|
chapter 1 1. E. Snitzer, “Proposed fiber cavities for optical lasers,” J. Appl. Phys. 32, 36-39 (1961). 2. E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass,” Phys. Rev. Lett. 7, 444-446 (1961). 3. C. A. Burrus, J. Stone, “Neodymium –doped silica lasers in End-pumped fiber geometry,” Appl. Phys. Lett. 23, 388-390 (1973). 4. S.B. Poole, D.N. Payne, and M.E. Fermann, “Fabrication of low loss optical fibers containing rare-earth ions,” Electron. Lett. 21, 738-740 (1985). 5. R. J. Mears, L. Reekie, I. M. Juancey, D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μ m,” Electron. Lett. 23, 1026-1028 (1987). 6. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B.C. McCollum,“Double-clad offset core Nd fiber lasers,” in Proc. Opt. Fiber Sensors, New Orleans, 1988, post-deadline, PD5. 7. D. Golla, M. Bode, S. Knoke, W. Schöne, and A. Tünnermann, “62-W cw TEM00 Nd:YAG laser side-pumped by fiber-coupled diode lasers,” Opt. Lett. 21, 210–212 (1996). 8. Y.F. Chen, “High-power diode-pumped Q-switched intracavity frequencydoubled Nd:YVO4 laser with a sandwich-type resonator,” Opt. Lett. 24, 1032-1034 (1999). 9. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A.A. Kaminskii, H. Yagi and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phy. B 71, 469-473 (2000). 10. H. W. Etzel, H. W. Gandy, R. J. Ginther, “Stimulated emission of infrared radiation from Ytterbium-activated silica glass,” Appl. Opt. 1, 534-536, (1962). 11. R. Paschotta, J. Nilsson, Anne C. Tropper, and D. C. Hanna, “Ytterbium-doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33, 1049-1056 (1997). 12. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470-471 (2004). 13. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke,S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Proc. Conference on Lasers and Electro-Optics 2004, San Francisco, USA, May 16-21, 2004, postdeadline paper CPDD2. 14. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). 15. D.J Ripin and al,”High efficiency side-coupling of light into optical fibres using imbedded v-grooves”, Elec. Lett. 31, 22042205 (1995). 16. J. J. Larsen and G. Vienne, “Side pumping of double-clad photonic crystal fibers”, Opt. Lett. 29, 436-438 (2004). 17. T. Weber, W. Luthy, H.P. Weber, V. Neuman, H Berthou, G. Kotrotsios, "A longitudinal and side-pumped single transverse-mode double clad fiber laser with a special silicone coating", Optics Commun. 115, 99-104 (1995). 18. R. Herda, A. Liem, B. Schnabel, A. Drauschke, H.-J. Fuchs, E.-B. Kley, H. Zellmer and A. Tuennermann, “Efficient side-pumping of fibre lasers using binary gold diffraction gratings,” Electron. Lett. 39, 276-277 (2003). 19. J. P. Koplow, S. W. Moore and D. A. Kliner, “A new method for side pumping of double-clad fiber sources”, IEEE J. Quantum Electron. 39, 529-540 (2003). 20. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, and O.G. Okhotnikov, “Single-mode 212 W tapered fiber laser pumped by a low-brightness source,” Opt. Lett. 33, 1416-1418 (2008). 21. D. Giovanni, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices”, US patent US5864644 (1999). 22. A. B. Grudinin, J. Nilsson, P. W. Turner, C. C. Renaud, W. A. Clarkson, and D. N. Payne, in Conference on Lasers and Electro-Optic (Optical Society of America, 1999), paper CPD26. 23. P. Peterka, I. Kašík, and V. Matejec, “Experimental demonstration of novel end-pumping method for double-clad fiber devices,” Opt. Lett. 31, 3240-3242 (2006). 24. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Proc. Conference on Lasers and Electro-Optics 2004, San Francisco, USA, May 16-21, 2004, postdeadline paper CPDD2. 25. C. C.Renaud, J. A.Alvarez-Chavez, J. K.Sahu, J. Nilsson, D.J. Richardson, W.A.Clarkson, "7.7mJ pulses from a large core Yb-doped cladding pumped Q-switched fiber laser", CLEO 2001 Baltimore 6-1 1 May 2001 CTuQ5 (2001). 26. K. H. Liao, K. C. Hou, G. Chang, V. Smirnov, L. Glebov, R. Changkakoti, P. Mamidipudi, and A. Galvanauskas, “Diffraction-limited 65-um core Yb-doped LMA fiber based high energy fiber CPA system,” postdeadline paper, presented at CLEO/QELS 2006, Long Beach (2006). 27. C. H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D. Machewirth, and S. Heinemann, “High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum,” Opt. Lett. 31, 17-19 (2006). 28. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating,” Opt. Lett. 32, 1486-1488, (2007). 29. X. Feng, H. Y. Tam, W. H. Chung, and P. K.A. Wai, “Multiwavelength fiber lasers based on multimode fiberBragg gratings using offset launch technique,” Opt. Commun. 263, 295-299 (2006). 30. D. Y. Shen, J. K. Sahu and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13, 4916-4921 (2005). 31. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27, 1989-1991 (2002). 32. Timothy McComb, Vikas Sudesh, and Martin Richardson, “Volume Bragg grating stabilized spectrally narrow Tm fiber laser,” Opt. Lett. 33, 881-883 (2008). 33. Pär Jelger and Fredrik Laurell, “Efficient narrow-linewidth volume-Bragg grating-locked Nd:fiber laser,” Opt. Express 15, 11336-11340 (2007). 34. C-P. Amado, J. F. D. Michel, and J. S. Herbert, “Miniature CW and active interally Q-switched Nd:MgO:LiNbO3 lasers,” J. Quantum Electron. 23, 262−266 (1987). 35. W. Shin, S. W. Han, C. S. Park, and K. Oh, “All fiber optical inter-band router for broadband wavelength division multiplexing,” Opt. Express 12, 1815-1822 (2004). 36. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32, 1551-1553 (2005). 37. T. Tordella, H. Djellout, B. Dussardier, A. Saïssy, and G. Monnom, “High repetition rate passively Qswitched Nd3+:Cr4+ all-fibre laser,” Electron. Lett. 39, 1307-1308 (2003). 38. A. Fotiadi, A. Kurkov, and I. Razdobreev, “All-fiber passively Q-switched ytterbium laser,” CLEO/Europe-EQEC 2005, Technical Digest, CJ 2-3, Munich, Germany (2005). 39. V. Philippov, J. Nilsson, W. A. Clarkson, A. Abdolvand, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8-15 (2004). 40. V. N. Philippov, A. V. Kir’yanov, and S. Unger, “Advanced configuration of erbium fiber passively Qswitched laser with Co2+:ZnSe crystal as saturable absorber,” IEEE Photon. Technol. Lett. 16, 57–59 (2004). 41. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorgé, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27, 1980– 1982 (2002). 42. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1 mJ fiber laser system at 1.53μm,” Opt. Lett. 24, 388-390 (1999). 43. K. Alavi, H. Temkin, W. R. Wagner, and A. Y. Cho, “Optically pumped 1.55-μm double heterostructure GaxAlyIn1-x-yAs/AluIn1-uAs lasers grown by molecular beam epitaxy,” Appl. Phys. Lett. 42, 254-256 (1983). 44. T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant saturable absorber mirror,” Opt. Lett. 32, 2677-2679 (2007).
Chapter 2
1. K. Lu, N. K. Dutta, “Spectroscopic properties of Yb-doped silica lass,” J. Appli. Phy. 91, 576-581, (2002). 2. Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-dSoped Fiber Amplifiers,” IEEE J. Quantum Electro. 33, 1049-1056 (1997). 3. F. Sanchez, P. Le Boudec, P. L. Francois, and G. Stephan, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A, 48, 2220-2229 (1993). 4. J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fiber laser,” Electron. Lett. 28, 1385-1387 (1992). 5. C. C. Ye, P.R. Morkel, E.R. Taylor, and D.N. Payne, “Direct observation of cooperative Upconversion mechanisms in erbium-doped fibre amplifiers,” ECOC ’93, Montreux, Sptember (1993). 6. W. H. Loh and J. P. de Sandro, “Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping,” Opt. Lett. 21, 1475–1477, (1996). 7. W. H. Loh, “Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping,” Opt. Lett. 21, 734–736 (1996). 8. http://www.3rd1000.com/ 9. A. B. Grudinin, D. J. Richardson, A. K. Senatorov, and D. Payne, “Nd:YAG laser pumped picosecond Yb3+/Er3+ fibre laser,” Electron. Lett. 28, 766–767 (1992). 10. D. C. Hanna, A. Kazer , M. W. Phillips, D. P. Shepherd, and P. J. Suni, “Active mode-locking of an Yb:Er fibre laser,” Electron. Lett. 19, 95–96 1989). 11. D. U. Noske, A. Boskovic, M. J. Guy, and J. R. Taylor. “Synchronously pumped, picosecond, ytterbium-erbium fibre laser,” Electron. Lett. 29 ,1863–1864 (1993). 12. J. E. Townsend, W. L. Barnes, and K. P. Jedrzejewski, “Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27 ,1958–1959 (1991). 13. M. J. Guy, D. U. Noske and, J. R. Taylor, “Generation of femtosecond soliton pulses by passive mode locking of an ytterbium - erbium figure-of-eight fiber laser,” Opt. Lett. 18 ,1447–1149 (1993). 14. M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni and J. E. Townsend, Efficient operation of an Yb-sensitised Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988). 15. F. M., and F. Di Psquale "The Effect of Pair-Induced Energy Transfer on the Performance of Silica Waveguide Amplifiers with High Er3+/Yb3+ Concentrations", IEEE Photon. Technol. Lett. 7, 303-305 (1995). 16. B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad, Sci. (Paris) 197, 1953 (1933). 17. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phy. Lett. 25, 370-372 (1974). 18. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Yoon Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett. 22, 1476-1478 (1997). 19. K.O. Hill, and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” IEEE J. Lightwave Technol. 15, 1263-1276 (1997). 20. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry - Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993). 21. T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt. Lett. 31, 229-231 (2006). 22. J. Lumeau, L. B. Glebov, and V. Smirnov, "Tunable narrowband filter based on a combination of Fabry-Perot etalon and volume Bragg grating," Opt. Lett. 31, 2417-2419 (2006). 23. H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87-88 (1990). 24. C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10, 994– 996 (1998). 25. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998). 26. S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator ,” Opt. Lett. 31, 347-349 (2006). 27. V. V. Dvoyrin, V. M. Mashinsky, O. I. Medvedkov, and E. M. Dianov, “Yellow Frequency-Doubled Self-Heated Yb Fiber Laser,” Conference on Lasers and Electro-Optics (CLEO) San Jose, California, 1-2, May 4, (2008).
Chapter 3 1. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890-1901 (1995). 2. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286-2294 (1997). 3. G. Xiao and M. Bass, “A generalized model Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33, 41-44 (1997). 4. Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462-468 (2001). 5. J. J. Zayhowski and P. L. Kelley, “Opimization of Q-switched Lasers,” IEEE J. Quantum Electron.27, 2220-2225 (1991). 6. Y. Shimony, Z. Burshtein, and Y. Kalisky, “ Cr :YAG as passive Q-switch and brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995). 7. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998). 8. S.-H. Yim, D.-R. Lee, B. K. Rhee, and D. Kim, “Nonlinear absorption of Cr :YAG studied with lasers of different pulsewidth,” Apl. Phys. Lett. 73, 3193–3195 (1998). 9. N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3 Al5 O12 : Cr4+ laser in wave length region of 1.34–1.6 μm,” Izvestiya Akademii Nauk SSSR, 54, 1500–1506 (1990). 10. H. Ridderbusch and T. Graf, “Saturation of 1047- and 1064-nm absorption in Cr4+:YAG Crystals,” IEEE J. Quantum. Electron. 43, 168-173 (2007). 11. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, M.R. Kokta, “Excited-State Absorption Studie of Cr4+ Ions in Several Garnet Host Crystals,” IEEE J. of Quantum Electron. 34, 292–299 (1998). 12. R. Moncorge, H. Manna, F. Deghoul, Y. Guyot, Y. Kalisky, S.A. Pollack, E.V.Zharikov, M. Kokta, “Saturable and excited state absorption measurements in Cr4+:LuAG single crystals,” Optics Commun. 132, 279–284 (1996). 13. Y. Shimony, Z, Burshtein and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738-1741 (1995). 14. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346-2349 (1963). 15. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303-4307 (2001). 16. J. I. Mackenzie and D. P. Shepherd, “End-pump, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett. 27, 2161-2163 (2002). 17. H. Wu, P. Yan, M. Gong and Q. Liu, “A passively Q-switched diode pumped Yb:YAG microchip laser,” Chin. Opt. Lett. 1, 697-698 (2003). 18. V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471-473 (2005). 19. X. Zhang, A. Brenier, Q. Wang, Z. Wang, J. Chang, P. Li, S. Zhang, S. Ding and S. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express 13, 7708-7719 (2005). 20. Y. Kalisky, O. Kalisky, U. Rachum, G. Boulon and A. Brenier, “Comparative performance of passively Q-switched diode-pumped Yb:GGG, Yb:YAG and Yb-doped tungstates lasers using Cr4+-doped garnets,” Proc. of SPIE Vol. 6100, 61001K (2006). 21. K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica galss,” J. Appl. Phys. 91, 576-581 (2002). 22. A. E. Siegman, Laser, (University Science Books, Mill Valley, 1986).
chapter 4 1. M. Haiml, R. Grange, U. Keller, “Optical characterization of semiconductor saturable absorbers” Appl. Phys. B 79, 331 (2004). 2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Selected Topics in Quantum Electronics (JSTQE) 2, 435-453 (1996). 3. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080- 1082 (1993). 4. T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant saturable absorber mirror,” Opt. Lett. 32, 2677-2679 (2007). 5. S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, “Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression,” Opt. Express 16, 22058-22063 (2008). 6. J.Y. Huang, H.C. Liang, K.W. Su, H.C. Lai, Y.F. Chen and K.F. Huang, “InGaAs quantum-well saturable absorbers for a diode-pumped passively Q-switched Nd:YAG laser at 1123 nm,” Appl. Opt. 46, 2, 239-242 (2007). 7. A. Li, S.C. Liu, K.W. Su, Y.L. Liao, S.C. Huang, Y.F. Chen, K.F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3-μm lasers,” Appl. Phys. B 84, 3, 429-431 (2006). 8. K. Alavi, H. Temkin, W. R. Wagner, and A. Y. Cho, “Optically pumped 1.55-μm double heterostructure GaxAlyIn1-x-yAs/AluIn1-uAs lasers grown by molecular beam epitaxy,” Appl. Phys. Lett. 42, 254-256 (1983). 9. S.T. Huxtable, A. Shakouri, C. Labounty, X. Fan, P. Abraham, Y.J. Chiu, J.E. Bowers and A. Majumdar, “Thermal conductivity of indium phosphide based superlattices,” Microscale. Thermophys Eng, 4, 197–203 (2000). 10. V. Spagnolo, M. Troccoli, C. Gmachl, F. Capasso, A. Tredicucci, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, and G. Scamarcio, “Temperatureprofile of GaInAs/AlInAs/InP quantum cascade-laser facets measured by microprobe photoluminescence,” Appl. Opt. Lett. 78, 20952097 (2001). 11. S. R. Selmic, T. Chou, J. Sih, J. B. Kirk, A. Mantie, J. K. Butler, D. Bour, and G. A. Evans, “Design and characterization of 1.3-μm AlInGaAs/InP multiple-quantum-well lasers,” IEEE J. Sel. Topics Quantum Electron. 7, 340-349 (2001). 12. C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, J. J. Heieh, “High-performance uncooled 1.3-μm AlxGayIn1-x-yAs/InP strained-layer quantum-well lasers for subscriberloop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994). 13. S. C. Huang, S. C. Liu, A. Li, K. W. Su, Y. F. Chen, and K. F. Huang, “AlGaInAs quantum-well as a saturable absorber in a diode-pumped passively Q-switched solid-state laser,” Opt. Lett. 32, 1480–1482 (2007). 14. R. Grange, M. Haiml, R. Paschotta, G.J. Sp¨uhler, L. Krainer, M. Golling, O. Ostinelli, U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers” Appl. Phys. B 80, 151-158 (2005). 15. Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai, “Analysis of passively Q-switched lasers with simultaneous mode-locking,” IEEE J Quan. Electro. 38, 312-317 (2002). 16. V. N. Philippov, A. V. Kir’yanov, and S. Unger, “Advanced configuration of erbium fiber passively Q-switched laser with Co2+:ZnSe crystal as saturable absorber,” IEEE Photon. Technol. Lett. 16, 57–59, (2004). 17. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorgé, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27, 1980–1982 (2002). 18. V. Philippov, J. Nilsson, W. A. Clarkson, A. Abdolvand, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE, 5335, 8-15, (2004). 19. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D.J. Richardson, “Passively Q-switched 0.1 mJ fiber laser system at 1.53μm,” Opt. Lett. 24, 388-390 (1999). 20. J. B. Lecourt, G. Martel, M. Guézo, C. Labbé, and S. Loualiche, “Erbium-doped fiber laser passively Q-switched by an InGaAs/InP multiple quantum well saturable absorber,” Opt. Commun., 263, 71–83, (2006). 21. L. A. Zenteno, H. Po, and N. M. Cho, “All-solid-state passively Q-switched mode-locked Nd-doped fiber laser,” Opt. Lett. 15, 115-117 (1990). 22. Y. F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4-Cr4+:YAG laser,” IEEE J. Quantum Electron. 37, 580-586, (2001).
chapter 5 R. J. Collins and P. Kisliuk, “Control of Population Inversion in Pulsed Optical Masers by Feedback Modulation,” J. Appl. Phys. 33, 2009 (1962). 2. B. A. Davydov, V. R. Muratov, L N. Soms, A. I. Stepanov, and V. K. Stupnikov, “Q-switched neodymium-glass laser generating short pulses ,” Sov. J. Quant. Electron. 4, 1406-1407 (1975). 3. Valery N. Filippov, Andrei N. Starodumov, and Alexander V. Kir'yanov, "All-fiber passively Q-switched low-threshold erbium laser," Opt. Lett. 26, 343-345 (2001). 4. H. Cai, X. Jiangzhen, H. Zhao, C. Gaoting, F. Zujie, I. S. Kim, and Y. Kim, "All-fiber q-switched erbium laser using a fiber bragg grating placed in loop mirror as a wavelength-selective intensity modulator," in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThGG31. 5. M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16, 22064-22071 (2008). 6. H. L. Offerhaus, N. G. Broderick, D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, "High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber," Opt. Lett. 23, 1683-1685 (1998). 7. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, "Enhanced Q switching in double-clad fiber lasers," Opt. Lett. 23, 454-456 (1998). 8. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005). 9. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).W. Koechner, Solid State Laser Engineering, Chap 8, Springer (2006). 10. P. Myslinski, J. Chrostowski, J. A. K. Koningstein and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286-290 (1993). B. N. Upadhyaya, Usha Chakravarty, A. Kuruvilla, K. Thyagarajan, M. R. Shenoy, and S. M. Oak, "Mechanisms of generation of multi-peak and mode-locked resembling pulses in Q-switched Yb-doped fiber lasers," Opt. Express 15, 11576-11588 (2007). 12. Y. Wang, A. Martinez-Rios and Hong Po, “Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking,” Opt. Commun. 224, 113-123 (2003). 13. G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self modelocked erbium doped fiber laser,” Electron. Lett. 32, 332-333 (1996). 14. S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped fiber lasers and their application to OTDR,” J. Lightwave Technol. 20, 1506-1511 (2002).
|