[1] Jacob E. Fromm, ”A method for reducing dipersion in convective difference schemes”, Journal of Computational Physics, Vol. 3, pp. 176-189 (1968).
[2] Robert W. MacCormack, “The effect of viscosity in hypervelocity impact cratering”, AIAA Paper, 69-354 (1969).
[3] Jack R. Edward and Meng-Sing Liou, “Low-Diffusion Flux-Splitting Methods for Flows at All Speeds”, AIAA Journal, Vol. 36, No. 9, pp. 1610-1617 (1998).
[4] H. Luo, J. D. Baum and R. Lohner, “Extension of Harten-Lax-Van Leer scheme for flows at all speeds”, AIAA Journal, Vol. 43, No. 6, pp. 1160-1166 (2005).
[5] A. J. Chorin, “A Numerical Method for Solving Incompressible Viscous Flow Problems,” Jounal of Computational Physics, vol. 2, pp. 12-26 (1967).
[6] A. Rizzi and L. E. Eriksson, “Computation of Inviscid Incompressible Flow with Rotation,” J. Fluid Mech., vol. 153, no. 3, pp. 275-312 (1985).
[7] D. Choi and C. L. Merkle, “Application of Time-Iterative Schemes to Incompressible Flow,” AIAA Jounal, vol 23, pp. 1518-1524 (1985).
[8] J. M. Weiss and W. A. Smith, “Preconditioning Applied to Variable and Constant Density Time-Accurate Flows on Unstructured Meshes,” AIAA Jounal, vol. 33, No. 11, pp. 2050-2057 (1995).
[9] V. Venkatakrishnan, “Preconditioned conjugate gradient methods for the compressible Navier-Stokes equations”, AIAA Journal, Vol. 29, No. 7, pp. 1092-1100 (1991).
[10] Y. H. Choi and C. L. Merkle, “The Application of Preconditioning in Viscous Flows,” Jounal of Computational Physics, vol. 105, No. 2, pp. 207-223 (1993).
[11] E. Turkel, “Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations,” Jounal of Computational Physics, vol. 72, No. 2, pp. 277-298 (1987).
[12] L. D. Daily and R. H. Pletcher, “Evauation of Multigrid Acceleration for Preconditioned Time-Accurate Navier-Stokes Algorithm,” AIAA Paper, 95-1668, Jan. (1995).
[13] C. M. Rhie, “A Pressure-Based Navier-Stokes Solver Using the Multigrid AIAA Paper, 86-0207 (1986).
[14] K. C. Karki and S. V. Patankar, “Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations”, AIAA Journal, Vol. 27, No. 9, pp. 1167-1174 (1989).
[15] F. S. Lien and M. A. Leschziner, ”A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure”, ASME Journal of Fluids Engineering, Vol. 115, pp. 717-725 (1993).
[16] I. Demirdzic, Z. Lilek and M. Preic, ”A Collocated Finite Volume Method for Predicting Flows at All Speeds”, International Journal for Numerical Methods in Fluids, Vol. 16, pp. 1029-1050 (1993).
[17] F. S. Lien and M. A. Leschziner, “A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation”, Computer Methods in Applied Mechanics and Engineering, Vol. 114, pp. 123-148 (1994).
[18] M. S. Darwish and F. H. Moukalled, “Normalized variable and space formulation methodology for high-resolution schemes”, Numerical Heat Transfer, Part B, Vol. 26, pp. 79-96 (1994).
[19] M. S. Darwish and F. Moukalled, “An efficient very-high-resolution scheme based on an adaptive-scheme strategy”, Numerical Heat Transfer, Part B, Vol. 34, pp. 191-213 (1998).
[20] Y.-Y. Tsui and T.-C. Wu, “A Pressure-Based Unstructured Grid Calculation for Compressible Flow”, The 10th National Computational Fluid Dynamics Conference Hua-Lien, August, pp. A3-1- 8, 2003.(利用壓力法之無結構性網格可壓縮流計算)
[21] Yen-Sen Chen, Huan-Min Shang and Chien-Pin Chen, “Unified CFD Algorithm with a pressure based method”, 6th ISCFD, September (1995).
[22] R. I. Issa and F. C. Lockwood, “On the prediction of two-dimensional supersonic viscous interactions near walls”, AIAA Journal, Vol. 15, No. 2, pp. 182-188 (1977).
[23] F. Moukalled and M. Darwish, “A High-Resolution Pressure-Based Algorithm for Fluid Flow at All Speeds”, Journal of Computational Physics, Vol. 168, pp. 101-133 (2001).
[24] James J. McGuirk and Gary J. Page, “Shock Capturing Using a Pressure-Correction Method”, AIAA Journal, Vol. 28, No. 10, pp. 1751-1657 (1990).
[25] Stephen F. Wornom and Mohamed M. Hafez, “Calculation of quasi-one-dimensional flows with shocks”, Computers and Fluids, Vol. 14, No. 2, pp. 131-140 (1986)
[26] M. H. Kobayashi and J. C. F. Pereira, “Characteristic-based pressure correction at all speeds”, AIAA Journal, Vol. 34, No. 2, pp. 272-280 (1996).
[27] R. I. Issa and M. H. Javareshkian, “Application of TVD schemes in pressure-based finite-volume methods”, Proceedings of the Fluids Engineering Division Summer Meeting, Vol. 3, American Society of Mechanical Engineers, New York, pp. 159-164 (1996).
[28] Bram Van Leer, “Towards the ultimate conservative difference scheme. Ⅴ. A second-order sequel to Godunov's method”, Journal of Computational Physics, Vol. 32, pp. 101-136 (1979).
[29] P. L. Roe, “Fluctuations and signals - A framework for numerical evolution problems”, Numerical Methods for Fluid Dynamics, Proceedings Conference, Reading, pp. 219-257 (1982).
[30] Ami Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of computational physic, Vol. 49, pp. 357-393 (1983).
[31] S. R. Chakravarthy and S. Osher, “High resolution of the OSHER upwind scheme for the Eluer equations”, AIAA paper, 83-1943 (1983).
[32] Ami Harten, “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM Journal Numerical Analysis, Vol. 21, No. 1, February, pp. 1-23 (1984).
[33] Ami Harten and Stanley Osher, “Uniformly high order accurate essentially non-oscillatory schemes, Ⅰ”, SIAM Journal Numer. Anal. , Vol. 24, No. 2, pp. 279-309, April (1987).
[34] H. C. Yee, “Construction of explicit and implicit symmetric TVD scheme and their applications”, Journal of Computational Physics, Vol. 68, pp. 151-179 (1987).
[35] H. Takami and H. B. Keller, “Steady Two-Dimensional Viscous Flow of an Incompressible Fluid Past a Circular Cylinder”, Phys. Fluids Suppl. II, pp. 51–56 (1969).
[36] B. P. Leonard, “A survey of finite differences with upwinding for numerical modelling of the incompressible convection diffusion equation”, C. Taylor and K. Morgan, Computational Techniques in Transient and Turbulent Flow, Pineridge Press, Swansea, U. K., Vol.2, pp. 1-35 (1981).
[37] B. P. Leonard, “Simple high-accuracy resolution program for convective modeling of discontinuities”, International Journal for Numerical Methods in Fluids, Vol. 8, pp. 1291-1318 (1988).
[38] B. P. Leonard, “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection”, Computer Methods in Applied Mechanics and Engineering, Vol. 88, pp. 17-74 (1991).
[39] Herng Lin and Ching-Chang Chieng, “Characteristic-based flux limiters of an essentially third-order flux-splitting method for hyperbolic conservation laws”, International Journal for Numerical Methods in Fluids, Vol. 13, pp. 287-307 (1991).
[40] B. Van Leer, “Upwind difference methods for aerodynamics governed by the Euler equations”, Lectures in applied mathematics, (B. Engquist, S. Osher, R. Sommerville eds.), Vol. 22, Part Ⅱ, pp. 327-336, AMS, Providence, RI. (1985).
[41] Dartzi Pan and Jen-Chieh Cheng, “A second-order upwind finite-volume method for the EULER solution on unstructured triangular meshes”, International Journal for Numerical Methods in Fluids, Vol. 16, pp. 1079-1098 (1993).
[42] N. P. Waterson and H. Deconinck, “A unified approach to the design and application of bounded higher-order convection schemes”, VKI Preprint 1995-21 (1995).
[43] S. K. Choi, H. Y. Nam and M. Cho, “Evaluation of a high-order bounded convection scheme: three-dimensional numerical experiment”, Numerical Heat Transfer, Part B, Vol. 28, pp. 23-38 (1995).
[44] B. Song, G. R. Liu, K. Y. Lam and R. S. Amano, “On a higher-order discretization scheme”, International Journal for Numerical Methods in Fluids, Vol. 32, pp. 881-897 (2000).
[45] M. A. Alves, P. J. Oliveira and F. T. Pinho, “A convergent and universally bounded interpolation scheme for the treatment of advection”, International Journal for Numerical Methods in Fluids, Vol. 41, pp. 47-75 (2003).
[46] Y.-Y. Tsui and T.-C. Wu, “A Pressure-Based Unstructured-Grid Algorithm Using High-Resolution Schemes for All-Speed Flows”, Numer. Heat Transfer, B, vol. 53, pp. 75-96 (2008).
[47] H. C. Yee , R. F. Warming and A. Harten, “Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations”, Journal of Computational Physics, Vol. 57, pp. 327-360 (1985).
[48] W. Shyy and S. Thakur, “Controlled variation scheme in a sequential solver for recirculating flows”, Numerical Heat Transfer, Part B, Vol. 25, No. 3, pp. 273-286 (1994).
[49] W. A. Mulder and B. Van Leer, “Experiments with implicit upwind methods for the Euler equations”, Journal of Computational Physics, Vol. 59, pp. 232-246 (1985).
[50] S. V. Patankar and D. B. Spalding, ”A calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal Heat Mass Transfer, Vol. 15, pp. 1787-1806 (1972).
[51] S. G. Rubin and P. K. Khosla, ”A diagonally dominant second order accurate implicit scheme”, Computers and Fluids, Vol. 2, pp. 207-209 (1974).
[52] M. Hafez, J. South and E. Murman, “Artificial compressibility methods for numerical solutions of transonic full potential equation”, AIAA Journal, Vol. 17, No. 78-1148R, pp. 838-844 (1979).
[53] C. M. Rhie and W. L. Chow, “Numerical Study of Turbulent Flow Past an Airfoil with Trailing Edge Separation”, AIAA Journal, Vol. 21, pp. 1525-1532 ( 1983).
[54] P. K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM Journal Numerical Analysis, Vol. 21, No. 5, October, pp. 995-1011 (1984).
[55] S. F. Wornom, ”A two-point difference scheme for computing steady-state solutions to the conservative one-dimensional Euler equations”, Computers and Fluids, Vol. 12, No. 1, pp. 11-30 (1984).
[56] P. H. Gaskell and A. K. C. Lau, “Curvature-compensated convective transport: SMART, A new boundedness-preserving transport algorithm”, International Journal for Numerical Methods in Fluids, Vol. 8, pp. 617-641 (1988).
[57] S. Majumdar, “Role of Under-relaxation in Momentum Interpolation for Calculation of Flow with Nonstaggered Grids”, Numerical Heat Transfer, Vol. 13, pp. 125-132 (1988).
[58] M. Peric, R. Kessler and G. Scheuerer, “Comparison of Finite-Volume Numerical Methods with Staggered and Collocated Grids”, Computers & Fluids Vol. 16, No. 4, pp. 389-403 (1988).
[59] J. Zhu and M. A. Leschziner, “A local oscillation-damping algorithm for higher-order convection schemes”, Computer Methods in Applied Mechanics and Engineering, Vol. 67, pp. 355-366 (1988).
[60] Timothy J. Barth and Dennis C. Jespersen, “The Design and application of upwind schemes on unstructured meshes”, AIAA Paper, 89-0366 (1989).
[61] J. Peraire, K. Morgan and J. Peiro, “Numerical grid generation”, Von Karman Institute for Fluid Dynamics, Lecture series 1990-06, June, pp. 11-15 (1990).
[62] J. Zhu, “A low-diffusive and oscillation-free convective scheme Communications In Applied Numerical Methods, Vol. 7, pp. 225-232 (1991).
[63] J. Zhu and W. Rodi, “A low-diffusive and bounded convection scheme”, Computer Methods in Applied Mechanics and Engineering, Vol 92, pp. 87-96 (1991).
[64] V. Venkatakrishnan, “On the accuracy of limiters and convergence to steady state solutions”, AIAA Paper, 93-0880 (1993).
[65] S. Parameswaran and Ilker Kiris, “A Steady Shock-Capturing Pressure-Based Computational Procedure for inviscid Two-Dimentional Transonic Flows”, Numerical Heat Transfer, Part B, Vol. 23, pp. 221-236 (1993).
[66] F. Moukalled and M. Darwish, “New bounded skew central difference scheme, Part Ⅱ: Application to natural convection in an eccentric annulus”, Numerical Heat Transfer, Part B, Vol. 31, pp. 111-133 (1997).
[67] F. Moukalled and M. Darwish, “New bounded skew central difference scheme, Part Ⅰ: Formulation and testing”, Numerical Heat Transfer, Part B, Vol. 31, pp. 91-110 (1997).
[68] F. Moukalled and M. Darwish, “A New family of streamline-based very-high-resolution schemes”, Numerical Heat Transfer, Part B, Vol. 32, pp. 299-320 (1997).
[69] F. Moukalled and M. S. Darwish, “New family of adaptive very high resolution schemes”, Numerical Heat Transfer, Part B, Vol. 34, pp. 215-239 (1998).
[70] F. S. Lien and M. A. Leschziner, “Upstream monotonic interpolation for scalar transport with application to complex turbulent flows”, International Journal for Numerical Methods in Fluids, Vol. 19, pp. 527-548 (1994).
[71] R. I. Issa and M. H. Javareshkian, “Pressure-Based Compressible Calculation Method Utilizing Total Variation Diminishing Schemes”, AIAA Journal, Vol. 36, No. 9, pp. 1652-1657 (1998).
[72] H. Jasak, H. G. Weller and A. D. Gosman, “High resolution NVD differencing scheme for arbitrarily unstructured meshes”, International Journal for Numerical Methods in Fluids, Vol. 31, pp. 431-449 (1999).
[73] Fue-Sang Lien, “A pressure-based unstructured grid method for all-speed flows”, International Journal for Numerical Methods in Fluids, Vol. 33, pp. 355-374 (2000).
[74] F. Moukalled and M. Darwish, “A unified formulation of the segregated class of algorithms for fluid flow at all speeds”, Numerical Heat Transfer, Part B, Vol. 37, pp. 103-139 (2000).
[75] P. Jawahar and Hemant Kamath, “A high-Resolution Procedure for Euler and Navier-Stokes computations on unstructured grids”, Journal of Computational Physics, Vol. 164, pp. 165-203 (2000).
[76] Hou Ping-Li, Tao Wen-Quan and Yu Mao-Zheng, “Refinement of the convective boundedness criterion of Gaskell and Lau”, Engineering Computations, Vol. 20, No. 8, pp. 1023-1043 (2003).
[77] Hyung-Il Choi, Dohyung Lee and Joo-Sung Maeng, “A Node-Centered Pressure-Based Method for All Speed Flows on Unstructured Grids,” Numerical Heat Transfer, B vol. 44, pp. 165–185 (2003).
[78] Hrvoje Jasak, “Error analysis and estimation for the finite volume method with applications to fluid flows”, PhD thesis, Imperial College, University of London, June (1996).
[79] Y.-Y. Tsui and T.-C. Wu, “Use of Characteristic-Based Flux Limiters in a Pressure-Based Unstructured-Grid Algorithm Incorporating High- Resolution Schemes”, Numerical Heat Transfer, B vol. 55, pp. 14–34 (2009).
[80] L. S. Caretto, R. M. Curr, and D. B. Spalding, “Two Numerical Methods for Three Dimensional Boundary Layers,” Methods Appl. Mech. Engrg., vol. 1, pp. 39 (1972).
[81] Samir Muzaferija, “Adaptive Finite Volume Method for Flow Prediction Using Unstructured Meshes and Multigrid Approach”, PhD thesis, Imperial College, University of London, March (1994).
[82] Suhas V. Partankar, “Computer analysis of fluid flow and heat transfer”, C. Taylor and K. Morgan, Computational Techniques in Transient and Turbulent Flow, Pineridge Press, Swansea, U. K., Vol.2, pp. 223-252 (1981).
[83] R. Fletcher, “Conjugate Gradient Methods for Indefinite Systems”, Lecture Notes in Mathematics, Vol. 506, pp. 773-789 (1976).
[84] Y.-Y. Tsui and Y.-F. Pan, “A Pressure-Correction Method for Incompressible Flows Using Unstructured Meshes”, Numer. Heat Transfer B, vol. 49, pp. 43-65 (2006).
[85] W. K. Anderson, J. L. Thomas, and B. Van Leer, “Comparison of Finite Volume Flux Vector Splitting for the Euler Equations”, AIAA J., vol. 24, No. 9, pp. 1453-1460 (1986).
[86] S. R. Mathur and J. Y. Murthy, “A pressure-Based method for unstructured meshes”, Numerical Heat Transfer, Part B, Vol. 31, 195-215 (1997).
[87] D. B. Spalding, “A Novel Finite Difference Formulation for Differential Expression Involving Both First and Second Derivatives”, Int. J. Numer. Meth. Eng., vol. 4, pp. 551-559 (1972).
[88] B. P. Leonard, “A stable and accurate convective modelling procedure based on quadratic interpolation”, Computer Methods in Applied Mechanics and Engineering, Vol. 19, pp. 59-98 (1979).
[89] Bram Van Leer, “Towards the ultimate conservative difference scheme. Ⅱ. Monotonicity and conservation combined in a second-order scheme”, Journal of Computational Physics, Vol. 14, pp. 361-370 (1974).
[90] J. P. Borris and D. L. Brook, “Flux corrected transport Ⅰ: SHASTA, A fluid transport algorithm that works”, Journal of Computational Physics, Vol. 11, pp. 38-69 (1973).
[91] D. L. Brook, J. P. Borris and K. Hain, “Flux corrected transport Ⅱ: Generalizations of the method”, Journal of Computational Physics, Vol. 18, pp. 248-283 (1975).
[92] J. P. Borris and D. L. Brook, “Solutions of the continuity equation by the method of flux corrected transport”, Journal of computational physics, Vol. 16, pp. 85-129 (1976).
[93] J. P. Borris and D. L. Brook, “Flux corrected transport Ⅲ: Minimal-error FCT algorithms”, Journal of Computational Physics, Vol. 20, pp. 397-431 (1976).
[94] Bram Van Leer, “Towards the ultimate conservative difference scheme. Ⅲ. Upstream-centered finite-difference scheme for ideal compressible flow”, Journal of Computational Physics, Vol. 23, pp. 263-275 (1977).
[95] Bram Van Leer, “Towards the ultimate conservative difference scheme. Ⅳ. A new approch to numerical convection”, Journal of Computational Physics, Vol. 23, pp. 276-299 (1977).
[96] C. W. S. Bruner, “Parallelization of the Euler Equations on Unstructured Grids”, AIAA paper 97-1894 (1997).
[97] M. Chapman, “FRAM nonlinear damping algorithm for the continuity equation”, Journal of Computational Physics, Vol. 44, pp. 84-103 (1981).
[98] M. Peric, “Analysis of pressure-velocity coupling on nonorthogonal grids”, Numerical Heat Transfer, Part B, Vol. 17, pp. 63-82 (1990).
[99] P. L. Roe, “Approximate Riemann solvers, parameter vectors and difference schemes”, Journal of computational Physics, Vol. 43, No. 7, pp. 357-372 (1981).
[100] P. L. Roe, “Characteristic-based schemes for the Euler equations”, Fluid Mech., Vol. 18, pp. 337-365 (1986).
[101] M. S. Darwish, “A new high-resolution scheme based on the normalized variable formulation”, Numerical Heat Transfer, Part B, Vol. 24, pp. 353-371 (1993).
[102] B. Koren, “A robust upwind discretization method for advection, diffusion and source terms”, Numerical Methods for Advection-Diffusion Problems, Ed. C. B. Vreugdenhil & B. Koren, Vieweg, Braunschweig, pp. 117-138 (1993).
[103] G. D. Van Albada, B. Van Leer and W. W. Roberts, “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophysics, Vol. 108, pp. 76-84 (1982)
[104] G. Zhou, “Numerical Simulations of Physical Discontinuities in Single and Multi-fluid Flows for Arbitrary Mach Numbers”, PhD Thesis, Chalmers University of Tech., Goteborg, Sweden (1995).
[105] P. W. Hemker and B. Koren, “Multigrid, Defect Correction and UpwindSchemes for the Steady avier-Stokes Equations,” Synopsis, HERMES Hypersonic Reseach Program Meeting, Stuttgart, Germany, Nov. (1987).
[106] P. L. Roe, “Some Contributions to the Modelling of Discontinuous Flows”, in E. Engquist, S. Osher, and R. J. C. Sommerville (eds.), Large Scale Computations in Fluid Mechanics, Part 2 (Lectures in Applied Mathematics, vol. 22), pp. 163-193, American Mathematics Society, Providence, RI (1985).
[107] Meng-Sing Liou, “Solutions of One-Dimensional Steady Nozzle Flow Revisited”, AIAA Journal, Vol. 26, No. 5, pp. 625-627 (1988).
[108] S. Parameswaran, “Steady Shock-Capturing Method Applied to One-Dimensional Nozzle Flow”, AIAA Journal, Vol. 27, NO. 9, pp. 1292-1295 (1989).
[109] 吳添成, “利用壓力法之非結構性網格可壓縮流計算”, 國立交通大學碩士論文(2001).[110] I. Demirdzic, Z. Lilek and M. Preic, “Fluid flow and heat transfer test problems for non-orthogonal grids: bench-mark solutions”, International Journal for Numerical Methods in Fluids, Vol. 15, pp. 329-354 (1992).
[111] John D. Anderson, “Modern Compressible Flow”, McGraw-Hill Publication Company, New York, 2nd edition (1990).
[112] Shmuel Eidelman, Phillip Colella and Raymond P. Shreeve, “Application of the Godunov Method and its Second-Order Extension to Cascade Flow Modeling”, AIAA Journal, Vol. 22, NO. 11, pp. 1609-1615 (1984).
[113] M. O. Bristeau, R. Glowinski, J. Periaux and H. Viviand, “Numerical Simulation of Compressible Navier-Stokes Flows”, Notes on Numer. Fluid Mech., Vol. 18, Braunschweig; Wiesbaden, Vieweg (1987).
[114] J. R. Amaladas and H. Kamath, “Accuracy Assessment of Upwind Algorithms for Steady-State Computations”, Comput. Fluids, vol. 27, No. 8, pp. 941-962 (1998).
[115] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and A Multigrid Method”, Journal of Computational Physics, Vol. 48, pp. 387-411 (1982).
[116] D. J. Tritton, “Experiments on the Flow Past a Circular Cylinder at Low Reynolds Numbers”, J. Fluid Mech., vol. 6, pp. 547-567 (1959).
[117] F. Nieuwstadt and H. B. Keller, “Viscous Flow Past Circular Cylinder”, Comput. Fluids, vol. 1, pp. 59-71 (1973).
[118] M. Coutanceau and R. Bouard, “Experimental Determination of the Main Features of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation. Part 1. Steady Flow”, J. Fluid Mech., vol. 79, pp. 231-256 (1977).
[119] B. Fornberg, “A Numerical Study of Steady Viscous Flow past a Circular Cylinder”, J. Fluid. Mech., vol. 98, pp. 819-855 (1980).
[120] M. Braza, P. Chassaing, and H. Ha Minh, “Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder”, J. Fluid Mech., vol. 165, pp. 79-130 (1986).
[121] R. M. Beam and R. F. Warming, “An Implicit Finite-Difference Algorithm for Hyperbolic System in Conservation-Law Form”, J. Comput. Phys., vol. 22, pp. 87-110 (1976).
[122] F. Moukalled and M. Darwish, “Pressure-Based Algorithms for Multifluid Flow at Aii Speeds- Part I: Mass Conservation Formulation”, Numerical Heat Transfer, Part B, Vol. 45, pp. 495-522 (2004).
[123] Rainald Lohner, “Some Useful Data Structurees for the Generation of Unstructured Grids”, Communications in Applied Numerical Methods, Vol. 4, pp. 123-135 (1988).
[124] R. F. Warming and R. M. Beam, “On the Construction and Application of Implicit Factored Schemes for Conservation Laws”, SIAM-AMS Proceedings, Vol. 11, pp. 85-129 (1978).
[125] J. L. Steger and R. F. Warming, “Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Didderence Methods”, Journal of Computational Physics, Vol. 40, pp. 263-293 (1981).
[126] R. Magnus and H. Yoshihara, “Inviscid Transonic Flow Over Airfoils”, AIAA Journal, Vol. 8, No. 12, pp. 2157-2162 (1970).
[127] S. G. Rubin and P. K. Khosla, “Polynomial interpolation method for viscous flow calculations”, Journal of computational physics, Vol. 24, pp. 217-244 (1977).
[128] Joseph L. Steger, “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries”, AIAA Journal, Vol. 16, No. 7, pp. 679-686, July (1978).
[129] Richard L. Burden, J. Douglas Faires, Albert C. Reynolds, “Numerical Analysis”, Prindle, Weber & Schmidt, Boston, Massachusetts (1979).
[130] S. T. Zalesak, “Fully multidimensional flux-corrected transport algorithms for fluids”, Journal of Computational Physics, Vol. 31, pp. 335-362 (1979).
[131] J. L. Steger and R. F. Warming, “Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods”, J. Comput. Phys., vol. 40, pp. 263-293, 1981.
[132] R. W. MacComack, ”A Numerical Method for Solving the Equation of Compressible Viscous Flows”, AIAA Journal, Vol. 20, No. 9, pp. 1275-1281 (1982).
[133] Ron-Ho Ni, “A Multiple-Grid Scheme for Solving the Euler Equation”, AIAA Journal, Vol. 20, pp. 1565-1571 (1982).
[134] S. A. E. G. Falle, “The method of characteristics applied to problems in cosmical gas dynamics”, Numerical Methods for Fluid Dynamics, eds. KW Morton and MJ Baines, Academic Press, London, pp. 481-517 (1982).
[135] S. Osher, “Shock modelling in aeronautics”, Numerical Methods for Fluid Dynamics, eds. KW Morton and MJ Baines, Academic Press, London, pp. 179-217 (1982).
[136] Stefan Schreier, “Compressible Flow”, A Wiley-Interscience Publication, New York (1982).
[137] S. Osher and S. Chakravarthy, “High resolution schemes and the entropy condition”, SIAM Journal Numerical Analysis Vol. 21, No. 5, pp. 955-984 (1984).
[138] Stanley Osher, “Riemann solver, the entropy condition and difference scheme approximations”, SIAM Journal Numerical Analysis, Vol. 21, No. 2, pp. 217-235, April (1984).
[139] A. Jameson and V. Venkatakrishnan, “Transonic flows about oscillating airfoils using the Euler equations”, AIAA Paper, 85-1514 (1985).
[140] H. C. Yee and A. Harten, “Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates”, AIAA Paper, 85-1513 (1985).
[141] Sukurmar R. Chakravarthy and Stanley Osher, “A new class of high accuracy TVD schemes for hyperbolic conservation laws”, AIAA Paper, 85-0363 (1985).
[142] Ami Harten, “Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ”, Journal of computational physic, Vol. 71, pp. 231-303 (1987).
[143] Catherine M. Maksymiuk and Thomas H. Pulliam, “Viscous transonic airfoil workshop results using ARC2D”, AIAA 25th Aerospace Sciences Meeting, AIAA-87-0415 (1987).
[144] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz, “Adaptive Remeshing for Compressible Flow Computations”, Journal of Computational Physics, Vol. 72, pp. 449-466 (1987).
[145] S. P. Vanka, “Second-order upwind differencing in a recirculating flow”, AIAA Journal, Vol. 25, pp. 1435-1441 (1987).
[146] S. P. Spekreijse, “Multigrid solution of monotone second-order discretizations of hyperbolic conservations laws”, Mathematics of computation, Vol. 49, pp. 135-155 (1987).
[147] Stephen F. Davis, “A simplified TVD finite difference scheme via artificial viscosity”, SIAM Journal Sci. Stat. Comput., Vol. 8, No. 1, pp. 1-18, January (1987).
[148] J. P. Van Doormaal, G. D. Raithby, and B. H. McDonald, “The Segregated Approach to Predicting Viscous Compressible Fluid Flows”, ASME J. Turbomachinery, vol. 109, pp. 268-277 (1987).
[149] Shih-Hung Chang and Meng-Sing Liou, “A comparison of ENO and TVD schemes”, AIAA Paper, 88-3707-CP (1988).
[150] S. Parameswaran, “Steady Shock-Capturing Method Applied to One-Dimensional Nozzle Flow”, AIAA Journal, Vol. 27, pp. 1292-1295, Sep. (1989).
[151] B. P. Leonard and S. Mokhtari, “Beyond first-order upwinding: The ultra-sharp alternative for non-oscillatory steady-state simulation of convection”, International Journal Numerical Methods Eng., Vol. 30, pp. 729-766 (1990).
[152] I. Demirdzic and M. Preic, “Finite Volume Method for Prediction of Fluid Flow in Arbitrarily Shaped Domains with Moving Boundaries”, International Journal for Numerical Methods in Fluids, Vol. 10, pp. 771-790 (1990).
[153] C. P. Chen, Y. Jiang, Y. M. Kim and H. M. Shang, “A computer code for multiphase all-speed transient flows in complex geometries”, NASA Contractor Report, MAST version 1.0, October (1991).
[154] Hyeong-Mo Koo and Seung O. Park, “Extension and application of the QUICKER scheme to a non-uniform rectangular grid system”, Communications In Applied Numerical Methods, Vol. 7, pp. 111-122 (1991).
[155] M. H. Kobayashi and J. C. F. Pereira, “Numerical comparison of momentum interpolation methods and pressure-velocity algorithms using non-staggered grids”, Communications In Applied Numerical Methods, Vol. 7, pp. 173-186 (1991).
[156] Nobuyuki Taniguchi and Toshio Kobayashi, “Finite volume method on the unstructured grid system”, Computers and Fluids, Vol. 19, No. 3/4, pp. 287-295 (1991).
[157] Y.-Y. Tsui, “A Study of Upstream-Weighted High-Order Differencing for Approximation to Flow Convection”, Int. J. Numer. Meth. Fluids, vol. 13, pp. 167-199 (1991).
[158] A. Dadone and B. Grossman, “Characteristic-Based, Rotated Upwind Scheme for the Euler Equations”, AIAA J., vol. 30, No. 9, pp. 2219-2226 (1992).
[159] Frederic Coquel and Meng-Sing Liou, “Field by field hybrid upwind splitting methods”, AIAA-93-3302-CP, pp. 51-61 (1993).
[160] H. Paillere, H. Deconinck, R. Struijs, P. L. Roe, L. M. Mesaros and J. D. Muller, “Computations of inviscid compressible flows using fluctuation-splitting on triangular meshes”, AIAA-93-3301-CP (1993).
[161] Herng Lin and Ching-Chang Chieng, “Comparisons of TVD schemes for turbulent transonic projectile aerodynamics computations with a two-equation model of turbulence”, International Journal for Numerical Methods in Fluids, Vol. 16, pp. 365-390 (1993).
[162] P. Van Ransbeeck and Ch. Hirsch, “New upwind dissipation models with a multidimensional approach”, AIAA-93-3304-CP, pp. 81-91 (1993).
[163] W. M. Eppard and B. Grossman, “A multi-dimensional kinetic-based upwind solver for Euler Equations”, AIAA-93-3303-CP (1993).
[164] William J. Rider, “On improvements to symmetric TVD algorithms: method development”, AIAA-93-3300-CP, pp. 26-35 (1993).
[165] C. H. Marchi and C. R. Maliska, “A Nonorthogonal Finite-Volume Method for the Solution of All Speed Flows Using Co-located Variables”, Numer. Heat Transfer B, vol. 26, pp. 293-311 (1994).
[166] Dartzi Pan and Jen-Chieh Cheng, “Incompressible flow solution on unstructured triangular meshes”, Numerical Heat Transfer, Part B, Vol. 26, pp. 207-224 (1994).
[167] T. S. Wang, S. Warsi and Y. S. Chen, “CFD assessment of the pollutant environment from RD-170 propulsion system testing”, AIAA Paper, 95-0811 (1995).
[168] Y. N. Jeng and U. J. Payne, “An Adaptive TVD Limiter”, J. Comput. Phys., vol. 118, pp. 229-241 (1995).
[169] P. Batten, F. S. Lien and M. A. Leschziner, "A positivity-preserving pressure-correction method”, 15th International Conf. On Numerical Methods in Fluid Dynamics, Monterey, CA (1996).
[170] V. Venkatakrishnan, “Perspective on unstructured grid flow solvers”, AIAA Journal, Vol. 34, No. 3, March, pp. 533-547 (1996).
[171] Andreas C. Haselbacher, James J. McGuirk and Gary J. Page, “Finite-volume discreitisation aspects for viscous flows on mixed unstructured grids”, AIAA-97-1946, American Institute of Aeronautics and Astronautics (1997).
[172] Chung-Hsiung Lin and C. A. Lin, “Simple high-order bounded convection scheme to model discontinuities”, AIAA Journal, Vol. 35, No. 3, March , pp. 563-565 (1997).
[173] E. S. Politis and K. C. Giannakoglou, “A pressure-based algorithm for high-speed turbomachinery flows”, Int. J. Numer. Meth. Fluids, Vol. 25, pp. 63-80 (1997).
[174] Yong G. Lai, “An unstructured grid method for a pressure-based flow and heat transfer solver”, Numerical Heat Transfer, Part B, Vol. 32, pp. 267-281 (1997).
[175] Karl W. Schulz and Yannis Kallinderis, “Unsteady flow structure interaction for incompressible flows using deformable hybrid grids”, Journal of Computational Physics, Vol. 143, pp. 569-597 (1998).
[176] 吳尚威, “利用壓力修正法解可壓縮流”, 國立交通大學碩士論文(1998).[177] Q. Zhou and M. A. Leschziner, “An improved particle-locating algorithm for Eulerian-Lagrangian computations of two-phase flows in general coordinates”, International Journal of Multiphase Flow, Vol. 25, pp. 813-825 (1999).
[178] M. A. Alves, F. T. Pinho and P. J. Oliveira, “Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows”, Journal Non-Newtonian Fluid Mechanics, Vol. 93, pp. 287-314 (2000).
[179] Yong G. Lai, “Unstructured grid arbitrarily shaped element method for fluid flow simulation”, AIAA Journal, Vol. 38, No. 12, December, pp. 2246-2252 (2000).
[180] 潘燕峰, “利用任意形狀非結構性網格之壓力修正流場分析法”, 國立交通大學碩士論文(2000).[181] B. Yu, W. Q. Tao, D. S. Zhang and Q. W. Wang, “Discussion on numerical stability and boundedness of convective discretized scheme”, Numerical Heat Transfer, Part B, Vol. 40, pp. 343-365 (2001).
[182] Hans Johnston and Jian-Guo Liu, “Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term”, Journal of Computational Physics, Vol. 199, No. 1, pp. 221-259 (2004).
[183] Kyu Hong Kim and Chongam Kim, “Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows, Part Ⅰ: Spatial discretization”, Journal of Computational Physics, Vol. 208, No. 2, pp. 527-569 (2005).
[184] Kyu Hong Kim and Chongam Kim, “Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows, Part Ⅱ: Multi-dimensional limiting process”, Journal of Computational Physics, Vol. 208, No. 2, pp. 570-615 (2005).
[185] Steven J. Ruuth and Willern Hundsdorfer, “High-order linear multistep methods with general monotonicity and boundedness properties”, Journal of Computational Physics, Vol. 209, No. 1, pp. 226-248 (2005).
[186] Zhengfu Xu and Chi-Wang Shu, “Anti-diffusive flux corrections for high order finite difference WENO schemes”, Journal of Computational Physics, Vol. 205, No. 2, pp. 458-485 (2005).
[187] William R. Wolf and Joao Luiz F. Azevedo, “High-Order Unstructured Grid ENO and WENO Schemes Applied to Aerodynamic Flows,” AIAA Paper, 2005-5115, June (2005).