跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/14 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游家權
研究生(外文):You, Jia-Chuan
論文名稱:利用超快光激發探測技術研究La0.42Ca0.58MnO3薄膜
論文名稱(外文):Study of La0.42Ca0.58MnO3 Thin Films by Ultrafast Optical Pump Optical Probe Technique
指導教授:吳光雄吳光雄引用關係
指導教授(外文):Wu, Kaung-Hsiung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:64
中文關鍵詞:激發探測相關聯極化子形變脈衝模型同調聲子鑭鈣錳氧
外文關鍵詞:pump-probecorrelated polaronstain pulse modelcoherent phononLa1-xCaxMnO3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們透過超快光激發探測系統量測La0.42Ca0.58MnO3薄膜隨溫度及探測波長變化時,鑭鈣錳氧薄膜的瞬時反射率變化 隨著延遲時間的變化情形。並且利用Y. Tokura團隊所採用的數學擬合公式搭配數學軟體Origin做數學擬合的工作,針對四個不同的弛緩分量做解析。
前兩個弛緩分量分別為弛緩時間次皮秒到數個皮秒和數百個皮秒的快、慢弛緩行為。其中,快弛緩行為的振幅和電阻以及中子散射隨溫度變化極為相似,是對應相關聯極化子的行為。而慢弛緩振幅則和磁化強度隨溫度變化有類似的轉折點,應該和「自旋-晶格」的耦合行為相關。
另外兩個弛緩分量為週期數十皮秒和數百皮秒的快、慢振盪。振盪的特性透過C. Thomsen團隊提出的「超快激發形變脈衝」理論模型來解釋,並計算出聲速在薄膜中隨溫度變化的情形,和利用傳統「脈衝-回音-重疊」技
術所得到的聲速結果一致。
In this thesis, we have used ultrafast optical pump optical probe spectroscopy to measure the transient reflectivity change in La0.42Ca0.58MnO3 thin films as a function of delay time at various temperatures and wavelengths.
A typical transient reflectivity change curve can be separated into four components; Namely, fast component, slow component, fast oscillation component and slow oscillation component. We found that the relaxation time of the fast and the slow components were several ps and hundreds of ps respectively. The amplitude of the fast component exhibits the similar temperature dependence with that of the resistance and the neutron scattering intensity due to nanoscale correlated polarons and the amplitude of the slow component exhibits the similar temperature dependence with that of the magnetization due to 「spin-lattice」coupling.
In addition, the slow oscillation with period of hundreds of ps in ΔR/R is further modulated with fast oscillation with a period of tens of ps in the curves. The characterization of these oscillations can be elucidated by the ultrafast generated strain pulse model. Moreover, the ultrasound velocity at various temperatures also has been calculated in this material and is consistent with that generated by a conventional pulse-echo-overlap technique with a frequency of several megahertz.
目錄

中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖目錄 VII

第一章 緒論 1
第二章 「鑭鈣錳氧基本特性」與「形變波衝理論」介紹
2-1 鑭鈣錳氧材料基本特性 8
2-1-1 鈣鈦礦結構與Jahn-Teller distortion 8
2-1-2 鑭鈣錳氧相圖 10
2-1-3 CE-type反鐵磁電荷有序 12
2-1-4光學躍遷 14
2-2 形變波傳遞「Strain Pulse Propagation」
理論介紹 16
2-2-1 形變波的產生 17
2-2-2 同調聲子振盪週期與探測光波長關係 19
2-2-3 同調聲子振盪週期與厚度的關係 22
第三章 薄膜基本特性量測
3-3 薄膜基本特性量測與分析 26
3-1 電阻-溫度關係量測 26
3-2 磁化強度-溫度關係量測 28
第四章 飛秒雷射激發-探測 (Pump-Probe)量測系統
4-1 激發-探測量測 31
4-2 激發-探測量測系統 33
4-3 低溫系統 36
4-4 時間延遲零點與脈衝寬度 36
4-5 激發-探測量測方法與步驟 38
第五章 實驗結果與討論
5-1 激發-探測實驗量測結果 40
5-2 實驗結果分析 41
5-3 實驗結果與討論 43
5-3-1 「快」「慢」弛緩行為討論 43
5-3-2 「快」「慢」振盪行為討論 50
第六章 總結與未來工作 59
參考文獻 61
參考文獻

[1] J. G. Bendorz and K. A. Müller, “Possible high Tc superconductivity in the Ba-La-Cu-O system”, Z. Phys. B 64, 189 (1986)

[2] 劉祥麟, “物理雙月刊”, 第二十四卷五期 (2002)

[3] M. Fiebig, K. Miyano, Y. Tomioka, Y. Tokura1, “Sub-picosecond photo-induced melting of a charge-ordered state in a perovskite manganite”, Appl. Phys. B 71, 211–215 (2000)

[4] T. Ogasawara, T. Kimura, T. Ishikawa, M. Kuwata-Gonokami, and Y. Tokura, “Dynamics of photoinduced melting of chargeÕorbital order in a layered manganite La0.5Sr1.5MnO4”, Phy. Rev. B 63, 113105 (2001)

[5] 黃正馨, “利用飛秒級激發檢測光譜研究鑭鈣錳氧薄膜的超快動力行為” 交通大學電子物理所碩士論文 (2007)

[6] 許邰瑛, “利用飛秒激發探測光譜量測La0.7Ca0.3MnO3薄膜中的相干極化子” 交通大學電子物理所碩士論文 (2008).

[7] K. H. Wu, T. Y. Hsu, H. C. Shih, Y. J. Chen, C. W. Luo, T. M. Uen,
J. Y. Lin, J. Y. Juang, and T. Kobayashi1, “Ultrafast Optical Probes
of Polaron Dynamics in La0.7Ca0.3MnO3 Thin Films”, J. Appl. Phys.
105, 043901 (2009)

[8] C. P. Adams, J. W. Lynn, Y. M. Mukovskii, A. A. Arsenov, and D. A. Shulyatev, “Charge Ordering and Polaron Formation in the Magnetoresistive Oxide La0.7Ca0.3MnO3”, Phy. Rev. L. 85, 18 (2000)

[9] C. H. Chen, S-W. Cheong, and H. Y. Hwang, “Charge-ordered stripes in La12xCaxMnO3 with x>0.5”, J. Appl. Phys. 81 (8), 15 (1997)

[10] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses”, Phy. Rev. B 34, 6 (1986)

[11] C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, and J. Tauc, “Coherent Phonon Generation and Detection by Picosecond Light Pulses”, Phy. Rev. Lett. 53, 10 (1984)

[12] Y. H. Ren, Y. F. Hu, Qi Li, C. S. Hong, N. H. Hur, and G. Lüpke1, “Ultrafast collective dynamics of short-range charge/orbital ordering fluctuations in colossal magnetoresistive oxides”,
arXiv:cond-mat v1, 15 (2003)

[13] Y. Ren, G. Lüpke, Y. Hu, Q. Li, C. S. Hong, N. H. Hur, and R. Merlin, “Anomalous first-to-zero sound crossover in La1−xCaxMnO3”, Phy. Rev. B 74, 012405 (2006)

[14] D. Lim, V. K. Thorsmølle, R. D. Averitt, Q. X. Jia, K. H. Ahn, M. J. Graf, S. A. Trugman, and A. J. Taylor, “Coherent optical and acoustic phonon generation correlated with the charge-ordering phase
transition in La1−xCaxMnO3”, Phy. Rev. B 71, 134403 (2005)

[15] D. Lim, R. D. Averitt, J. Demsar, and A. J. Taylor, “Coherent acoustic phonons in hexagonal manganite LuMnO3”, Appl. Phys. Lett. 83, 23 (2003)

[16] J. M. Chwalek, C. Uher, J. F. Whitaker, and G. A. Mourou, “Subpicosecond time-resolved studies of coherent phonon oscillations in thin-film YBa2Cu3O6+x (x<0.4)”, Appl. Phys. Lett. 58, 9 (1991)

[17] H. J. Zeiger, J. Vidal , T.K. Cheng , E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus , “Theory for displacive excitation of coherent phonons”, Phy. Rev. B 45, 2 (1992)

[18] Waldemar A. Kütt, Wolfgang Albercht, and Heinrich Kurz, “Generation of Coherent Phonons in Condensed Media”, IEEE Journal.of Quantum Electronics .28, 10 (1992)

[19] A. P. Ramirez, P. Schiffer, S-W. Cheong, C. H. Chen, W. Bao, T. T. M. Palstra, P. L. Gammel, D. J. Bishop, and B. Zegarski, “Thermodynamic and Electron Diffraction Signatures of Charge and Spin Ordering in La1-xCaxMnO3”, Phy. Rev. Lett. 76, 17 (1996)

[20] Hiroyuki Fujishiro, Tetsuo Fukase and Manabu Ikebe, “Anomalous Lattice Softening at X = 0.19 and 0.82 in La1−XCaXMnO3”, J. Phys. Society of Japan 70, 3 (2001)

[21] 陳東煌, “利用飛秒雷射脈衝在La0.42Ca0.58MnO3薄膜中產生與偵測
同調聲頻聲子之研究”, 交通大學電子物理所碩士論文 (2007).

[22] N. R. Rao, Anthony Arulraj, A. K. Cheetham and Bernard Raveau, “Charge ordering in the rare earth manganates: the experimental situation”, J. Phys. : Condens. Matter 12 (2000)


[22] A. P. Ramirez and S.-W. Cheong, “Colossal magnetoresistance and charge order in La1-xCaxMnO3”, J. Appl. Phys. 81 (8), 15 (1997)

[23] S. Mori, C. H. Chen, S.-W. Cheong, “Pairing of charge-ordered stripes in (La,Ca)MnO3”, Nature 392 473 (1998)

[24] Z. Q. Yang, Y. Q. Zhang, J. AartsM. Wu and H. W. Zandbergen, “Enhancing the charge ordering temperature in thin films of Pr0.5Ca0.5MnO3 by strain”, Appl. Phys. Lett. 88, 072507 (2006)


[23] Hiroyuki Fujishiro, Tetsuo Fukase1 and Manabu Ikebe,
“Charge Ordering and Sound Velocity Anomaly in La1−XSrXMnO3
(X ≥ 0.5)”, J. Phys. Society of Japan 67, 8 (1998)

[24] R. K Zheng, C. F. Zhu and X. G. Li, “Magnetic Field Dependent on
Ultrasonic Sound Velocity and Attenuation in Charge-Ordering
Manganese Oxide La0:5Ca0:5MnO3”, Phys. Stat. Sol. (a) 184, 1, 251–256 (2001)

[25] A. J. Millis, B. Il Shraiman, and R. Muelle, “Dynamic Jahn-Teller Effect
and Colossal Magnetoresistance in La12xSrxMnO3” Phys. Rev. Lett. 77, 175 (1996)

[26] J. H. Jung, K. H. Kim, and T. W. Noh, “Midgap states of
La12xCaxMnO3: Doping-dependent optical-conductivity studies”,
Physical Review B 57, 18

[27] Y. G. Zhao, J. J. Li, R. Shreekala, H. D. Drew, C. L. Chen, W. L. Cao,
C. H. Lee, ”Ultrafast Laser Induced Conductive and Resistive
Transients in La0.7Ca0.3MnO3:Charge Transfer and Relaxation
Dynamics” Phys. Rev. Lett. 81, 1310 (1998).

[28] 羅志偉, “以極化飛秒光譜研究釔鋇銅氧化物之各向異性超快動力學” 交通大學電子物理所博士論文 (2003).

[29] M. Fiebig, K. Miyano, Y. Tomioka, Y. Tokura, “Sub-picosecond photo-induced melting of a charge-ordered state in a perovskite manganite”, Appl. Phys. B 71, 211–215 (2000)

[30] J. W. Lynn, D. N. Argyriou, Y. Ren, Y. Chen, Y. M. Mukovskii, and
D. A. Shulyatev, “Order and dynamics of intrinsic nanoscale
inhomogeneities in manganites”, P. R. B 76, 014437 (2007)

[31] M. T. Fernández-Díaz, J. L. Martínez and J. M. Alonso, E. Herrero, “Structural, thermal, transport, and magnetic properties of the charge-ordered La1/3Ca2/3MnO3 oxide”, Phy. Rev. B 59 ,2 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top