跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃哲彥
研究生(外文):Huang, Je-Yen
論文名稱:半導體雷射激發光纖雷射系統之物理與技術
論文名稱(外文):Physics and technology of diode-pumped fiber laser systems
指導教授:陳永富陳永富引用關係
指導教授(外文):Chen, Yung-Fu
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:123
中文關鍵詞:光纖雷射脈衝雷射高功率雷射Q開關飽和吸收體摻鉻釔鋁石榴石半導體飽和吸收體波長可調
外文關鍵詞:fiber laserpulse laserhigh power laserQ-switchsaturable absorberCr:YAGsemiconductor saturable absorberwavelength tunable
相關次數:
  • 被引用被引用:0
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
本文主要使用雙包層之摻鐿及鉺鐿共摻之大模態光纖(摻鐿光纖之纖核直徑:30μm,鉺鐿共摻光纖之纖核直徑:25μm)作為研究雷射二極體激發之高功率光纖雷射的特性。首先我們使用窄頻寬的薄膜濾光片作為控制雷射縱模之元件,完成了波長可調且窄波段的的光纖雷射; 之後則建立了被動式及被動式的Q開關光纖雷射。在被動式Q開關中,首先是使用摻鐿之光纖作為增益介質。我們分別使用Cr:YAG晶體以及半導體材料AlGaInAs作為飽和吸收體。在以Cr4+:YAG晶體作為飽和吸收體的實驗中可得到脈衝能量為350 μJ;在以半導體作為飽和吸收體
的實驗中,實驗結果其可操作在5~30 kHz且脈衝能量約為 450 μJ。另外在使用鉺鐿共摻光纖作為增益介質的實驗中,我們亦利用同樣材料的半導體但比例不同而使其吸收波段在1.5 μm來作為飽和吸收體。結果在13.5 W的激發功率之下可得到平均功率為1.26 W,脈衝能量為100μJ及重覆率為12 kHz輸出。主動式Q開關光纖雷射中我們採用聲光晶體來產生腔內的損耗,我們測試了幾種不同的方法來
增加聲光晶體的調變損耗以提升脈衝波能量。實驗結果可得到600 μJ的脈衝能量及42ns的脈衝寬度。
An Yb doped large-mode-area (LMA) fiber with a core diameter of 30 μm and an inner cladding diameter of 250 μm, and an Er/Yb codoped fiber with a core diameter of 25 μm and an inner cladding diameter of 300 μm have been used for researching in development of high power fiber lasers. Firstly we demonstrated tunable and narrow linewidth Yb and Er/Yb fiber lasers by use of thin film narrowband filters. Afterwards we have demonstrated passively and actively
Q-switched fiber lasers. By use of Yb doped fiber as the gain medium, we have obtained passively Q-switched fiber lasers by employing a Cr4+:YAG crystal and an AlGaInAs semiconductor material as saturable absorbers respectively. The results revealed that with a Cr:YAG as a saturable absorber in a diode-pumped Yb fiber laser, the laser could generate a pulse energy of 350 μJ at a repetition rate of 38 kHz. For the use of AlGaInAs based saturable absorber experiment, we have realized a pulsed laser with 450-μJ pulse energy and can be operated at pulse repetition rate of 5~30kHz. The pulse train is very stable of ~10% fluctuation. Besides, we also obtained a passively Q-switched Er/Yb codoped fiber by means of another AlGaInAs
semiconductor saturable absorber. Greater than 0.1 mJ of pulse energy at a repetition rate of 12 kHz was generated. Finally in the actively Q-switched fiber lasers, by
enhancing the loss modulation of the active Q-switch (acoustic-optical modulator), we have obtained pulse of 600-μJ pulse energy and 42-ns pulse width.
摘要 i
Abstract ii
誌謝 iv
List of Contents v
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Overview of fiber lasers……………………………… 1
1.1.1 Progress of high power fiber lasers……………. 1
1.1.2 Double-clad fiber configuration……………………2
1.1.3 Pumping schemes…………………………………………4
1.2 Motivations…………………………………………………6
1.2.1 CW tunable Yb-doped and Er/Yb codoped fiber lasers 7
1.2.2 Actively Q-switched fiber lasers……………………….8
1.2.3 Passively Q-switched fiber lasers………………………9
1.3 Achievements………………………………………………… 10
1.3.1 CW tunable Yb-doped and Er/Yb codoped fiber lasers 10
1.3.2 Passively Q-switched Yb-doped fiber laser by a Cr4+:YAG crystal…………………10
1.3.3 Passively Q-switched fiber lasers by AlGaInAs MQW
semiconductor saturable absorbers……………………………11
1.3.4 Actively Q-switched Yb-doped fiber lasers……………………11
1.4 Outline……………………………………………………… 13
Reference………………………………………………………… 14

Chapter 2 Continuous-wave tunable Yb doped and Er/Yb
codoped fiber lasers 19
2.1 Yb doped and Er/Yb codoped fibers………………………… 19
2.1.1 Yb doped fibers……………………………………………… 19
2.1.2 Er/Yb codoped fibers……………………………………… 21
2.2 Dielectric Fabry-Perot filters………………………………24
2.2.1 Introduction to dielectric thin film filters………..24
2.2.2 All-dielectric Fabry-Pérot filters…………………… 25
2.3 Tunable Ytterbium doped fiber lasers…………………… 27
2.3.1 Experimental setup…………………………………………27
2.3.2 Results and discussions………………………………… 29
2.4 Tunable Erbium-Ytterbium doped fiber lasers………… 33
2.4.1 Experimental setup………………………………………. 33
2.4.2 Results and discussions…………………………………35
2.5 Conclusions………………………………………………… 38
Reference………………………………………………………… 40

Chapter 3 Fiber lasers passively Q-switched by Cr4+:YAG
crystals 43
3.1 Theory of passive Q-switching…………………………….43
3.2 Cr4+:YAG crystals………………………………………….. 50
3.3 Q-switched by a Cr4+:YAG crystal………………………… 52
3.3.1 The Cr4+: YAG crystal used in this experiment……… 52
3.3.2 Experimental setup……………………………………… 54
3.3.3 Results and discussions……………………………….. 55
3.4 Analytical model for optimizing the external cavity of
passively Q-switched fiber lasers 59
3.4.1 Introduction………………………………………………. 59
3.4.2 Background…………………………………………………… 60
3.4.3 Optimization of Re-imaging Magnification………… 61
3.4.4 Experimental results and discussions………………. 66
3.5 Conclusions………………………………………………… 70
Reference ……………………………………………………….. 71

Chapter 4 Fiber lasers passively Q-switched by AlGaInAs
semiconductor saturable absorbers 73
4.1 Semiconductor saturable absorbers……………………….. 73
4.2 Q-switched Yb doped fiber lasers………………………… 76
4.2.1 AlGaInAs semiconductor saturable absorbers for
Yb fiber lasers………………………………………………… 76
4.2.2 Experimental setup……………………………………… 78
4.2.3 Results and discussions……………………………… . 79
4.3 Q-switched Er/Yb codoped fiber lasers………………… 84
4.3.1 Bulk saturable absorbers for 1.5μm………………… 84
4.3.2 AlGaInAs semiconductor saturable absorbers for
Er/Yb fiber lasers……………………………………………… 85
4.3.3 Experimental setup……………………………………… 87
4.3.4 Results and discussions………………………………………............ 88
4.4 Conclusions……………………………………………….. 91
Reference………………………………………………………… 92

Chapter 5 Actively Q-switched Fiber Lasers 95
5.1 Introduction to active Q-switching……………………95
5.2 Fiber Lasers Q-switched by acousticoptic modulator 98
5.2.1 Experimental setup………………………………………. 98
5.2.2 Experimental results and discussions………………. 99
5.3 Fiber Lasers Q-switched by acousticoptic modulator and
AlGaInAs semiconductor saturable absorber……………….. 105
5.3.1 Experimental setup………………………………….… 105
5.3.2 Experimental results and discussion………………107
5.3.2.1 Sub-harmonic frequency locking………………… 107
5.3.2.2 Improvement of timing jitter at low pump power 108
5.3.2.3 Increase of pulse energy………………………….. 110
5.4 Fiber Lasers Q-switched by acousticoptic modulator with
polarization control…………………………………………. 111
5.4.1 Experimental setup…………………………………… 111
5.4.2 Experimental results and discussion…………… 112
5.5 Conclusions………………………………………………… 116
Reference………………………………………………………… 117
Chapter 6 Summary and Future works 119
6.1 Summary………………………………………………... 119
6.2 Future works……………………………………………. 121
Appendix: List of publications 122
chapter 1
1. E. Snitzer, “Proposed fiber cavities for optical lasers,” J. Appl. Phys. 32, 36-39 (1961).
2. E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass,” Phys. Rev. Lett. 7, 444-446 (1961).
3. C. A. Burrus, J. Stone, “Neodymium –doped silica lasers in End-pumped fiber geometry,” Appl. Phys. Lett. 23, 388-390 (1973).
4. S.B. Poole, D.N. Payne, and M.E. Fermann, “Fabrication of low loss optical fibers containing rare-earth ions,” Electron. Lett. 21, 738-740 (1985).
5. R. J. Mears, L. Reekie, I. M. Juancey, D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μ m,” Electron. Lett. 23, 1026-1028 (1987).
6. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B.C. McCollum,“Double-clad offset core Nd fiber lasers,” in Proc. Opt. Fiber Sensors, New Orleans, 1988, post-deadline, PD5. 7. D. Golla, M. Bode, S. Knoke, W. Schöne, and A. Tünnermann, “62-W cw TEM00 Nd:YAG laser side-pumped by fiber-coupled diode lasers,” Opt. Lett. 21, 210–212
(1996).
8. Y.F. Chen, “High-power diode-pumped Q-switched intracavity frequencydoubled
Nd:YVO4 laser with a sandwich-type resonator,” Opt. Lett. 24,
1032-1034 (1999).
9. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A.A. Kaminskii, H. Yagi and
T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG
ceramics,” Appl. Phy. B 71, 469-473 (2000).
10. H. W. Etzel, H. W. Gandy, R. J. Ginther, “Stimulated emission of infrared
radiation from Ytterbium-activated silica glass,” Appl. Opt. 1, 534-536, (1962).
11. R. Paschotta, J. Nilsson, Anne C. Tropper, and D. C. Hanna, “Ytterbium-doped
Fiber Amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997).
12. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core
fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40,
470-471 (2004).
13. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke,S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, A. Harschak, “1.3 kW
Yb-doped fiber laser with excellent beam quality,” in Proc. Conference on Lasers
and Electro-Optics 2004, San Francisco, USA, May 16-21, 2004, postdeadline
paper CPDD2.
14. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core
fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12,
6088-6092 (2004).
15. D.J Ripin and al,”High efficiency side-coupling of light into optical fibres using
imbedded v-grooves”, Elec. Lett. 31, 22042205 (1995).
16. J. J. Larsen and G. Vienne, “Side pumping of double-clad photonic crystal fibers”,
Opt. Lett. 29, 436-438 (2004).
17. T. Weber, W. Luthy, H.P. Weber, V. Neuman, H Berthou, G. Kotrotsios, "A
longitudinal and side-pumped single transverse-mode double clad fiber laser with
a special silicone coating", Optics Commun. 115, 99-104 (1995).
18. R. Herda, A. Liem, B. Schnabel, A. Drauschke, H.-J. Fuchs, E.-B. Kley, H.
Zellmer and A. Tuennermann, “Efficient side-pumping of fibre lasers using binary
gold diffraction gratings,” Electron. Lett. 39, 276-277 (2003).
19. J. P. Koplow, S. W. Moore and D. A. Kliner, “A new method for side pumping of
double-clad fiber sources”, IEEE J. Quantum Electron. 39, 529-540 (2003).
20. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, and O.G. Okhotnikov,
“Single-mode 212 W tapered fiber laser pumped by a low-brightness source,” Opt.
Lett. 33, 1416-1418 (2008).
21. D. Giovanni, “Tapered fiber bundles for coupling light into and out of
cladding-pumped fiber devices”, US patent US5864644 (1999).
22. A. B. Grudinin, J. Nilsson, P. W. Turner, C. C. Renaud, W. A. Clarkson, and D. N.
Payne, in Conference on Lasers and Electro-Optic (Optical Society of America,
1999), paper CPD26.
23. P. Peterka, I. Kašík, and V. Matejec, “Experimental demonstration of novel
end-pumping method for double-clad fiber devices,” Opt. Lett. 31, 3240-3242
(2006).
24. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke,
S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, A. Harschak, “1.3 kW
Yb-doped fiber laser with excellent beam quality,” in Proc. Conference on Lasers
and Electro-Optics 2004, San Francisco, USA, May 16-21, 2004, postdeadline
paper CPDD2.
25. C. C.Renaud, J. A.Alvarez-Chavez, J. K.Sahu, J. Nilsson, D.J. Richardson,
W.A.Clarkson, "7.7mJ pulses from a large core Yb-doped cladding pumped
Q-switched fiber laser", CLEO 2001 Baltimore 6-1 1 May 2001 CTuQ5 (2001).
26. K. H. Liao, K. C. Hou, G. Chang, V. Smirnov, L. Glebov, R. Changkakoti, P.
Mamidipudi, and A. Galvanauskas, “Diffraction-limited 65-um core Yb-doped
LMA fiber based high energy fiber CPA system,” postdeadline paper, presented at
CLEO/QELS 2006, Long Beach (2006).
27. C. H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D.
Machewirth, and S. Heinemann, “High-power single-polarization and
single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating
stabilized spectrum,” Opt. Lett. 31, 17-19 (2006).
28. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson,
“Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a
point-by-point inscribed fiber Bragg grating,” Opt. Lett. 32, 1486-1488, (2007).
29. X. Feng, H. Y. Tam, W. H. Chung, and P. K.A. Wai, “Multiwavelength fiber
lasers based on multimode fiberBragg gratings using offset launch technique,”
Opt. Commun. 263, 295-299 (2006).
30. D. Y. Shen, J. K. Sahu and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber
laser with 188W free-running and > 100W tunable output power,” Opt. Express
13, 4916-4921 (2005).
31. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna,
“High-power cladding-pumped Tm-doped silica fiber laser with wavelength
tuning from 1860 to 2090 nm,” Opt. Lett. 27, 1989-1991 (2002).
32. Timothy McComb, Vikas Sudesh, and Martin Richardson, “Volume Bragg grating
stabilized spectrally narrow Tm fiber laser,” Opt. Lett. 33, 881-883 (2008).
33. Pär Jelger and Fredrik Laurell, “Efficient narrow-linewidth volume-Bragg
grating-locked Nd:fiber laser,” Opt. Express 15, 11336-11340 (2007).
34. C-P. Amado, J. F. D. Michel, and J. S. Herbert, “Miniature CW and active
interally Q-switched Nd:MgO:LiNbO3 lasers,” J. Quantum Electron. 23, 262−266
(1987).
35. W. Shin, S. W. Han, C. S. Park, and K. Oh, “All fiber optical inter-band router for
broadband wavelength division multiplexing,” Opt. Express 12, 1815-1822
(2004).
36. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J.
Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, “Millijoule
pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32, 1551-1553
(2005).
37. T. Tordella, H. Djellout, B. Dussardier, A. Saïssy, and G. Monnom, “High
repetition rate passively Qswitched Nd3+:Cr4+ all-fibre laser,” Electron. Lett. 39,
1307-1308 (2003).
38. A. Fotiadi, A. Kurkov, and I. Razdobreev, “All-fiber passively Q-switched
ytterbium laser,” CLEO/Europe-EQEC 2005, Technical Digest, CJ 2-3, Munich,
Germany (2005).
39. V. Philippov, J. Nilsson, W. A. Clarkson, A. Abdolvand, V. E. Kisel, V. G.
Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko,
“Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and
Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8-15 (2004).
40. V. N. Philippov, A. V. Kir’yanov, and S. Unger, “Advanced configuration of
erbium fiber passively Qswitched laser with Co2+:ZnSe crystal as saturable
absorber,” IEEE Photon. Technol. Lett. 16, 57–59 (2004).
41. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S.
Girard, and R. Moncorgé, “Compact diode-pumped passively Q-switched tunable
Er-Yb double-clad fiber laser,” Opt. Lett. 27, 1980– 1982 (2002).
42. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J.
Richardson, “Passively Q-switched 0.1 mJ fiber laser system at 1.53μm,” Opt.
Lett. 24, 388-390 (1999).
43. K. Alavi, H. Temkin, W. R. Wagner, and A. Y. Cho, “Optically pumped 1.55-μm
double heterostructure GaxAlyIn1-x-yAs/AluIn1-uAs lasers grown by molecular
beam epitaxy,” Appl. Phys. Lett. 42, 254-256 (1983).
44. T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant
saturable absorber mirror,” Opt. Lett. 32, 2677-2679 (2007).

Chapter 2

1. K. Lu, N. K. Dutta, “Spectroscopic properties of Yb-doped silica lass,” J. Appli.
Phy. 91, 576-581, (2002).
2. Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna,
“Ytterbium-dSoped Fiber Amplifiers,” IEEE J. Quantum Electro. 33, 1049-1056
(1997).
3. F. Sanchez, P. Le Boudec, P. L. Francois, and G. Stephan, “Effects of ion pairs on
the dynamics of erbium-doped fiber lasers,” Phys. Rev. A, 48, 2220-2229 (1993).
4. J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single
frequency erbium-doped fiber laser,” Electron. Lett. 28, 1385-1387 (1992).
5. C. C. Ye, P.R. Morkel, E.R. Taylor, and D.N. Payne, “Direct observation of
cooperative Upconversion mechanisms in erbium-doped fibre amplifiers,”
ECOC ’93, Montreux, Sptember (1993).
6. W. H. Loh and J. P. de Sandro, “Suppression of self-pulsing behavior in
erbium-doped fiber lasers with resonant pumping,” Opt. Lett. 21, 1475–1477,
(1996).
7. W. H. Loh, “Suppression of self-pulsing behavior in erbium-doped fiber lasers
with resonant pumping,” Opt. Lett. 21, 734–736 (1996).
8. http://www.3rd1000.com/
9. A. B. Grudinin, D. J. Richardson, A. K. Senatorov, and D. Payne, “Nd:YAG laser
pumped picosecond Yb3+/Er3+ fibre laser,” Electron. Lett. 28, 766–767 (1992).
10. D. C. Hanna, A. Kazer , M. W. Phillips, D. P. Shepherd, and P. J. Suni, “Active
mode-locking of an Yb:Er fibre laser,” Electron. Lett. 19, 95–96 1989).
11. D. U. Noske, A. Boskovic, M. J. Guy, and J. R. Taylor. “Synchronously pumped,
picosecond, ytterbium-erbium fibre laser,” Electron. Lett. 29 ,1863–1864
(1993).
12. J. E. Townsend, W. L. Barnes, and K. P. Jedrzejewski, “Yb3+ sensitised Er3+
doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron.
Lett. 27 ,1958–1959 (1991).
13. M. J. Guy, D. U. Noske and, J. R. Taylor, “Generation of femtosecond soliton
pulses by passive mode locking of an ytterbium - erbium figure-of-eight fiber
laser,” Opt. Lett. 18 ,1447–1149 (1993).
14. M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni and J. E. Townsend,
Efficient operation of an Yb-sensitised Er fibre laser at 1.56 μm,” Electron. Lett.
24, 1135–1136 (1988).
15. F. M., and F. Di Psquale "The Effect of Pair-Induced Energy Transfer on the
Performance of Silica Waveguide Amplifiers with High Er3+/Yb3+
Concentrations", IEEE Photon. Technol. Lett. 7, 303-305 (1995).
16. B. Lyot, “Optical apparatus with wide field using interference of polarized light,”
C. R. Acad, Sci. (Paris) 197, 1953 (1933).
17. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl.
Phy. Lett. 25, 370-372 (1974).
18. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Yoon Kim, "All-fiber acousto-optic
tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22,
1476-1478 (1997).
19. K.O. Hill, and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and
Overview,” IEEE J. Lightwave Technol. 15, 1263-1276 (1997).
20. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating
strain-sensor system with a fiber Fabry - Perot wavelength filter," Opt. Lett. 18,
1370-1372 (1993).
21. T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M.
Bass, "Solid-state laser spectral narrowing using a volumetric photothermal
refractive Bragg grating cavity mirror," Opt. Lett. 31, 229-231 (2006).
22. J. Lumeau, L. B. Glebov, and V. Smirnov, "Tunable narrowband filter based on a
combination of Fabry-Perot etalon and volume Bragg grating," Opt. Lett. 31,
2417-2419 (2006).
23. H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for
wavelength division multi/demultiplexer with nanometer resolution,” Electron.
Lett. 26, 87-88 (1990).
24. C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with
applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10, 994–
996 (1998).
25. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, “Dispersive
properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34,
1390–1402 (1998).
26. S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient
yellow-light generation by frequency doubling a narrow-linewidth 1150 nm
ytterbium fiber oscillator ,” Opt. Lett. 31, 347-349 (2006).
27. V. V. Dvoyrin, V. M. Mashinsky, O. I. Medvedkov, and E. M. Dianov, “Yellow
Frequency-Doubled Self-Heated Yb Fiber Laser,” Conference on Lasers and
Electro-Optics (CLEO) San Jose, California, 1-2, May 4, (2008).

Chapter 3
1. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum
Electron. 31, 1890-1901 (1995).
2. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of
Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron.
33, 2286-2294 (1997).
3. G. Xiao and M. Bass, “A generalized model Q-switched lasers including excited
state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33,
41-44 (1997).
4. Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of
passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462-468 (2001).
5. J. J. Zayhowski and P. L. Kelley, “Opimization of Q-switched Lasers,” IEEE J.
Quantum Electron.27, 2220-2225 (1991).
6. Y. Shimony, Z. Burshtein, and Y. Kalisky, “ Cr :YAG as passive Q-switch and
brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31,
1738–1741 (1995).
7. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state
absorption studies of Cr ions in several garnet host crystals,” IEEE J. Quantum
Electron. 34, 292–299 (1998).
8. S.-H. Yim, D.-R. Lee, B. K. Rhee, and D. Kim, “Nonlinear absorption of
Cr :YAG studied with lasers of different pulsewidth,” Apl. Phys. Lett. 73,
3193–3195 (1998).
9. N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov,
“Oscillation of a Y3 Al5 O12 : Cr4+ laser in wave length region of 1.34–1.6 μm,”
Izvestiya Akademii Nauk SSSR, 54, 1500–1506 (1990).
10. H. Ridderbusch and T. Graf, “Saturation of 1047- and 1064-nm absorption in
Cr4+:YAG Crystals,” IEEE J. Quantum. Electron. 43, 168-173 (2007).
11. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, M.R. Kokta, “Excited-State
Absorption Studie of Cr4+ Ions in Several Garnet Host Crystals,” IEEE J. of
Quantum Electron. 34, 292–299 (1998).
12. R. Moncorge, H. Manna, F. Deghoul, Y. Guyot, Y. Kalisky, S.A. Pollack, E.V.Zharikov, M. Kokta, “Saturable and excited state absorption measurements in
Cr4+:LuAG single crystals,” Optics Commun. 132, 279–284 (1996).
13. Y. Shimony, Z, Burshtein and Y. Kalisky, “Cr4+:YAG as passive Q-switch and
Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31,
1738-1741 (1995).
14. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser
amplifier,” J. Appl. Phys. 34, 2346-2349 (1963).
15. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen and X. Xie, “Passively
Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt.
40, 4303-4307 (2001).
16. J. I. Mackenzie and D. P. Shepherd, “End-pump, passively Q-switched Yb:YAG
double-clad waveguide laser,” Opt. Lett. 27, 2161-2163 (2002).
17. H. Wu, P. Yan, M. Gong and Q. Liu, “A passively Q-switched diode pumped
Yb:YAG microchip laser,” Chin. Opt. Lett. 1, 697-698 (2003).
18. V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V.
N. Matrosov, T. A. Matrosova and M. I. Kupchenko, “Q-switched Yb3+:YVO4
laser with Raman self-conversion,” Appl. Phys. B 80, 471-473 (2005).
19. X. Zhang, A. Brenier, Q. Wang, Z. Wang, J. Chang, P. Li, S. Zhang, S. Ding and
S. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt.
Express 13, 7708-7719 (2005).
20. Y. Kalisky, O. Kalisky, U. Rachum, G. Boulon and A. Brenier, “Comparative
performance of passively Q-switched diode-pumped Yb:GGG, Yb:YAG and
Yb-doped tungstates lasers using Cr4+-doped garnets,” Proc. of SPIE Vol. 6100,
61001K (2006).
21. K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica galss,” J.
Appl. Phys. 91, 576-581 (2002).
22. A. E. Siegman, Laser, (University Science Books, Mill Valley, 1986).

chapter 4
1. M. Haiml, R. Grange, U. Keller, “Optical characterization of semiconductor
saturable absorbers” Appl. Phys. B 79, 331 (2004).
2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R.
Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, "Semiconductor saturable
absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in
solid-state lasers," IEEE J. Selected Topics in Quantum Electronics (JSTQE) 2,
435-453 (1996).
3. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation
from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080-
1082 (1993).
4. T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant
saturable absorber mirror,” Opt. Lett. 32, 2677-2679 (2007).
5. S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G.
Okhotnikov, “Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a
highly nonlinear saturable absorber and dynamic gain pulse compression,” Opt.
Express 16, 22058-22063 (2008).
6. J.Y. Huang, H.C. Liang, K.W. Su, H.C. Lai, Y.F. Chen and K.F. Huang, “InGaAs
quantum-well saturable absorbers for a diode-pumped passively Q-switched
Nd:YAG laser at 1123 nm,” Appl. Opt. 46, 2, 239-242 (2007).
7. A. Li, S.C. Liu, K.W. Su, Y.L. Liao, S.C. Huang, Y.F. Chen, K.F. Huang,
“InGaAsP quantum-wells saturable absorber for diode-pumped passively
Q-switched 1.3-μm lasers,” Appl. Phys. B 84, 3, 429-431 (2006).
8. K. Alavi, H. Temkin, W. R. Wagner, and A. Y. Cho, “Optically pumped 1.55-μm
double heterostructure GaxAlyIn1-x-yAs/AluIn1-uAs lasers grown by molecular
beam epitaxy,” Appl. Phys. Lett. 42, 254-256 (1983).
9. S.T. Huxtable, A. Shakouri, C. Labounty, X. Fan, P. Abraham, Y.J. Chiu, J.E.
Bowers and A. Majumdar, “Thermal conductivity of indium phosphide based
superlattices,” Microscale. Thermophys Eng, 4, 197–203 (2000).
10. V. Spagnolo, M. Troccoli, C. Gmachl, F. Capasso, A. Tredicucci, A. M. Sergent,
A. L. Hutchinson, D. L. Sivco, A. Y. Cho, and G. Scamarcio, “Temperatureprofile of GaInAs/AlInAs/InP quantum cascade-laser facets measured by
microprobe photoluminescence,” Appl. Opt. Lett. 78, 20952097 (2001).
11. S. R. Selmic, T. Chou, J. Sih, J. B. Kirk, A. Mantie, J. K. Butler, D. Bour, and G.
A. Evans, “Design and characterization of 1.3-μm AlInGaAs/InP
multiple-quantum-well lasers,” IEEE J. Sel. Topics Quantum Electron. 7,
340-349 (2001).
12. C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C.
Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D.
Flanders, J. J. Heieh, “High-performance uncooled 1.3-μm AlxGayIn1-x-yAs/InP
strained-layer quantum-well lasers for subscriberloop applications,” IEEE J.
Quantum Electron. 30, 511-523 (1994).
13. S. C. Huang, S. C. Liu, A. Li, K. W. Su, Y. F. Chen, and K. F. Huang, “AlGaInAs
quantum-well as a saturable absorber in a diode-pumped passively Q-switched
solid-state laser,” Opt. Lett. 32, 1480–1482 (2007).
14. R. Grange, M. Haiml, R. Paschotta, G.J. Sp¨uhler, L. Krainer, M. Golling, O.
Ostinelli, U. Keller, “New regime of inverse saturable absorption for
self-stabilizing passively mode-locked lasers” Appl. Phys. B 80, 151-158 (2005).
15. Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai, “Analysis of passively
Q-switched lasers with simultaneous mode-locking,” IEEE J Quan. Electro. 38,
312-317 (2002).
16. V. N. Philippov, A. V. Kir’yanov, and S. Unger, “Advanced configuration of
erbium fiber passively Q-switched laser with Co2+:ZnSe crystal as saturable
absorber,” IEEE Photon. Technol. Lett. 16, 57–59, (2004).
17. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S.
Girard, and R. Moncorgé, “Compact diode-pumped passively Q-switched
tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27, 1980–1982 (2002).
18. V. Philippov, J. Nilsson, W. A. Clarkson, A. Abdolvand, V. E. Kisel, V. G.
Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko,
“Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and
Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE, 5335, 8-15, (2004).
19. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D.J. Richardson, “Passively Q-switched 0.1 mJ fiber laser system at 1.53μm,” Opt.
Lett. 24, 388-390 (1999).
20. J. B. Lecourt, G. Martel, M. Guézo, C. Labbé, and S. Loualiche, “Erbium-doped
fiber laser passively Q-switched by an InGaAs/InP multiple quantum well
saturable absorber,” Opt. Commun., 263, 71–83, (2006).
21. L. A. Zenteno, H. Po, and N. M. Cho, “All-solid-state passively Q-switched
mode-locked Nd-doped fiber laser,” Opt. Lett. 15, 115-117 (1990).
22. Y. F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a
diode-pumped Nd:YVO4-Cr4+:YAG laser,” IEEE J. Quantum Electron. 37,
580-586, (2001).

chapter 5
R. J. Collins and P. Kisliuk, “Control of Population Inversion in Pulsed Optical
Masers by Feedback Modulation,” J. Appl. Phys. 33, 2009 (1962).
2. B. A. Davydov, V. R. Muratov, L N. Soms, A. I. Stepanov, and V. K. Stupnikov,
“Q-switched neodymium-glass laser generating short pulses ,” Sov. J. Quant.
Electron. 4, 1406-1407 (1975).
3. Valery N. Filippov, Andrei N. Starodumov, and Alexander V. Kir'yanov, "All-fiber
passively Q-switched low-threshold erbium laser," Opt. Lett. 26, 343-345 (2001).
4. H. Cai, X. Jiangzhen, H. Zhao, C. Gaoting, F. Zujie, I. S. Kim, and Y. Kim,
"All-fiber q-switched erbium laser using a fiber bragg grating placed in loop
mirror as a wavelength-selective intensity modulator," in Optical Fiber
Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics
and Photonics (Optical Society of America, 2002), paper ThGG31.
5. M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge and
P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type
micro-mirror,” Opt. Express 16, 22064-22071 (2008).
6. H. L. Offerhaus, N. G. Broderick, D. J. Richardson, R. Sammut, J. Caplen, and L.
Dong, "High-energy single-transverse-mode Q-switched fiber laser based on a
multimode large-mode-area erbium-doped fiber," Opt. Lett. 23, 1683-1685 (1998).
7. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, "Enhanced Q switching in
double-clad fiber lasers," Opt. Lett. 23, 454-456 (1998).
8. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T.
Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C.
Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13,
1055-1058 (2005).
9. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson,
and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched
fiber laser," Opt. Lett. 25, 37-39 (2000).W. Koechner, Solid State Laser
Engineering, Chap 8, Springer (2006).
10. P. Myslinski, J. Chrostowski, J. A. K. Koningstein and J. R. Simpson, “Self-mode
locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286-290
(1993).
B. N. Upadhyaya, Usha Chakravarty, A. Kuruvilla, K. Thyagarajan, M. R. Shenoy,
and S. M. Oak, "Mechanisms of generation of multi-peak and mode-locked
resembling pulses in Q-switched Yb-doped fiber lasers," Opt. Express 15,
11576-11588 (2007).
12. Y. Wang, A. Martinez-Rios and Hong Po, “Analysis of a Q-switched
ytterbium-doped double-clad fiber laser with simultaneous mode locking,” Opt.
Commun. 224, 113-123 (2003).
13. G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously
Q-switched and self modelocked erbium doped fiber laser,” Electron. Lett. 32,
332-333 (1996).
14. S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped
fiber lasers and their application to OTDR,” J. Lightwave Technol. 20, 1506-1511
(2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊