跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 21:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃斯衍
研究生(外文):Huang, Ssu-Yen
論文名稱:超導鐵磁薄膜系統的界面電阻與臨近效應
論文名稱(外文):Interface Resistance and Proximity effect in the Singlet Superconductor and Ferromagnet Layered System
指導教授:許世英許世英引用關係李尚凡
指導教授(外文):Hsu, Shih-YingLee, Shang-Fan
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:227
中文關鍵詞:界面電阻臨近效應超導體鐵磁
外文關鍵詞:Interface resistanceProximity effectsuperconductorferromagnet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
鐵磁與超導這兩種材料都是自旋有序的相轉變系統,然而鐵磁有序驅使電子自旋同向排列,超導體的庫珀電子對則是傾向自旋電子以相反方向來互相配對,因此彼此之間交互作用引發出許多有趣的物理現象。而最直接和最有系統的研究方式來探討這互相競爭的有序參數,是利用製作鐵磁與超導層狀結構(F/S)並進一步量測其傳輸性質例如超導臨界溫度,臨界磁場,和臨界電流,在層狀結構中超導的波函數會滲透過鐵磁層,並受到鐵磁物質中多數自旋與少數自旋能量不同的影響,而作空間上的修正,因此鐵磁與超導界面的臨近效應會誘導庫珀電子對波函數在進入鐵磁性物質時產生振盪的行為。此量子效應吻合實驗上所量測到的統計行為,這些因為鐵磁與超導的交互作用所引發的物理現象其實都是發生在 F/S 的邊界。由於在實驗上層狀結構的界面相當的複雜甚至會影響所觀察到的物理特性,因此在本論文中,我們主要以電流垂直膜面的量測技術定量的分析出塊材與界面的個別貢獻,這個重要且基礎的傳輸參數,在了解與設定鐵磁超導臨近效應的邊界條件中扮演舉足輕重的角色。
我們將所有系列的樣品區分三組,這三組樣品的臨界溫度與臨界磁場對超導膜厚的行為,都經由電流平行膜面的四點探針分式來量測得知,根據鐵磁超導臨近效應的理論分析,我們得出每一系列樣品的臨界厚度,低於此厚度,超導特性會不存在。臨界磁場與溫度行為的量測中,可以得知樣品維度的轉換行為與磁力線的釘扎機制。藉由電流垂直膜面的量測搭配電阻串聯模型,我們可以經由超導膜厚的改變,定量分析出鐵磁超導在正常態與超導態的界面電阻。在第一組樣品中我們量測與分析鐵磁物質鈷Co和不同比例的鈮鈦合金(NbxTi1-x, with x = 1, 0.6, and 0.4)之界面電阻,並將界面傳輸透明度的物理量,以界面電阻和其它物理參數來表達並作系統性的分析與討論,我們的結果發現超導態的界面電阻會受到超導體的散射中心和滲透到超導體逐漸消失的電子波函數的影響。第二組樣品,我們藉由製備鐵/鈮,鈷/鈮,鎳/鈮[Fe/Nb (bcc/bcc), Co/Nb (hex/bcc), Ni/Nb (fcc/bcc)]層狀結構,利用不同結構和材料的強鐵磁性物質,來研究其與超導的臨近效應,從結果發現鐵磁與超導的晶格常數匹配程度會影響其界面電阻。第三組樣品則是研究弱磁性銅鎳合金與超導鈮的臨界效應,藉由分析超導臨界溫度對鐵磁與超導厚度的行為,我們發現其界面擁有高的傳輸透明度,這樣好的界面會造成弱的鐵磁性擁有強的拆散效應,並影響臨界磁場對溫度的空間維度轉換厚度,進一步在電流垂直膜面量測中,我們證明界面電阻和傳輸透明度有高度的相依性。
The interplay between superconductivity and ferromagnetism results in many interesting physical phenomena. Both materials are phases of matter with ordered electronic spins. While ferromagnetic order forces the spins to align in parallel, the Cooper pairs in singlet superconductivity prefer an antiparallel spin orientation with total spin zero. The most straightforward way to study the competition of the two order parameters is to fabricate ferromagnet/superconductor (F/S) layered structure and to measure the transport properties such as critical temperature, critical field, and critical current in the superconducting state. The superconducting wavefunction penetrating inside the F is modulated by the energy difference between the minority and majority spin bands. Thus, the proximity effect at F/S interface would induce damped oscillatory behavior of the Cooper pair wavefunction within the ferromagnetic material. These physical phenomena of the proximity effect are related to the interplay between superconductivity and magnetism and occur at the boundary of F/S structures. However the character of the real interface in the F/S systems complicates the physical situation considerably. In this dissertation, we use current perpendicular measurement technique to quantitatively separate the interface and bulk contribution. The fundamental information of the transport properties given by this useful tool plays a dominant role in the boundary condition of the microscopic model within the proximity effect.
We divide a series of samples into three groups. The behaviors of superconducting transition temperature Tc and upper critical field Hc2 as a function of different superconductor thicknesses have been investigated in all groups with current flowing in the plane by a standard four-probe technique. We deduce superconductor critical thicknesses, below which superconductivity vanishes, by analyzing the data in terms of the proximity effect theory. The temperature dependence of Hc2 measurement reveals the spatial dimensional crossover and the flux pinning mechanism in the superconductor. Using the current perpendicular to plane measurements (CPP) with a series resistor model, we can, by varying the thickness of S, extract the unit area resistance for one pair of F/S interface when S is in the superconducting and normal states. In Group 1, the quantitative interface resistance between polycrystalline ferromagnetic Co and NbxTi1-x, with x = 1, 0.6, and 0.4, are measured and analyzed. The interface transparencies in terms of the ratio between interface resistance and various physical quantities are discussed. Our results show that the superconducting state interface resistance is influenced by the scattering centers and the penetration depths of the electron evanescent wave into the superconductors according to the Pippard model. In Group 2, we study the proximity in Fe/Nb (bcc/bcc), Co/Nb (hex/bcc), and Ni/Nb (fcc/bcc) with a sputtered layered system. The influence of lattice mismatch on interface resistance is found to be important. In Group 3, we report the proximity effect between a weak ferromagnet Cu0.5Ni0.5 and a superconductor Nb. High interfacial transparency is derived from the behavior of the superconducting critical temperature as a function of the S and F layer thicknesses. A strong pair-breaking effect as a result of the high interface quality influences the spatial dimensional crossover in the temperature dependence of the upper critical magnetic field. Here, by using the CPP measurement with a series resistor model, a close correlation between the interfacial transparency and the interface resistance is demonstrated.
Contents
Abstract (in Chinese) ……………………………………………………….. i
Abstract (in English) ……………………………………………………….. iii
Acknowledgement (in Chinese) ……………………………………………………….. v
Contents ……………………………………………………….. vi
List of tables ……………………………………………………….. ix
List of Figures ……………………………………………………….. x
1 Introduction…………………………………………………………….. 1
References …………………………………………………………………………… 9
2 General Background and Previous work…………………………….. 12
2.1 The length scale of Superconductivity and Ferromagnetism……………. 12
2.2 The coexistence of Superconductivity and Ferromagnetism in the LOFF
state……………………………………………………………………… 17
2.3 General phenomenon in proximity effect……………………………….. 20
2.4 Oscillatory superconducting temperature in F/S layered structure……… 24
2.5 Superconductor-Ferromagnet-Superconductor π junction………………. 35
2.6 Density of states oscillations….…………………………………………. 37
2.7 Ferromagnet-Superconductor-Ferromagnet spin-valve sandwiches…….. 39
References …………………………………………………………………………… 43
3 Experimental techniques and measurement system…………………. 47
3.1 The sputtering system…………………………………………………… 47
3.2 Magnetic property measurement (SQUID)……………………………… 50
3.2.1 Josephson Effect: SQUID……………………………………………….. 50
3.2.2 Magnetic measurement………………………………………………….. 55
3.3 CPP with low resistance measurement………………………………….. 57
3.4 Electric property measurement with CIP structure……………………… 63
References …………………………………………………………………………… 64
4 Theoretical description for data analysis……………………………... 66
4.1 Radovic’s Theory: single-mode approximation ……………………….... 67
4.2 Tagirov’s Theory………………………………………………………... 73
4.3 Fominov’s Theory: single-mode and multi-mode solution……………... 74
4.3.1 single-model solution……………………………………………………. 75
4.3.2 multi-mode solution-method of fundamental solution………………….. 77
4.4 Global Fit………………………………………………………………... 83
4.5 Andreev reflection and the Blonder, Tinkham, and klapwijk model......... 85
References …………………………………………………………………………… 91
5 Results and Discussion-Conventional Ferromagnet:
Co/NbxTi1-x system……………………………………………………... 93
5.1 Thickness dependence of superconducting transition temperature
in Co/S trilayers with S = Nb, Nb0.4Ti0.6, and Nb0.6Ti0.4…........................ 94
5.2 Theoretical fitting in term of Radovic’s model………………………….. 97
5.3 The behavior of upper critical field for Co/Nb multilayers……………... 103
5.4 The result of CPP measurement for Co/NbxTi1-x multilayers…………… 106
5.4.1 Two parameters Globl Fit for Co/Nb mulilayers………………………... 109
5.4.2 Two parameters Globl Fit for Co/Nb0.4Ti0.6 and Co/Nb0.6Ti0.4 mulilayers 112
5.4.3 Four parameters Global Fit for Co/Nb multilayers……………………… 115
5.5 The result of CPP measurement for Co/Nb0.4Ti0.6 and Co/Nb0.6T0.4
multilayers with four parameter Global Fit and comparison……………. 119
5.6 Interface transparency…………………………………………………… 127
5.7 Pippard model…………………………………………………………… 130
References …………………………………………………………………………… 135
6 Results and Discussion-Conventional Ferromagnet:
Fe/Nb and Ni/Nb system as compared with Co/Nb system………….. 139
6.1 Fe/Nb system……………………………………………………………. 139
6.1.1 The behavior of critical temperature for Fe/Nb trilayers………………... 140
6.1.2 The behavior of upper critical field for Fe/Nb multilayers……………… 143
6.1.3 Fe/Nb interface resistance by CPP measurement……………………….. 146
6.2 Ni/Nb system……………………………………………………………. 153
6.2.1 The behavior of critical temperature for Ni/Nb trilayers………………... 153
6.2.2 The behavior of upper critical field for Ni/Nb multilayers……………… 155
6.2.3 Ni/Nb interface resistance by CPP measurement……………………….. 157
6.3 Co/Nb, Fe/Nb, and Ni/Nb interface resistance calculated by
First-Principle calculation……………………………………………….. 162
6.4 Transport polarization…………………………………………………… 164
References …………………………………………………………………………… 166
7 Results and Discussion-Weak Ferromagnet: Cu0.5Ni0.5/Nb system…. 170
7.1 The behavior of critical temperature fitted by Radovic’s model………... 173
7.2 Fitted by Fominov’s model in terms of interface transparency…………. 175
7.3 Pair breaking ratio by upper critical magnetic field measurement……… 184
7.4 Interface resistance by CPP measurement………………………………. 189
References …………………………………………………………………………… 197
8 Summary………………………………………………………………... 200
A Calculating TC…………………………………………………………... 204
A.1 Rodivic’s model: TC(dS)............................................................................. 196
A.2 Fominov’s model: TC(dF)........................................................................... 201
A.3 Fominov’s model: TC(dS)........................................................................... 208
B The activation energy in Ni/Nb layered system………………………. 222
List of Publications which have resulted from this Work……………………………... 224
References: Ch. 1
1. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321
(2005).
2. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
3. Yu. A. Izyumov, Yu. N. Proshin, and M. G. Khusainov, Phys. Usp. 45, 109
(2002).
4. W. Thomson, “On the Electro-Dynamic Qualities of Metals, Proceedings of the
Royal Society of London”, 8, pp. 546–550 (1856–1857).
5. I. A. Campbell and A. Fert, ed. E.P. Wohlfarth, North-Holland, Amsterdam, Vol.
3, p. 747 (1982).
6. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828
(1989).
7. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Eitenne, G.
Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
8. Presentation of the GMR-technique at IBM’s website:
www.research.ibm.com/research/gmr.html
9. W.P. Pratt Jr., S.F. Lee, J.M. Slaughter, R. Lolee, P.A. Schroeder, J. Bass, Rev.
Lett. 66, 3060 (1991).
10. J. Bass and W. P. Pratt, Jr., J. Magn. Magn. Mater. 200, 274 (1999).
11. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
12. P. M. Levy, in Solid State Physics Series, edited by H. Ehrenreich and D.
Turnbull (Academic, New York, 1994), Vol. 47, p. 367.
13. J. Moodera and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999).
14. S. S. P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, and
S.-H. Yang, Nature Materials 3, 862 (2004).
P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
16. A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP. 20, 762 (1965).
17. P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).
18. J. S. Jiang, D. Davidović, D. H. Reich, and C. L. Chien, Phys. Rev. Lett. 74, 314
(1995).
19. I. A. Garifullin, J. Magn. Magn. Mater. 240, 571 (2002).
20. V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A.
Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
21. V. A. Oboznov, V. V. Bol’ginov, A. K. Feofanov, V. V. Ryazanov, and A. I.
Buzdin, Phys. Rev. Lett. 96, 197003 (2006).
22. J. W. A. Robinson, S. Piano, G. Burnell, C. Bell, and M. G. Blamire, Phys. Rev.
B 76, 094522 (2007).
23. I. A. Garifullin, D. A. Tikhonov, N. N. Garif’yanov, L. Lazar, Yu. V. Goryunov,
S. Ya. Khlebnikov, L. R. Tagirov, K. Westerholt, and H. Zabel, Phys. Rev. B 66,
020505(R) (2002).
24. V. Zdravkov, A. Sidorenko, G. Obermeier, S. Gsell, M. Schreck, C. Müller, S.
Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. Lett. 97, 057004 (2006).
25. L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
26. J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader,
Phys. Rev. Lett. 89, 267001 (2002).
27. A. Potenza and C. H. Marrows, Phys. Rev. B 71, 180503(R) (2005).
28. L. R. Tagirov, Physica C 307, 145 (1998).
29. Ya. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B 66,
014507 (2002).
30. R. Gross, A. Sidorenko, and L. Tragirov, Nanoscale Devices-Fundamentals and
Applications, Springer (2004).
J. Aarts, J. M. E. Geers, E. Bruck, A. A. Golubov, and R. Coehoorn, Phys. Rev.
B 56, 2779 (1997).
32. C. Cirillo, S. L. Prischepa, M. Salvato, and C. Attanasio, M. Hesselberth, and J.
Aarts, Phys. Rev. B 72, 144511 (2005).
33. J. Kim, Jun Hyung Kwon, K. Char, Hyeonjin Doh, and Han-Yong Choi, Phys.
Rev. B 72, 014518 (2005).
34. J. Kim, Y-J Doh, and K. Char, Phys. Rev. B 71, 214519 (2005).
35. Z. Radović, M. Ledvij, L. Dobrosavljević-Grujić, A. I. Buzdin, and J. R. Clem,
Phys. Rev. B 44, 759 (1991).
36. A. B. Pippard, Proc. R. Soc. London, Ser. A 391, 255 (1984).
References: Ch 2
1. P. Grunberg, R. Schreiber, Y. Pang, M.B. Brodsky, C.H. Sowers, Phys. Rev. Lett.
57 (1986) 2442.
2. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petro, P. Etienne, G.
Creuzet, A. Friederich, J. Chazeles, Phys. Rev. Lett. 61 (1988) 2472.
3. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986), p.144.
4. N. W. Ashcroft, and N. D. Mermin, Solid State Physics, (Brooks/Cole, 1976).
5. H. E. Stanley, Introduction to Phase Transition and Critical Phenomena,
(Oxford University Press, New York, 1971).
6. J. Linder, M. Zareyan, and A. Sudbø, Phys.Rev. B 79, 064514 (2009).
7. C. L. Chien, and D. H. Reich, J. Magn. Magn, Mater. 200, 83 (1999).
8. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York,
1975).
9. J. Bass and W. P Pratt Jr, J. Phys.: Condens. Matter 19, 183201 (2007).
10. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
11. P. M. Levy, Solid State Physics Series vol 47, ed D Turnbull and HEhrenreich
(New York: Academic 1994) p 367.
12. W. P. Pratt, S. F. Lee, J. M. Slaughter, R. Loloee, P. A. Schroeder and J. Bass
Phys. Rev. Lett. 66, 3060 (1991).
13. J. Bass and W. P. Pratt, Jr., J. Magn. Magn, Mater. 200, 274 (1999).
14. S. Takahashi and S. Maekawa, Journal of the Physical Society of Japan Vol. 77,
No. 3, 031009 (2008).
15. M. Faure,A. I. Buzdin, A. A. Golubov and M. Y. Kupriyanov Phys. Rev. B 73,
064505 (2006).
16. F. S. Bergeret, A. F. Volkov and K. B. Efetov Rev. Mod. Phys. 77, 1321 (2005).
Yu. A. Izyumov, Yu. N. Proshin, and M. G.. Khusainov, Phys. Usp. 45, 109
(2002).
18. A. I. Buzdin. Rev. Mod. Phys. 77, 935 (2005).
19. V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 31, 202–214, (1956) [Sov. Phys. JETP 4,
153–161 (1957)].
20. M. B. Maple and Ø. Fisher, Superconductivity in Ternary Compounds II, Topics
in Current Physics (Springer-Verlag, Berlin 1982).
21. K.-H, Müller and V. N. Narozhnyi, Rep. Prog. Phys. 64, 943–1008 (2001).
22. P. W. Anderson, ,and H. Suhl, Phys. Rev. 116, 898–900 (1959).
23. L. N. Bulaevskii, A. I. Buzdin, M. L. Kulic′, and S. V. Panjukov, Adv. Phys. 34,
175–261 (1985).
24. S. S. Saxena, , P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M.
J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A.
Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature (London) 406,
587–592 (2000).
25. D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E.
Lhotel, and C. Paulsen, Nature (London) 413, 613–616 (2001).
26. P. Fulde and R. A. Ferrel, Phys. Rev. 135, A550 (1964).
27. A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP. 20, 762 (1965).
28. E. A. Demler, G. B. Arnold, and M. R. Beasley, Phys. Rev. B 55, 15174 (1997).
29. P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York,
1966).
30. G. Deutscher, Rev. Mod. Phys. 77, 109 (2005).
31. H. Zabel and S.D Bader, Magnetic Heterostructures: Advances and Perspectives
in Spinstructures and Spintransport (Springer Tracts in Modern, Physics, 2007).
32. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 69, 174504 (2004).
33. R. I. Salikhov, I. A. Garifullin, N. N. Garif’yanov, L. R. Tagirov K. Theis-Bro‥hl,
K. Westerholt, and H. Zabel, Phys. Rev. L 102, 087003 (2009).
Jing Xia, V. Shelukhin, M. Karpovski, A. Kapitulnik, and A. Palevski, Phys. Rev.
L 102, 087004 (2009).
35. L. R. Tagirov, Physica 307C, 145 (1998).
36. J. J. Hauser, H.C. Theuerer, and N.R. Werthamer, Phys. Rev 142, 118 (1964).
37. Z. Radovic, A. I. Buzdin, and J. R. Clem, Phys. Rev. B 44, 759(1991).
38. H. K. Wong, B. Y. Jin, H. q. Yang, J. B. Ketterson, and J. E. Hilliard, Journal of
Low Temp. Physics, Vol 63, Nos.3/4, (1986).
39. P. Koorevaar, Y. Suzuki, R. Coehoorn, and J. Aarts, Phys. Rev. B 49, 441(1994).
40. C. Strunk, C. Sürgers, U. Paschen, and H. v. Lohneysen, Phys. Rev. B 49,
(1994).
41. J. S. Jiang, D. Davidovic, D. H. Reich, and C. L. Chien, Phys. Rev. Lett. 74,
314 (1995).
42. Th. Müuhge, N. N. Garif'yanov, Yu. V. Goryunov, G. G. Khaliullin, L. R
Tagirov, K. Westerholt, I. A. Garifullin, and H. Zabel, Phys. Rev. Lett. 77, 1857
(1996).
43. Th. Mühge, K. Westerholt, H. Zabel, N. N. Garif'yanov, Yu. V. Goryunov, I. A.
Garifullin, and G. G. Khaliullin, Tagirov, K. Westerholt, and, Phys. Rev. B. 8945,
55 (1997).
44. Th. Müuhge, K. Theis-Nrohl, K. Westerholt, H. Zabel, N. N. Garif'yanov, Phys.
Rev. B 57, 5071 (1998).
45. A. S. Sidorenko, V. I. Zdravkov, A. A. Prepelitsa, C. Helbig, Y. Luo, S. Gsell, M.
Schreck, S. Klimm, S. Horn, L. R. Tagirov, and R. Tidecks, Ann. Phys. 12, 37
(2003).
46. J. Aarts ,J. M. E. Geers, E. Bru‥ck, A. A. Golubov*, and R. Coehoorn, Phys. Rev.
B 56, 2779 (1997).
47. L. Lazar, K. Westerholt, H. Zabel, L. R. Tagirov, Yu. V. Goryunov. N. N.
Garif'yanov, and I. A. Garifullin. Phys. Rev. B 61, 3711 (2000).
48. Z. Radovic′, M. Ledvij, L. Dobrosavljevic′-Grujic′, A. I. Buzdin, and J. R. Clem,Phys. Rev. B 44, 759 (1991).
49. Y. V. Fominov, N. M. Chtchelkatechev, and A. A. Golubov, Phys. Rev. B 66,
014507 (2002).
50. J. Kim, Jun Hyung Kwon, K. Char, and Hyeonjin Doh, Phys. Rev. B 72, 014518
(2005).
51. C. Cirillo, A. Rusanov, C. Bell, and J. Aarts, Phys. Rev. B 75, 174510 (2007).
52. V. Zdravkov, A. Sidorenko, G. Obermeier, S. Gsell, M. Schreck, C. Müller, S.
Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. Lett. 97, 057004 (2006).
53. V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V Veretennikov, A. A.
Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
54. V. A. Oboznov, V. V. Bol’ginov, A. K. Feofanov, V. V. Ryazanov, and A. I.
Buzdin, Phys. Rev. Lett. 96, 197003 (2006).
55. W. Guichard, , M. Aprili, O. Bourgeois, T. Kontos, J. Lesueur, and P. Gandit, ,
Phys. Rev. Lett. 90, 167001 (2003)
56. A. Bauer, J. Bentner, M. Aprili, and M. L. Della Rocca, , Phys. Rev. Lett. 92,
217001 (2004).
57. A. Abrikosov, A., L. P. Gor’kov, and I. E. Dzyaloshinski, Methods of Quantum
Field Theory in Statistical Physics (Dover, New York, 1975).
58. T. Kontos, M. Aprili, J. Lesueur, and X. Grison, Phys. Rev. Lett. 86, 304 (2001)
59. J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader,
Phys. Rev. Lett. 89, 267001 (2002).
60. A. Potenza and C. H. Marrows, Phys. Rev. B 71, 180503(R) (2005).
61. Ion C. Moraru, W. P. Pratt, Jr., and Norman O. Birge, Phys. Rev. Lett 98, 037004
(2006).
62. P. Cadden-Zimansky, Ya. B. Bazaliy, L. M. Litvak, J. S. Jiang, J. Pearson, J. Y.
Gu, Chun-Yeol You, M. R. Beasley, Phys. Rev. Lett. 77, 184501 (2008)
63. Guo-Xing Miao, Ana V. Ramos, and Jagadeesh S. Moodera1, Phys. Rev. Lett
101, 137001 (2008)
References: Ch. 3
1. P. Müler and A. V. Ustinov, The physics of Superconductors, (Springer, New
York, 1997).
2. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York,
1975).
3. N. W. Ashcroft, and N. D. Mermin, Solid State Physics, (Brooks/Cole, 1976).
4. E. du Trémolete de Lacheisserie, D. Gignoux, and M. Schlenker , Magnetism:
Materials and Applications, Vol. 2, (Springer, 2005).
5. J. Clarke and A. I. Braginski, The SQUID handbook, Vol. 1, 2nd Ed.,(Wiley-Vch
2004).
6. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986), p.144.
7. I. C. Moraru, Proximity Effect in Ferromagnet/Superconductor Hybrid Systems,
(Ph. D thesis, Michgan State University, 2006 ).
8. Ulrich Weiss, Encyclopedia of Physical Science and Technology 16, 211 (1998).
9. J. Bass and W. P. Pratt, Jr., J. Magn. Magn .Mater. 200, 274 (1999).
10. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
11. J. M. Slaughter, W. P. Pratt, Jr., and P. A. Schroeder, Rev. of Sci. Instr. 60, 127
(1989).
12. D. Edmunds, W. Pratt, and J. Rowlands, Rev. of Sci. Instr. 51, 1516 (1980).
13. S. F. Lee, Q. Yang, P Holody, R. Loloee, J. H. Hetherington, S. Mahmood, B
Ikegami, K. Vigen, L. L. Henry, P. A. Schroeder, W. P. Pratt, Jr., and J. Bass.
Phys. Rev. B 21, 15426 (1995).
14. J. M. Slaughter, W. P. Pratt, Jr., and P. A. Schroeder, Rev. Sci. Instrum. 60, 127
(1989).
15. S. F. Lee, Perpendicular Resistance and Magnetoresistance of Co/Ag Multilayers,
(Ph. D thesis, Michgan State University, 1994 ).
16. J. M. Slaughter, J. Bass, W. P. Pratt, Jr., P. A. Schroeder, and H. Sato. Jpn. J. Appl.
Phys. 26, Suppl. 26-3, 1451 (1987).
References: Ch. 4
1. Z. Radović, L. Dobrosavljević -Grujić, A.I. Buzdin, and J.R. Clem, Phys. Rev. B
38, 2388 (1988).
2. Z. Radović, M. Ledvij, L. Dobrosavljević -Grujić, A.I. Buzdin, and J. R. Clem,
Phys. Rev. B 44, 759 (1991).
3. P. G. de Gennes and G. Darma, J. Appl. Phys. 34, 1380 (1963).
4. V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V Veretennikov, A. A.
Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
5. L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, JETP Lett. 25, 290 (1977).
6. V. G. Kogan, Phys. Rev. B 32, 139 (1985).
7. K. Usadel, Phys. Rev. Lett. 25, 507 (1970).
8. A. Millis, D. Rainer, and J. A. Sauls, Phys. Rev. B 38, 4504 (1988).
9. T. Tokuyasu, J. A. Sauls, and D. Rainer, Phys. Rev. B 38, 8823 (1988).
10. A. G. Ivanov, M. Yu. Kurprianov, K. K. Likharev, S. V. Meriakri, and O. V.
Snigirev, Sov. J. Low Temp. Phys. 7, 274 (1981).
11. L. Lazar, K. Westerholt, H. Zabel, and L. R. Tagirov. Phys. Rev. B. 61, 3711
(2000).
12. J. Aarts, J. M. E. Geers, E. Bruck, A. A. Golubov, and R. Coehoorn, Phys. Rev. B
56, 2779 (1997).
13. L. R. Tagirov, Physica 307C, 145 (1998).
14. Ya. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B 66,
014507 (2002).
15. A. I. Larkin and Yu. N. Ovchinnikov, in Nonequilibrium Superconductivity,
edited by D. N. Langenberg and A. I. Larkin (Elsevier, New York, 1986), p. 530,
and references therein.
16. M. Yu. Kupriyanov and V. F. Lukichev, Sov. Phys. JEPT 67, 1163 (1988).
17. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals
(McGraw-Hill, New York, 1965).
18. C. Cirillo, S. L. Prischepa, M. Salvato, and C. Attanasio, Phys. Rev. B 72, 144511
(2005).
19. C. Cirillo, A. Rusanov, C. Bell, and J. Aarts, Phys. Rev. B 75, 174510 (2007).
20. A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys. JETP 19, 1228
(1964)].
21. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
22. M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995).
23. R. J. Soulen, J. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P.
Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, et al., Sience 282, 85 (1998).
24. G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers, Phys. Rev. B 63,
104510 (2001).
25. I. I. Mazin, A. A. Golubov, and B. Nadgorny, J. Appl. Phys. 89, 7576 (2001).
26. P. Chalsani, S. K. Upadhyay, O. Ozatay, and R. A. Buhrman , Phys. Rev. B 75,
094417 (2007).
27. T. W. Chiang, Y. H. Chiu, S. Y. Huang, S. F. Lee, J. J. Liang, H. Jaffrès,
J. M. George, and A. Lemaitre, J. Appl. Phys. 105, 07C507 (2009).
References: Ch. 5
1. R. Krishnan, J. Magn. Magn. Mater. 50, 189 (1985).
2. S. F. Lee, Y. Liou, Y. D. Yao, W. T. Shih, and C. Yu, J. Appl. Phys. 87, (2000)
5564.
3. J.-J. Liang, S. F. Lee, W. T. Shih, W. L. Chang, C. Yu, and Y. D. Yao, J Appl.
Phys. 92, 2624 (2002).
4. Z. Radovic′, L. Dobrosavljevic′-Grujic′, A. I. Buzdin, and J. R. Clem, Phys. Rev.
B 38, 2388 (1988).
5. L. Lazar, K. Westerholt, H. Zabel, and L. R. Tagirov. Phys. Rev. B. 61, 3711
(2000).
6. A. B. Pippard, Rep. Prog. Phys .23, 176 (1960).
7. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986), p.144.
8. W. Clemens, T. Kachel, O. Rader, E. Vescovo, S. Blu‥gel, C Carbone and W.
Eberhardt, Solid State Commun. 81, 739 (1992).
9. J. Bass, Landolt-Bornstein Numerical Data and Functional Relationships in
Science and Technology, New Series, Group III, edited by K. H. Hellwege and J.
L. Olsen (Springer, Berlin, 1982), Vol. 15a, p. 1.
10. H. Weber, E. Seidl, C. Laa, E. Schachinger, M. Prohammer, A. Junod, and D.
Eckert, Phys. Rev. B 44, 7585 (1991).
11. P. J. Lee, “Abridged metallurgy of ductile alloy superconductors Wiley
Encyclopedia of Electrical and Electronics”, Engineering (New York: Wiley
1999).
12. C. M. Meingast, P. J. Lee and D. C. Larbalestier, J. Appl. Phys. 66, 5962 (1989).
13. A. Mani, L. S. Vaidhyanathan, Y. Hariharan and T. S. Radhakrishnan, Cryogenics
36, 937 (1966).
14. B. B. Goodman, Rep. Prog. Phys. 49, 445 (1996).
15. David A Cardwell and David S Ginley, “Handbook of Superconducting Materials” (IOP Publishing Ltd 2003).
16. M. Hansen, E. L. Kamen, H. D. Kessler and D. J. McPerson, J. Metals, 3 881 (1951)
17. P. J. Lee, J. C. McKinnell and D. C. Larbalestier, Adv. Cryo. Eng. (Materials),
36 287 (1991).
18. T. S. Kreilick, “Niobium–Titanium Superconductors Metals Handbook, 10th edn,
vol 2, Properties and Selection: Nonferrous Alloys and Special-Purpose
Materials” (Metals Park, OH: ASM International 1990) pp 1043.
19. D. L. Moffat and D. C. Larbalestier, The competition between martensite and
omega in quenched Ti-Nb alloys, Metallurgical Transactions, 19A, pp. 677-1686,
(1988).
20. W.E. Lawrence and S. Doniach, Proceedings of the 12th International Conference
on Low-temperature Physics, edited by E. Kanada (Academic, Kyoto, 1971), p.
361.
21. M. Tinkham, Phys. Rev. 129, 2413 (1963).
22. C. Attanasio, C. Coccorese, L. V. Mercaldo, M. Salvato, L. Maritato, A. N. Lykov,
S. L. Prischepa, and C. M. Falco, Phys. Rev. B 57, 6056 (1998).
23. E. Silva, R. Marcon, R. Fastampa, M. Giura, and S. Sarti, Physica C 214, 175
(1993).
24. J. Bass and W. P. Pratt, Jr., J. Magn. Magn, Mater. 200, 274 (1999).
25. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
26. S. S. Parkin, Phys. Rev. Lett. 67, 3598 (1991).
27. S. Y. Huang, S. F. Lee, S. Y. Hsu, and Y. D. Yao, Phys. Rev. B 76, 024521 (2007).
28. C. A. R. Sa′ de Melo, Phys. Rev. Lett. 79, 1933 (1997).
29. W. Park, D. V. Baxter, S. Steenwyk, I. Moraru, W. P. Pratt, Jr., and J. Bass, Phys.
Rev. B 62, 1178 (2000).
30. D. V. Baxter, S. D. Steenwyk, J. Bass, and W. P. Pratt, Jr., J. Appl. Phys. 85, 4545 (1999).
31. C. Fierz, S. F. Lee, J. Bass, W. P. Pratt Jr., and P A Schroeder, J. Phys. Cond.
Matter: 2, 9701 (1990).
32. G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers, Phys. Rev. B 63,
104510 (2001).
33. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
34. I. I. Mazin, A. A. Golubov, and B. Nadgorny, J. Appl. Phys. 89, 7576 (2001).
35. C. Fierz, S. F. Lee, W. P. Pratt, Jr., P. A. Schroder, and J. Bass, J, Phys.: Condes.
Matter 2, 1224 (1991).
36. M. Urech, V. Korenivski, and D. B. Haviland, J.Magn. Magn. Mater. 249, 513
(2002)
37. L. Piraux, S. Dubois, A. Fert, and L. Belliard, Eur. Phys. J. B 4, 413 (1998).
38. J. P. Morten, A. Brataas, and W. Belzis, Phys. Rev. B 72, 014510 (2005).
39. lgor Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
40. R. Mélin, Phys. Rev. B 73, 174512 (2006).
41. S. Russo, M. Kroug, T. M. Klapwijk, and A. F. Morpugo, Phys. Rev. Lett. 95,
027002 (2005).
42. D. Beckmann, H. B. Weber, and H. v. Löhneysen, Phys. Rev. Lett. 93, 197003
(2004).
43. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
44. M. J. M. de Jone and C. W. J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995)
45. S. -K. Yip, Phys. Rev. B 52, 15504 (1995).
46. Y. V. Fominov, N. M. Chtchelkatechev, and A. A. Golubov, Phys. Rev. B 66,
014507 (2002).
47. M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163 (1988).
48. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
49. S. -K. Yip, Superlattices and Microstructures 25, 1213 (1999).
50. B. P. Vodopyanov and L. R. Tagirov JETP letters 77, 126 (2003); JETP letters 78,
555 (2003).
51. J. Aarts ,J. M. E. Geers, E. Bru‥ck, A. A. Golubov*, and R. Coehoorn, Phys. Rev.
B 56, 2779 (1997).
52. L. Lazar, K. Westerholt, H. Zabel L. R. Tagirov Yu. V. Goryunov, N. N.
Garif’yanov, and I. A. Garifullin, Phys. Rev. B 61, 3711 (2000).
53. J. Kim, Jun Hyung Kwon, K. Char, and Hyeonjin Doh, Phys. Rev. B 72, 014518
(2005).
54. L. R. Tagirov, Physica 307C, 145 (1998).
55. J. Kim, Y-J Doh, and K. Char, Phys. Rev. B 71, 214519 (2005).
56. S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhrman, Phys. Rev. Lett.
81, 3247 (1998).
57. H. Doh and H. Y. Choi, arXiv:cond-mat/0407149 v1 7 Jul (2004).
58. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 69, 174504 (2004).
59. A. B. Pippard, Proc. R. Soc. London, Ser. A 391, 255 (1984).
60. G. L. Harding, A. B. Pippard, and J. R. Tomlinson, Proc. R. Soc. London, Ser. A
340, 1 (1974).
61. S. Y. Huang, S. F. Lee, J. C. Huang, G. H. Hwang, and Y. D. Yao, J. Appl. Phys.
97, 10B103 (2005).
62. C. Galinon, K. Tewolde, R. Loloee, W.-C. Chiang, S. Olson, H. Kurt, W. P. Pratt,
Jr., J. Bass, P. X. Xu and Ke Xia, and M. Talanana, Appl. Phys. Lett. 86, 182502
(2005).
63. S. Zhang and P. M. Levy, J. Appl. Phys. 69, 4786 (1991).
64. S. Zhang and P. M. Levy, Phys. Rev. B 47, 6776(1993).
References: Ch. 6
1. Th. Mühge, N. N. Garif’yanov, Yu. N. Goryunov, G. G. Khaliullin, L. R. Tagirov,
K. Westerholt, I. A. Garifullin, and H. Zabel, Phys. Rev. Lett. 77, 1857 (1996);
Phys. Rev. B 55, 8945 (1997); 57, 5071 (1998).
2. G. Verbanck, C. D. Potter, V. Metlushko, R. Schad, V. V. Moshchalkov, and Y.
Bruynseraede, Phys. Rev. B 57, 6029 (1998).
3. Z. Radović, L. Dobrosavljević-Grujić, A. I. Buzdin, and J. R. Clem, Phys. Rev. B
38, 2388 (1988).
4. Jun-Jih Liang, S. F. Lee, W. T. Shih, W. L. Chang, C. Yu, and Y. D. Yao, J. Appl.
Phys. 92, 2624 (2002).
5. S. F. Lee, Y. Liou, Y. D. Yao, W. T. Shih, and C. Yu, J. Appl. Phys. 87, 5564
(2000).
6. A. B. Pippard, Rep. Prog. Phys. 23, 176 (1960).
7. C. Kittel, Introduction to Solid State Physics, (Wiley, New York, 1986), p. 144.
8. M. Tinkham, Introduction to Superconductivity, (McGraw-Hill. New York,
1975).
9. C. J. Lambert and R. Raimondi, J. Phys. Cone Dens. Matter 10, 901 (1998); A. l.
Buzdin, Rev.Mod. Phys. 77, 935 (2005)
10. V. T. Petrashov, I. A. Sosnin, I. Cox, A. Parsons, and C. Troadec, Phys. Rev.
Lett. 83, 3281 (1999).
11. M. Giroud, H. Courtois, K. Hasselbach, D. Mailly, and B. Pannetier, Phys. Rev.
B 58, R11872 (1998).
12. J. Aumentado and V. Chandrasekhar, Phys. Rev. B 64, 054505 (2001).
13. Z. Radovic′, L. Dobrosavljevic′-Grujic′, A. I. Buzdin, and J. R. Clem, Phys. Rev.
B 38, 2388 (1988).
14. S. Y. Huang , S. F. Lee, Jun-Jih Liang, C. Y. Yu K. L. You, T. W. Chiang, S. Y.Hsu and Y. D. Yao. J. Magn. Magn. Mater. 304, e81 (2006)
15. Nitya Nath Shukla and R. Prasad, Phys. Rev. B. 70, 014420 (2004)
16. 游駿毅 中正大學物理系碩士論文 (2003).
17. S. F. Lee, S. Y. Huang, J. H. Kuo, Y. A. Lin, and Y. D. Yao, J. Appl. Phys. 93,
8212 (2003).
18. A. B. Pippard Proc. R. Soc. London, Ser. A 391 225 (1981).
19. S. Y. Huang, S. F. Lee, J. C. Huang, G. H. Hwang, and Y. D. Yao J. Appl. Phys.
97, 10B103 (2005) .
20. R. Seviour and C. J. Lambert and A. F. Volkov, Phys. Rev. B 58, 12338 (1998).
21. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
22. P. C. Xu and K. Xia, Phys. Rev. B 74, 184206 (2006).
23. S. Y. Huang, S. F. Lee, S. Y. Hsu,and Y. D. Yao, Phys. Rev. B 76, 024521
(2007).
24. 邱昱哲 臺灣大學物理系碩士論文 (2008).
25. E. H. Sondheimer, Phys. Rev. 80, 401 (1950).
26. Z. Radović, M. Ledvij, L. Dobrosavljević-Grujić, A. I. Buzdin, and J. R. Clem,
Phys. Rev. B 44, 759 (1991).
27. J. W. A. Robinson, S. Piano, G. Burnell, C Bell, and M. G. Blamire, Phys. Rev.
76, 094522 (2007).
28. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986), p. 144.
29. S. Y. Huang, S. F. Lee, J. J. Liang, C. Y. Yu, K. L. You, T. W. Chiang, S. Y.
Hsu, and Y. D. Yao, J. Magn. Magn. Mater. 304, e81-e93 (2006)
30. J. J. Liang, S. F. Lee, W. T. Shih, W. L. Chang, C. Yu, and Y. D. Yao, J. Appl.
Phys. 92, 2624 (2002).
31. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York,
1975).
32. C. Fierz, S. F. Lee, W. P. Pratt, Jr., P. A. Schroder, and J. Bass, J, Phys.: Condes.
Matter 2, 1224 (1991).
33. R. Gross et al. (eds.), Nanoscale Devices - Fundamentals and Applications,
(Springer. 2006), p. 241–249.
34. Ya. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B 66,
012507 (2002).
35. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982)
36. C, Galinon, K. Tewolde, R. Loloee, W.-C. Chiang, S. Olson, H. Kurt, W. P. Pratt,
Jr., and J. Bass, Appl. Phys. Lett. 86, 182502 (2005).
37. P. C. Xu and K. Xia, Phys. Rev. B 74, 184206 (2006).
38. H van Leuken, A Loddert and R A. de Groot, J. Phys.: Condes Matter 3, 7651
(1991)
39. G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers, Phys. Rev. B
63,104510 (2001).
40. R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F.
Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J.
M. D. Coey, Science 282, 85 (1998).
41. K. Xia, P. J. Kelly, G. E. Bauer, I. Turek, J, Kudrnovsky, and V. Drchal, Phys.
Rev. B 63, 064407 (2001).
42. P. X. Xu, K. Kia, M. Zwierzycki, M. Talanana, and P.L.Kely, Phys. Rev. L 96,
176602 (2006).
43. J. Bass and W. P Pratt Jr, J. Phys.: Condens. Matter 19, 183201 (2007).
44. Wen-C. Chiang, C. Ritz, K. Eid, R. Loloee, W. P. Pratt, Jr., and J. Bass, Phys.
Rev. B 69, 184425 (2004).
45. R. J. Soulen, J. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P.
Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, et al., Sience 282, 85 (1998).
46. Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, Gang
Xiao, and A. Gupta, Phys. Rev. L 86, 5585 (2001).
References: Ch. 7
1. Y. Kamihara,, T. Watanabe, , M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130,
3296 (2008).
2. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
3. P. Fulde and R. A. Ferrel, Phys. Rev. 135, A550 (1964).
4. A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP. 20, 762 (1965).
5. J. S. Jiang, D. Davidović, D. H. Reich, and C. L. Chien, Phys. Rev. Lett. 74, 314
(1995).
6. I.A. Garifullin, J. Magn. Magn. Mater. 240, 571 (2002).
7. V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A.
Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
8. V. A. Oboznov, V. V. Bol’ginov, A. K. Feofanov, V. V. Ryazanov, and A. I.
Buzdin, Phys. Rev. Lett. 96, 197003 (2006).
9. J. W. A. Robinson, S. Piano, G. Burnell, C. Bell, and M. G. Blamire, Phys. Rev. B.
76, 094522 (2007).
10. I. A. Garifullin, D. A. Tikhonov, N. N. Garif’yanov, L. Lazar, Yu. V. Goryunov, S.
Ya. Khlebnikov, L. R. Tagirov, K. Westerholt, and H. Zabel, Phys. Rev. B. 66,
020505(R) (2002).
11. V. Zdravkov, A. Sidorenko, G. Obermeier, S. Gsell, M. Schreck, C. Müller, S.
Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. Lett. 97, 057004 (2006).
12. I. F. Lyuksyutov and V. L. Pokrovsky, Adv. Phys. 54, 67 (2005).
13. L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
14. J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, Phys.
Rev. Lett. 89, 267001 (2002).
15. A. Potenza and C. H. Marrows, Phys. Rev. B. 71, 180503(R) (2005).
16. L. R. Tagirov, Physica C. 307, 145 (1998).
17. Ya. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B. 66,
014507 (2002).
18. R. Gross, A. Sidorenko, and L. Tragirov, Nanoscale Devices-Fundamentals and
Applications, Springer (2004).
19. J. Aarts, J. M. E. Geers, E. Bruck, A. A. Golubov, and R. Coehoorn, Phys. Rev. B
56, 2779 (1997).
20. C. Cirillo, S. L. Prischepa, M. Salvato, and C. Attanasio, Phys. Rev. B 72, 144511
(2005).
21. J. Kim, Jun Hyung Kwon, K. Char, Hyeonjin Doh, and Han-Yong Choi, Phys.
Rev. B 72, 014518 (2005).
22. J. Kim, Y-J Doh, and K. Char, Phys. Rev. B 71, 214519 (2005).
23. Z. Radović, L. Dobrosavljević -Grujić, A.I. Buzdin, and J.R. Clem, Phys. Rev. B
38, 2388 (1988).
24. J. W. Loram, and Z. Chen, J. Phys. F: Met. Phys. 13, 1519 (1983).
25. J.-J. Liang, S.F. Lee, W.T. Shih, W.L. Chang, C. Yu, and Y.D. Yao, J. Appl. Phys.
92, 2624 (2002).
26. S.Y. Huang, S.F. Lee, Jun-Jih Liang, C.Y. Yu, K.L. You, T. W. Chiang, S. Y. Hsu,
and Y. D. Yao, J. Magn. Magn. Mater. 304, e81 (2006).
27. A. Potenza and C. H. Marrows, Phys Rev. B 71, 180503(R) (2005).
28. Ya. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B 66,
014507 (2002).
29. S.-Y. Huang, S. F. Lee, S. Y. Hsu, and Y. D. Yao Phys. Rev. B 76, 024521
(2007).
30. J. W. Loram and Z Chen, J. Phys F: Met. Phys. 13, 1519 (1983).
31. H. Zabel and S.D Bader, Magnetic Heterostructures: Advances and Perspectivesin Spinstructures and Spintransport, (Springer Tracts in Modern Physics, 2007), p.
251.
32. M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163 (1988).
33. A. Angrisani Armenio, C. Cirillo, G. Iannone, S. L. Prischepa, and C. Attanasio,
Phys. Rev. B 76, 024515 (2007).
34. B. Krunavakarn and S. Yoksan, Physica C 440, 25 (2006).
35. M. Tinkham, Introduction to Superconductivity, (McGraw-Hill, New York, 1975).
36. S. L. Lee, T. M. Chuang, S. Y. Huang, W. L. Chang, and Y. D. Yao, J. Appl. Phys.
89, 7493 (2001).
37. C. Ciuhu and A. Lodder, Phys. Rev. B 64, 224526 (2001).
38. F. Taddei, S. Sanvito, J. H. Jefferson, and C. J. Lambert, Phys. Rev. Lett. 82, 4938
(1999).
39. K. Eid, H. Kurt, W. P. Pratt, Jr., and J. Bass, Phys. Rev. B 70, 100411(R) (2004).
40. P. Cadden-Zimansky, Ya. B. Bazaliy, L. M. Litvak, J. S. Jiang,1 J. Pearson, J. Y.
Gu, Chun-Yeol You, M. R. Beasley, and S. D. Bader, Phys. Rev. B 77, 18450
(2008).
41. S. F. Lee, S. Y. Huang, J. H. Kuo, Y. A. Lin, L. K. Lin, and Y. D. Yao, J. Appl.
Phys. 93, 8212 (2003).
42. S.F. Lee, Q. Yang, P. Holody, R. Loloee, J.H. Hetherington, S. Mahmood, B.
Ikegami, K. Vigen, L.L. Henry, P.A. Schroeder, W.P. Pratt Jr., and J. Bass, Phys.
Rev. B 52, 15426 (1995).
43. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
44. S. Takahashi and S. Maekawa, J. Phy. Soc. Jpn. 77, 031009 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top