跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉偉誠
研究生(外文):Yeh, Wei-Cheng
論文名稱:利用奈米壓印微影及氫化物氣相磊晶技術成長氮化鎵之研究
論文名稱(外文):Study Of GaN Growth By HVPE & Nanoimprint Lithography Technology
指導教授:李威儀李威儀引用關係
指導教授(外文):Lee, Wei-I
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:氮化鎵奈米壓印
外文關鍵詞:GaNNIL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
  本論文中使用奈米壓印技術,製造具有陣列孔洞結構之氮化鎵薄膜。經過壓印製程,我們將所設計的圖案晶卻轉移至高分子阻劑PMMA上,藉由PMMA為蝕刻遮罩,再依序使用反應式離子蝕刻和電感耦合電漿蝕刻製作出陣列孔洞結構的氮化鎵薄膜,接著使用氫化物氣相磊晶系統二次成長氮化鎵材料,經由參數的調變,我們找到適合此奈米級孔洞基材成長的條件和趨勢。由螢光光譜和X射線繞射儀的量測可以證明利用此結構成長之氮化鎵材料,磊晶品質得到改善,且缺陷密度也減少為一般氮化鎵模板所成長之氮化鎵材料的一半,約為8.3×107 cm-2。
  A gallium nitride (GaN) thin film with nanoscaled porous array structure was fabricated using nanoimprint lithography (NIL) method in this study. This obtained nanoarray was conducted using step-by-step pattern transformation strategy combined with top-down lithography on a multi-layer materials consisting of conventional PMMA, silica dioxide (SiO2), and GaN template from top to bottom. During the synthetic processes, reactive ion etcher (RIE) and induced coupled plasma (ICP) techniques were introduced in order to confine the etching speed on different mediates for optimizing the quality of patterns. After the NIL processes, GaN was grown by hydride vapor phase epitaxy (HVPE). Using the proposed technique with optimized experimental parameters, strategies fabricating the nanoscaled array patterns on GaN with expected structures were successfully developed. Results of photoluminescence (PL) and x-ray diffraction (XRD) clearly exhibited that our experimentally obtained samples with improved quality and reduced defect density (8 x107 cm-2), which is about a half of that fabricated by conventional GaN template.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 VIII
圖目錄 X
第一章 導論 1
1-1 氮化鎵之晶體結構和磊晶特性 2
1-2 奈米壓印微影技術概論 3
1-3 研究動機和方向 4
第二章 實驗原理 6
2-1 壓印製程技術介紹 6
2-1-1 熱壓印技術 6
2-1-2 紫外光壓印技術 7
2-1-3 雷射成形式壓印技術 8
2-1-4 可撓性壓印技術 9
2-2 反應式離子蝕刻 10
2-3 電感耦合電漿蝕刻 11
2-3-1 電漿的組成 11
2-3-2 電漿的形成 12
2-3-3 平均自由徑(MFP) 12
2-3-4 電漿蝕刻原理 13
2-4 氫化物氣相磊晶介紹 14
2-4-1 磊晶原理 14
2-4-2 磊晶系統介紹 15
2-5 量測儀器分析及原理 17
2-5-1 掃描式電子顯微鏡(SEM) 17
2-5-2 光激發螢光光譜(PL) 20
2-5-3 微拉曼光譜儀(micro Raman) 23
2-5-4 原子力顯微鏡(AFM) 26
2-5-5 X-射線繞射儀(XRD) 28
第三章 實驗方法及步驟 30
3-1 製程步驟流程圖 30
3-2 實驗樣品備製 33
3-2-1 樣品備製 33
3-2-2 實作矽模具之圖樣 34
3-3 壓印參數 37
3-3-1 旋轉塗佈PMMA之厚度 37
3-3-2 Tg點、壓印溫度及壓力 39
3-3-3 O2 Plasma去殘留層 42
3-4 各種離子蝕刻參數比較 43
3-4-1 SF6/O2蝕刻SiO2 43
3-4-2 CF4/O2蝕刻SiO2 46
3-4-3 CF4/Ar蝕刻SiO2 48
3-5 電漿蝕刻參數及氮化鎵深度探討 50
3-5-1 BCl3/Cl2蝕刻GaN 50
3-5-2 Cl2/Ar蝕刻GaN 51
3-5-3 蝕刻比、孔洞深度和參數比較 53
第四章 實驗結果及討論 55
4-1 氮化鎵之磊晶成長 55
4-1-1 成長初期形貌 55
4-1-2 磊晶參數討論 58
4-2 量測結果分析與討論 61
4-2-1 在氮化鎵模板上製作孔洞前後比較 63
4-2-2 高溫低壓磊晶參數下有無孔洞結構之比較 66
4-2-3 低問高壓磊晶參數下有無孔洞結構之比較 68
4-2-4 氮化鎵模板在不同磊晶參數下之比較 71
4-2-5 具孔洞結構模板在不同磊晶參數下之比較 72
4-2-6 EPD結果與缺陷密度分析 72
第五章 結論 74
Reference 75
[1].S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 34,L797 (1995).
[2]. T. Mukai and S. Nakamura, Jpn. J. Appl. Phys. 38, 5735 (1999).
[3]. S. Nakamura, M. Senoh, S. Nagahata, N. Iwasa, T. Yamada, T. Matsushita,
H. Kiyoku, Y. Sugimoto,T. Kozaki, H. Umemoto, M. Sano, and K.Chocho, Jpn. J. Appl. Phys. 36, L1568(1997).
[4]. I. Akasaki, J. Cryst. Growth, 198/199, 885 (1999).
[5]. M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I.Akasaki, Jpn.J. Appl. Phys., Part 1, 37, L316
(1998).
[6]. P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J. P. Ibbetson, S. P. Den-Baars, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett., 75, 1706
(1999).
[7]. T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, Appl. Phys.Lett., 71,2472 (1997).
[8]. S. Takumi, S. Hiroki, Y. Katsunori, Y. Masahito, and H. Kazumasa, J. Cryst.Growth, 189, 67(1998).
[9]. X. Li, S. G. Bishop, and J. J. Coleman, Appl. Phys. Lett., 73, 1179 (1998).
[10]. K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato,H.Kudo, and T. Taguchi, Phys. Status Solidi A, 188, 121 (2001).
[11]. S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C.
Ke, C.W. Kuo, S. C. Chen, and C. H. Liu, Solid-State Electron., 47, 1539 (2003).
[12]. S. Luryi, E. Suhir, Appl. Phys. Lett. 49, 140 (1986).
[13]. D. Zubia, S. H. Zaidi, S. R. J. Brueck, and S. D. Hersee, Appl. Phys. Lett. 76, 858 (2000).
[14]. D. Zubia and S. D. Hersee, J. Appl. Phys. 85, 6492(1999)
[15]. M. Mynbaeva, A. Titkov, A. Kryganovskii, V. Ranikov, K. Mynbaev, H.
Huhtinen, R. Laiho, and V. Dmitriev, Appl. Phys. Lett. 76, 1113(2000).
[16]. M. Mynbaeva, A. Titkov, A. Kryganovskii, I. Kotousova, A. S. Zubrilov,
V. V. Ratnikov, V. Y. Davydov, N. I. Kuznestov, K. Mynbaev, D. V.
Tsvetkov, S. Stepanov, A. Cherenkov, and V. A. Dmitriev, MRS Internet
J. Nitride Semicond. Res. 4, 14(1999)
[17]. R. S. Qhalid, V. Adivarahan, C. Q. Chen, S. Rai, E. Kuokstis, J. W.Yang,M. Asif Khan, J. Caissie, and R. J. Molnar, Appl. Phys. Lett. 84, 696(2004)
[18]. T. L. Williamson, D. J. Diaz, P. W. Bohn, and R. J. Molnar, J. Vac. Sci.
Technol. B 22, 925 (2004)
[19]. I. M. Tiginyanu, V. V. Ursaki, V. V. Zalamai, S. Langa, S. Hubbard, D.
Pavlidis, and H. Foll, Appl. Phys. Lett. 83, 1551 (2003)
[20].http://public.itrs.net/
[21].http://www.gap-optique.unige.ch/HomeExtras/MIT/10%20Emerging%20Technologies%20That%20Will%20Change%20the%20World.htm
[22].S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114  (1995)
[23].S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85(1996)
[24].S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B 14, 4129(1996)
[25].S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, J. Vac. Sci.                                 Technol.B 15, 2897(1997)


[26].P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S.
Damle, M.Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G.
Willson, J. Vac. Sci.Technol. B 17, 2965(1999)
[27]. Willson, C. G., et al., Proc. SPIE, 3676(I): 379(1999)
[28].A. Kumar and G. M. Whitesides, Appl. Phys. Lett. 63, 2002(1993)
[29]. Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153(1998)
[30].X. Cheng and L. J. Guo, Microelectron. Eng. 71, 277(2004)
[31].X. Cheng and L. J. Guo, Microelectron. Eng. 70, 288(2004)
[32].S. Y. Chou, C. Keimel, and J. Gu, Nature 417, 835(2002)
[33].Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, and S. Y. Chou, Appl. Phys. Lett. 83, 4417(2003)
[34]. Y. Lei, K. S. Yeong, J. T. L. Thong, and W. K. Chim, Chem. Mater. 16,
2757 (2004); Y. Lei, W. K. Chim, H. P. Sun, and G. Wilde, Appl.Phys.Lett. 86, 103106 (2005).
[35]. X. Mei, M. Blumin, M. Sun, D. Kim, Z. H. Wu, H. E. Ruda, and Q.X.Guo,Appl. Phys. Lett. 82, 967 (2003); Q. X. Guo, T. Tanaka, M. Nishio,H.Ogawa, X. Mei, and H. Ruda, Jpn. J. Appl. Phys., Part 2 41, L118(2002).
[36]. H. Masuda, K. Yasui, and K. Nishio, Adv. Mater. (Weinheim, Ger.) 12, 1031(2002).
[37]. J. Liang, H. Chik, H. Yin, and J. Xu, J. Appl. Phys. 91, 2544 (2002).
[38]. D. Crouse, Y. H. Lo, A. E. Miller, and M. Course, Appl. Phys. Lett. 76,
49(1999)
[39]. http://en.wikipedia.org/wiki/Main_Page
[40].蔡宏營,奈米轉印技術介紹, 機械工業雜誌
[41].詹川逸,國立成功大學,碩士論文,民國93年。
[42]. http://www.militho.com
[43]. http://augustus.scs.uiuc.edu/nuzzogroup/group/will/webpage.ppt
[44].Photoluminescence: Principles, Structure,and Applications ;      
  Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, and Jr-Yau Fang
[45]. 陳哲雄 林俊勳 林紋瑞 吳靖宙,原子力顯微鏡(Atomic Force
  Microscopy)成像原理與中文簡易操作手冊
[46]. Y.H. Lee, H.S. Kim, G.Y. Yeom, J.W. Lee, M.C. Yoo, T.I. Kim,
Etching characteristics of GaN using inductively coupled Cl2/Ar and
Cl2/BCl3 plasmas, Journal of Vacuum Science Technology A, vol. 16,
no. 3, pp. 1478-1482, 1998
[47]. R.J. Shul, R.P. Schneider, Jr. and C. Constantine, Anisotropic electron cyclotron resonance etching of GaInP/AlGaInP heterostructures,
Electronics Letters, vol. 30, no. 10, pp. 817-819, 1994.
[48]. C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager,
E. Jones, Z.Liliental, M. Rubin, and E. R. Weber,Phys. Rev. B
54, 17745 s1996d.
[49]. A. Kasic, D. Gogova, H. Larsson, C. Hemmingsson, I. Ivanov, B.
Monemar, C. Bundesmann, M. Schubert,” Micro-Raman scattering profilingstudies on HVPE-grown free-standing GaN”, Phys. Stat. Sol. (a), 201, pp.2773–2776, 2004..
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top