跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/17 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱佳松
研究生(外文):Chiu, Chia-Sung
論文名稱:側向擴散金氧半電晶體之多諧波失真模型及表面聲波氣體感測器之設計
論文名稱(外文):Polyharmonic Distortion Model for LDMOS Device and SAW Gas Sensor Design
指導教授:吳霖堃
指導教授(外文):Wu, Lin-Kun
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:88
中文關鍵詞:側向擴散金氧半電晶體圓形佈局樣式多諧波失真模型非線性向量網路分析儀表面聲波
外文關鍵詞:laterally-diffused MOS transistorannular structurepolyharmonic distortion modelnonlinear vector network analyzersurface acoustic wave
相關次數:
  • 被引用被引用:1
  • 點閱點閱:486
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要針對主動元件在不同佈局結構、非線性模型與感測領域進行分析與應用。一般而言,半導體裡的主動元件,例如金氧半場效電晶體(MOSFET)或雙極性接面電晶體(BJT),為無線通訊系統或感測系統中最重要的元件之一。其元件特性足以影響應用系統裡的整體表現、價格與穩定性。而在一般無線通訊領域或基地台等遠距離的發射器,大都以側向擴散金氧半電晶體(laterally-diffused MOS transistor)作為主要之放大元件。在本研究中,首先提出了側向擴散金氧半電晶體之新型佈局樣式,利用圓形佈局樣式以達到低開啟通道電阻(On-resistance)與小面積的元件佈局。依據實驗的量測結果,圓形的佈局樣式因有較小的寄生電容與較高之轉導增益,所以有較高的截止頻率(fT)與最大震盪頻率(fmax)。除了小訊號分析外,論文中也進行大訊號特性分析比較。而在研究的量測結果,與傳統佈局樣式比較之下,圓形佈局樣式亦有較佳之大訊號特性表現。
除了功率元件佈局設計外,主動元件之非線性特性模型在設計與應用上也相形重要。在研究中,我們分析了多諧波失真模型,並且利用此模型模擬出主動元件的非線性行為。經由晶圓級非線性向量網路分析儀所萃取出之多諧波失真模型,在1.9GHz的操作頻率點,射頻側向擴散金氧半電晶體的大訊號特性模擬結果與傳統功率量測的結果一致,並且無需另外進行電腦最佳化與曲線近似處理。
論文中的另一部分,我們利用了半導體中的主動元件與表面聲波(Surface acoustic wave, SAW)延遲線元件進行感測器之設計與分析。研究中針對了元件的特性,進行此感測器之電性測試與氣體感測結果分析。在感測的實驗結果中,表面聲波感測器在50x103ppm的酒精氣體濃度裡,其中心訊號有近10kHz的訊號漂移。研究的最後並針對感測元件與系統,提出改進及可能的發展方向。
This dissertation presents the layout design, nonlinear modeling and sensing application in terms of active device. The active device, such as MOSFET or BJT in semiconductor, is one of the most important components of a wireless communication or sensing system generally. It plays a significant part in determining the overall performance, cost, and reliability of these application systems. In the world of RF wireless communications, the base-stations and long range transmitters use silicon laterally-diffused MOS (LDMOS) high power transistors almost exclusively. To achieve lower on-resistance and a more compact device size, this study adopted an annular structure in the layout design. According to the measurement results, the smaller drain parasitic resistance in the annular structure could be the key factor for improving ft and fmax. In additional to the small-signal analysis, the large-signal characteristics, such as power gain and power added efficiency, were also improved compared to the transitional structure of LDMOS.
In addition to high power device design, the behavior model of the nonlinear characteristics for active device is also crucial. In this study, we analyze the polyharmonic distortion model (PHD) and use this model to predict the nonlinear behavior of active device. By way of the PHD model extracted using on-wafer nonlinear vector network analyzer (NVNA), the large-signal validation of this model also shows a good match with measurements at 1.9 GHz without optimization and curve fitting.
In another part of this thesis, we discussed and analyzed the sensor design completely using CMOS active device and SAW delay-line device. Their electrical characteristics are evaluated as well as vapor sensing results. The sensing experimental results show that the maximum oscillation frequency shift between gas on and off is approximately 10 kHz with 50 x 103 ppm alcohol vapor concentration. Conclusions on the sensing device and system, and recommendations concerning potential improvements of these components are discussed, finally.
Chinese Abstract i
English Abstract iii
Acknowledgements v
Contents vii
List of Figures ix
List of Table xii

Chapter 1 Introduction
1.1 Introduction 1
1.2 Motivation 2
1.3 Dissertation Organization 4

Chapter 2 Characterization of Annular-structure RF LDMOS
2.1 Introduction 6
2.2 Annular-structure RF LDMOS 7
2.2.1 Device Design and Fabrication 7
2.2.2 DC Characteristics 8
2.2.3 High-frequency Characteristics 9
2.3 Annular-structure and Square-structure Comparison 11
2.3.1 Effective Transconductance Evaluation 11
2.3.2 Capacitances versus VGS and VDS 12
2.3.3 High-frequency Characteristics and Power Performance 13
2.4 Summary 15

Chapter 3 RF Transistor PHD Modeling
3.1 Introduction 27
3.2 Polyharmonic Distortion Model Theory 29
3.3 RF Active Device Power Characteristics 35
3.3.1 Measurement Setup and On-wafer Calibration 35
3.3.2 Linearity and Power Performance 36
3.4 Summary 37

Chapter 4 Sensing Application
4.1 Introduction 47
4.2 Basic Sensing Mechanism 48
4.3 Circuit Design and Experiments 50
4.3.1 Device Design and Fabrication 50
4.3.2 Sensing System 53
4.4 Results and Discussion 54
4.5 Summary 55

Chapter 5 Conclusion and Recommendations
5.1 Conclusion 66
5.2 Recommendations for Future Work 68

Reference 69
Appendix 1 80
Appendix 2 87
Biography
[1]K. Nellis and P. J. Zampardi, “A comparison of linear handset power amplifiers in different bipolar technologies,” IEEE J. Solid-State Circuits, vol. 39, pp. 1746-1754, Oct. 2004.
[2]R. Gotzfried, F. Beisswanger, S. Gerlach, A. Schuppen, H. Dietrich, U. Seiler, K. –H. Bach, and J. Albers, “RFIC’s for mobile communication systems using SiGe bipolar technology,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 5, pp. 661-668, May 1998.
[3]J. H. Kim, K. Y. Kim, Y. H. Choi, and C. S. Park, “A power efficient W-CDMA smart power amplifier with emitter area adjusted for output power levels,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 1165-1168.
[4]S. M. Sze, Semiconductor Sensors. New York, NY: John Wiley & Sons, 1994.
[5]F. Hassani, O. Tigli, S. Ahmadi, C. Korman and M. Zaghloul, “Integrated CMOS surface acoustic wave gas sensor design and characteristics,” Proc. IEEE Sensors, vol. 2, pp. 1199-1202, 2003
[6]S. Ahmadi, C. Korman, M. Zaghloul, and K. H. Huang, “CMOS integrated gas sensor chip using SAW technology,” Proc. 4th Int. Symp. Circuits and Systems, vol. 4, pp. 848-851, 2003
[7]H. J. Sigg, G. D. Vendelin, T. P. Cauge, and J. Kocsis, “D-MOS transistor for microwave applications,” IEEE Trans. Electron Devices, vol. 19, no. 1, pp. 45-53, 1972.
[8]M. Schroter, S. Lehmann, S. Fregonese, and T. Zimmer, “computationally efficient physics-based compact bipolar transistor model for circuit design – Part I: Model formulation,” IEEE Trans. Electron Devices, vol. 53. no. 2, pp. 279-286, Feb. 2006.
[9]W. Liu, MOSFET Models for SOICE Simulation, Including BSIM3v3 and BSIM4, New York, NY: Wiley, 2001.
[10]Y. P. Tsividis, Operation and Modeling of the MOS Transistor, New York, NY: McGraw-Hill, 1987.
[11]A. G. Baca, E. J. Heller, V. M. Hietala, S. A. Casalnuovo, G. C. Frye-Mason, J. F. Klem, and T. J. Drummond, “Development of a GaAs monolithic surface acoustic wave integrated circui,” IEEE J. Solid-State Circuits, vol. 34, pp. 1254-1258, Sep. 1999.
[12]Y. T. Shen, C. L. Huang, R. Chen, and L. Wu, “A novel SH-SAW sensor system,” Sens. Actuators B, vol. 107, pp. 283-290, 2005.
[13]S. J. Ippolito, A. Ponzoni, K. Kalantar-Zadeh, W. Wlodarski, E. Comini, G. Faglia, G. Sberveglieri, “Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity,” Sens. Actuators B, vol. 117, pp. 442-450, 2006.
[14]M. Shindo, M. Morikawa, T. Fujioka, K. Nagura, K. Kurotani, K. Odaira, T. Uchiyama, and I. Yoshida, “High power LDMOS for cellular Base station application,” ISPSD, pp. 107-110, 2001.
[15]J. Cai, C. Ren, N. Balasubramanian, and J. K. O. Sin, “A novel high performance stacked LDD RF LDMOSFET,” IEEE Electron Device Lett. Vol. 22, pp. 236-238, 2001.
[16]M. Kondo, N. Sugii, Y. Hoshino, W. Hirasawa, Y. Kimura, M. Miyamoto, T. Fujioka, S. Kamohara, Y. Kondo, S. Kimura, and I. Yoshida, “Thick-Strained-Si/Relaxed-SiGe structure of high-performance RF power LDMOSFETs for cellular handsets,” in IEDM Tech. Dig., pp. 365, 2005.
[17]R. Valtonen, J. Olsson, and P. De Wolf, “Channel length extraction for DMOS transistors using capacitance-voltage measurements,” IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1454-1459, Jul. 2001.
[18]K. Narasimhulu, M. P. Desai, S. G. Narendra, and V. R. Rao, “The effect of LAC doping on deep submicrometer transistor capacitances and its influence on device RF performance,” IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1416-1423, Sep. 2004.
[19]S. Frére, J. Rhayem, H. Adawe, R. Gillon, M. Tack, and A. Walton, “LDMOS capacitance analysis versus gate and drain biases, based on comparison between TCAD simulations and measurements,” in Proc. IEEE ESSDERC, Sep. 2001, pp. 219-222.
[20]D. Teeter and W. R. Curtice, “Comparison of hybrid pi and tee HBT topologies and their relationship to large signal modeling,” in IEEE Int. Microwave Symp. Dig., 1997, pp. 375-378.
[21]S. F. Tin, A. A. Osman, K. Mayaram, and C. Hu, “A simple subcircuit extension of the BSIM3v3 model for CMOS RF design,” IEEE J. Soled-State Circuits, vol. 45, pp. 612-624. Apr. 2000.
[22]A. G. Baca, E. J. Heller, V. M. Hietala, S. A. Casalnuovo, G. C. Frye-Mason, J. F. Klem, and T. J. Drummond, “Development of a GaAs monolithic surface acoustic wave integrated circui,” IEEE J. Solid-State Circuits, vol. 34, pp. 1254-1258, Sep. 1999.
[23]T. W. Grudkowski, G. K. Montress, M. Gilden, and J. F. Black, “Integrated circuit compatible surface acoustic wave device on gallium arsenide,” IEEE Trans. Microwave Theory Tech., vol. 29, pp. 1348-1356, Dec. 1981.
[24]F. van Rijs and S. J. C. H. Theeuwen, “Efficiency improvement of LDMOS transistors for base stations: Towards the theoretical limit,” in IEDM Tech. Dig., Dec. 2006, pp. 11-13.
[25]P. Lopez, M. Oberst, H. Neubauer, and J. Hauer, “Performance analysis of high-speed mos transistors with different layout styles,” in ISCAS, May
[26]H. H. Hu, “Layout design and thermal characterizations of RF LDMOS,” Ph.D. dissertation, Dept. Elect. Eng., Chiao Tung Univ., Hsinchu, Taiwan, R.O.C..
[27]B. Razavi, K. F. Lee, and R. H. Yan, “Design of high-speed, low-power frequency dividers and phase-locked loops in deep submicron CMOS,” IEEE J. Solid-State Circuits, vol. 30, no. 2, pp. 101-109, Feb. 1995.
[28]A Van den Bosch, M. S. J. Steyaert, and W. Sansen, “A high-density, matched hexagonal transistor structure in standard CMOS technology for high speed applications,” IEEE Trans. On Semiconductor manufacturing, vol. 14, no. 2, pp. 167-172, May 2000.
[29]Xibo Zhang, Sang Lam Ko P. K., and Mansun Chan, “High-speed mixed signal and RF circuit design with compact waffle MOSFET,” in IEEE Electron Devices Meeting, 2002, pp. 103-106.
[30]R. Valtonen, J. Olsson, and P. De Wolf, “Channel length extraction for DMOS transistors using capacitance-voltage measurements,” IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1454-1459, Jul. 2001.
[31]Y. S. Chauhan, F. Krummenacher, C. Anghel, R. Gillon, B. Bakeroot, M. Declercq, and A. M. Ionescu, “Analysis and modeling of lateral non-uniform doping in high-voltage MOSFETs,” in IEDM Tech. Dig., Dec. 2006, pp. 1-4.
[32]K. Narasimhulu, M. P. Desai, S. G. Narendra, and V. R. Rao, “The effect of LAC doping on deep submicrometer transistor capacitances and its influence on device RF performance,” IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1416-1423, Sep. 2004.
[33]H. H. Hu, K. M. Chen, G. W. Huang, C. Y. Chang, Y. C. Lu, Y. C. Yang, and E. Cheng, “Characterization of RF lateral-diffused metal-oxide-semiconductor field-effect transistors with different layout structures,” Jpn. J. Appl. Phys., vol. 46, no. 4B, pp. 2032-2036, Apr. 2007.
[34]F. M. Rotella, G. Ma, Z. Yu, and R. W. Dutton, “Modeling, analysis, and design of RF LDMOS devices using harmonic-balance device simulation,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 6, pp. 991-999, 2000.
[35]P. H. Aaen, J. A. Plá, and J. Wood, Modeling and Characterization of RF and Microwave Power FETs, New York, Cambridge University Press, 2007.
[36]C. M. Liu and J. B. Kuo, “Quasi-saturation capacitance behavior of a DMOS device,” IEEE Trans. Electron Devices, vol. 44, no. 7, pp. 1117-1123, Jul. 1997.
[37]S. C. Wang, G. W. Huang, K. M. Chen, A. S. Peng, H. C. Tseng, and T. L. Hsu, “A practical method to extract extrinsic parameters for the silicon MOSFET small-signal model,” in Proc. NSTI Nanotechnology Conference & Trade Show (Nanotech 2004), 2004, pp. 151-154.
[38]J. Jang, O. Tornblad, T. Arnborg, Q. Chen, K. Banerjee, Z. Yu, and R. W. Dutton, “RF LDMOS characterization and its compact modeling,” IEEE MTT-S Digest, pp. 967-970. 2001.
[39]T. C. Lim and G. A. Armstronga, “The impact of the intrinsic and extrinsic resistances of double gate SOI on RF performance,” Solid-State Electron., vol. 50, pp. 774-783, 2006.
[40]A. Giraldo, A. Paccagnella, A. Minzoni, “Aspect ratio calculation in n-channel MOSFETs with a gate-enclosed layout,” Solid State Electron., vol. 44, pp. 981-989, 2000.
[41]H. H. Hu, K. M. Chen, G. W. Huang, M. Y. Chen, E. Cheng, Y. C. Yang, and C. Y. Chang, “Temperature-dependent capacitance characteristics of RF LDMOS transistors with different layout structure,” IEEE Electron Device Lett., Vol. 29, no. 7, pp. 784-787, Jul. 2008.
[42]H. Cho and D. E. Burk, “A three-step method for the de-embedding of high-frequency S- parameter measurement,” IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1371-1375, Jun. 1991.
[43]D. Bridges, J. Wood, M. Guyonnet, and P.H. Aaen, “A nonlinear electro-thermal model for high power RF LDMOS transistors,” in IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, June 2008.
[44]C. Fager, J. Pedro, N. Carvalho, and H. Zirath, “Prediction of IMD in LDMOS transistor amplifiers using a new large-signal model,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 12, pp. 2834-2842, Dec. 2002.
[45]M. Miller, T. Dinh, and E. Shumate, “A new empirical large signal model for silicon RF LDMOS FETs,” in IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, pp. 19-22, 1997.
[46]J. Xu, D. Gunyan, M. Iwamoto, A. Cognata, and D. E. Root, “Measurement-based non-quasi-static large-signal FET model using artificial neural networks,” in IEEE MTT-S Int. Microwave. Symp. Dig., San Francisco, CA, Jun. 2006, pp. 469-472.
[47]J. Verspecht, and D. E. Root, “Polyharmonic Distortion Modeling,” IEEE Microwave Magazine, vol. 7, no. 3, pp.44-57, June 2006.
[48]D. E. Root, J. Verspecht, D. Sharrit, J. Wood, and A. Cognata, “Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurements,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 11, pp. 3656-3664, Nov. 2005.
[49]D. M. Pozar, Microwave Engineering, 3rd edition, New York: John Wiley & Sons, 2001.
[50]C. S. Chiu, K. M. Chen, G. W. Huang, C. H. Hsiao, K. H. Liao, W. L. Chen, S. C. Wang, M. Y. Chen, Y. C. Yang, K. L. Wang and L. K. Wu, “Characterization of annular-structure RF LDMOS transistors using polyharmonic distortion model,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, Jun. 2009, Paper WEPG-3.
[51]J. Verspecht, D. F. Williams, D. Schreurs, K. A. Remley, and M. D. Mckinley, “Linearization of large-signal scattering functions,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 4, pp. 1369-1376, Apr. 2005.
[52]J. C. Andle and J. F. Vetelino, ”Acoustic wave biosensors,” Proc. IEEE Ultrasonics Symp., vol. 1, pp. 451-460, 1995.
[53]G. B. Kim, W. S. Chong, T. K. Kwon, K. Hohkawa, C. U. Hong, and N. G. Kim, “Basic study to develop biosensors using surface acoustic waves,” Jpn. J. Appl. Phys., vol. 44, no. 4B, pp. 2868-2873, 2005.
[54]D. S. Ballantine, R. M. White, S. J. Martin, A. J. Ricco, E. T. Zellers, G. C. Frye, and H. Wohltjen: Acoustic Wave Sensors (Academic, San Diego, CA, 1997).
[55]F. Hassani, O. Tigli, S. Ahmadi, C. Korman and M. Zaghloul, “Integrated CMOS surface acoustic wave gas sensor design and characteristics,” Proc. IEEE Sensors, vol. 2, pp. 1199-1202, 2003.
[56]S. Ahmadi, C. Korman, M. Zaghloul, and K. H. Huang, “CMOS integrated gas sensor chip using SAW technology,” Proc. 4th Int. Symp. Circuits and Systems, vol. 4, pp. 848-851, 2003.
[57]A. G. Baca, E. J. Heller, V. M. Hietala, S. A. Casalnuovo, G. C. Frye-Mason, J. F. Klem, and T. J. Drummond, “Development of a GaAs monolithic surface acoustic wave integrated circui,” IEEE J. Solid-State Circuits, vol. 34, pp. 1254-1258, Sep. 1999.
[58]T. W. Grudkowski, G. K. Montress, M. Gilden, and J. F. Black, “Integrated circuit compatible surface acoustic wave device on gallium arsenide,” IEEE Trans. Microwave Theory Tech., vol. 29, pp. 1348-1356, Dec. 1981.
[59]H. Wohltjen, “Mechanism of operation and design considerations for surface acoustic wave device vapour sensor,” Sens. Actuators vol. 5, pp. 307-325, 1984.
[60]V. M. Ristic: Rrinciples of Acoustic Device (Wiley, New York, 1983) p. 19.
[61]T. E. Parker and G. K. Montress, “Precision surface-acoustic-wave (SAW) oscillators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 35, pp. 342-364, May 1988.
[62]J. W. Gardner, V. K. Varadan, and O. O. Awadelkarim: Microsensors, MEMS and Smart Devices (Wiley, New York, 2001) p. 307.
[63]Y. T. Shen, C. L. Huang, and L. Wu, “ Using shear horizontal surface acoustic wave with polyaniline film as ammonia sensor,” Jpn. J. Appl. Phys., vol. 44, no. 4A, pp. 1844-1846, 2005.
[64]Y. T. Shen, C. L. Huang, R. Chen, and L. Wu, “A novel SH-SAW sensor system,” Sens. Actuators B, vol. 107, pp. 283-290, 2005.
[65]S. J. Ippolito, A. Ponzoni, K. Kalantar-Zadeh, W. Wlodarski, E. Comini, G. Faglia, and G. Sberveglieri, “Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity,” Sens. Actuators B, vol. 117, pp. 442-450, 2006.
[66]T. Sadek and P. M. Smith, “Low voltage saw oscillator,” Proc. 1st IEEE Electrical and Computer Engineering Conf., pp. 117-120, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top