vol, 22, pp. 230-232, 2001
[1-16] S. Blonkowski, M. Regache, and A. Halimaoui, “Investigate and modeling of the electrical properties of metal-oxide-metal structures formed from chemical vapor deposited Ta2O5 films” J. appl. Phys. vol. 90, pp.1501-1508, 2001
[1-17] S. Becu, S. Cremer, and J.-L Autran,” Microscopic model for dielectric constant in metal-insulator-metal capacitors with high-permittivity metallic oxides” Appl. Phys. Lett. vol. 88, pp.052902, 2006
[2- 1] W. H. Wu, B. Y. Tsui, and M. C. Chen., “Electrical Characterization of Charge Trapping and De-trapping in Hf-Based High-k Gate Dielectrics” Electronics Engineering, National Chiao Tung University, 2006
[2- 2] K. J. Yang and C. Hu, “MOS capacitance measurements for high-leakage thin dielectrics” IEEE Trans. on Electron. vol. 46, pp. 1500-1501, 1999
[2- 3] A. Nara, N. Yasuda, H. Satake, and A. Toriumi, “Applicability limits of the two-frequency capacitance measurement technique for the thickness extraction of ultrathin gate oxide” IEEE Trans., vol. 15, pp.209-213, 2002
[2- 4] H. T. Lue, C. Y. Liu, and T. Y. Tseng, “An improved two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric” IEEE Electron Device Lett., vol. 23, pp. 553-555, 2002
[2- 5] Z. Luo and T. P. Ma, “A new method to extract EOT of ultrathin gate dielectric with high leakage current” IEEE Electron Device Letters, vol.25, pp. 655-657, 2004
[2- 6] D. M. Fleetwood, “Border traps in MOS devices,” IEEE Trans. Nucl. Sci., 117 vol. 39, no. 2, pp. 269-271, Apr. 1992
[2- 7] D. M. Fleetwood, P. S. Winokur, R. A. Reber, T. L. Meisenhemer, J. R. Schwank, M. R. Shaneyfelt, and L. C. Riewe, “Effects of oxide traps, interface traps and border traps on metal-oxide-semiconductor devices,” J. Appl. Phys., vol. 73, pp. 5058-5074, 1993
[3-1] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, “Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics,” IEEE Electron Device Letter, vol. 23, pp. 649–651, 2002
[3-2] K. Toriik, K. Shiraishi, S. Miyazaki, K. Yamabe, M. Boero, T. Chikyow, K. Yamadak, H. Kitajim, and T. Arikado, “Physical model of BTI, TDD Band SILC in HfO2-based high-k gate dielectrics,” IEDM Tech. Dig, pp. 129–132, 2004
[3- 3] L. I. Maissel and R. Glang, Handbook of thin film technology, McGraw-Hill, Ch. 14 pp. 25
[3-4] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirmecker, P. Steinmann, R. Jumpertz, and B. E. Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, pp. 230-232, 2001
[3-5] H. Hu, C. Zhu, and Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, B. J. Cho, W. K. Choi and N. Yakovlev, “Physical and electrical characterization of HfO2 metal–insulator–metal capacitors for Si analog circuit applications” J. appl. Phys., vol. 94, pp. 552-557, 2003
[3-6 ] W. H. Wu, B. Y. Tsui, and M. C. Chen., “Electrical Characterization of Charge Trapping and De- trapping in Hf-Based High-k Gate Dielectrics” Electronics Engineering, National Chiao Tung University, PHD., 2006
[3-7] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol., vol. 18, pp. 1785-1791, May/Jun 2000
[3-8] X. Yu, C. Zhu, H. Hu, A. Chin, M. F. Li, B. J. Cho, D. L. Kwong, P. D. Foo, and M. B. Yu, "A high density MIM capacitor (13fF/um2) using ALD HfO2 dielectrics", IEEE Electron Device Lett. , vol. 24, pp. 63, 2003
[3-9] A. K. Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng , Z. Zhang, and A. Yin “High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits, ” IEEE Int. Interconnect Tech., Conf, pp. 245-247, 1999
[3-10] C. Zhu, H. Hu, X.Yu, S.J. Kim, A. Chin, M.F. Li, B. J. Cho, and D.L. Kwong, “Voltage and temperature dependence of capacitance of high-K HfO2 MIM capacitors: a unified understanding and prediction,” IEEE IEDM Tech. Dig. Int., pp. 879-882, 2003
[3-11] ”International Technology Roadmap for Semiconductors,” ITRS, 2007 edition.
[3-12] T. P. Juan, S. M. Chen, and J. Y. M. Lee, “Temperature dependence of the current conduction mechanisms in ferroelectric Pb(Zr0.53,Ti0.47)O3 thin film” J. Appl. Phys., vol. 95, issue 6, pp. 3120-3125, 2004
[3-13] C. Chaneliere, J. L. Autran and R. A. B. Devine, “Conduction mechanisms in Ta2O5/SiO2 and Ta2O5/i3N4 stacked structures on Si,” J. Appl. Phys, vol. 86, issue 1, pp. 480-486, 1999
[3-14] M. P. Houng, Y. H. Wang, and W. J. Chang, “Currrent transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” J. Appl. Phys., vol. 86, pp1488-1491, 1999
[3- 15] S. Ezhilvalavan and T. Y. Tseng, “Conduction mechanism in amorphous and crystalline Ta2O5 thin films,” J. Appl. Phys., vol. 83, pp.4797-4901, 1998
[3- 16] C. Lai, A. Chin, H. Kao, K. Chen, M. Hong, J. Kwo and C. Chi, “Very low voltage SiO2/HfON/HfAlO/TaN memory with fast speed and good retention,” IEEE VLSI Symp. Tech. Dig., pp. 54-55, 2006
[3- 17] C.H. Cheng, H.C. Pan, H.J. Yang, C.N. Hsiao, C.P. Chou, S.P. McAlister, and A. Chin, “Improved High-Temperature Leakage in High-Density MIM Capacitors by using a TiLaO Dielectric and in Ir electrode,” IEEE Electron Device Lett., vol. 28, pp. 1095-1097, 2007
[3- 18] V. Mikhelashvili, R. Brener, O. Kreinin, B. Meyler, J. Shneider, and G. Eisenstein, “Characteristics of metal-insulator-semiconductor capacitors based on high-k HfAlO dielectric films obtained by low-temperature electron-beam gun evaporation,” Appl. Phys. Lett., vol. 85, pp. 1346-1348, 2004
[3- 19] H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, M. S. Joo, D. L. Kwong, J. S. Pan, C. H. Ang, J. Z. Zheng, and S. Ramanathan, ” Energy gap and band alignment for (HfO2)x-( Al2O3)1-x on (100) Si,” Appl. Phys. Lett., vol. 81, pp. 376-378, 2002
[3- 20] F. Mondon, and S. Blonkowski, ”Electrical characterization and reliability of HfO2 and Al2O3-HfO2 MIM capacitors,” Microelectronics Reliability vol.43, pp. 1259-1266, 2003
[3-21] M. H. Lim, and B. Y. Tsui, “A study on the Properties of NiSi/High-K Film” Electronics Engineering, National Chiao Tung University, 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top