跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳添成
研究生(外文):Wu, Tian-Cherng
論文名稱:以高階通量限制函數之壓力修正法應用無結構性網格求解全速流流場
論文名稱(外文):Pressure-Based Unstructured-Grid Algorithms Incorporating High-Resolution Schemes for All-speed Flow Calculations
指導教授:崔燕勇
指導教授(外文):Tsui, Yeng-Yung
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:345
中文關鍵詞:壓力修正法可壓縮流通量限制函數全速流特徵變數遲滯密度遲滯壓力正規化變數圖無結構性網格
外文關鍵詞:pressure correction schemecompressible flowflux limiter functionall speed flowcharacteristic variableretarded densityretarded pressurenormalized variable diagramunstructured grid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本文以壓力基底法發展可執行低速不可壓縮流到高速超音速可壓縮流之全速流流場計算方法,運用有限體積法、重置變數及任意邊形之無結構性網格來離散統御方程式,為了處理震波附近陡峭的梯度變化,採用全變量消去法(TVD)或正規化變數(NV)法導出之高階對流通量限制函數,通量限制子則由偵測兩個連續的梯度比來自動調整。在梯度的計算採用二階線性重置限制修正法,以強化計算過程的穩定性及解的準確度。
本文分別使用原始變數及守恆變數作為求解變數,以原始變數求解時,壓力修正方程式係由密度變量及速度變量各別與壓力變量之關係式代入連續方程式所導出,並藉由流場局部馬赫數來自動調整橢圓型式或雙曲線型式之壓力方程式。以守恆變數求解時,壓力修正方程式只有守恆速度( )變量與壓力變量之關係式,為了模擬超音速區域之雙曲線型式之流場特性及穩定計算過程,則使用上風型式之遲滯密度或遲滯壓力作修正。
採用一些策略來增加求解過程的穩定性,諸如(1)對流項使用一階隱式上風差分混合顯式高階差分之遲緩修正法;(2)將擴散項分解為只包含相鄰網格之隱式正交項,以及非正交部份之顯式垂直導數修正項並將其置於源項中;(3)採用不同的局部時步方式,所有控容體之時步由固定的Courant數來決定,即網格較小則時步較小;(4)以鬆弛法來進行線性方程的疊代。上述的方法會導致對角係數值的擴大,因此會使得係數矩陣具有對角佔優。
本文發展之計算解子允許網格為任意多邊形,計算所用之網格可以使用不同來源的網格產生方式,在本研究中亦發展一套整合式網格介面處理程式,可以將不同方式產生之不同邊數之區塊網格予以結合,並轉換產出滿足吾人發展之計算解子所需計算域網格資料。
經由數種流場測試來驗證本文發展的方法,黏性流有(1)流經圓柱之低速流、(2)低速空穴流、(3)流經NACA 0012翼型外流場、(4)雙喉部噴嘴內流場等。非黏性流則包括(1)漸縮-漸擴噴嘴內流場、(2)流經壁面圓孤之渠道流、(3)流經 NACA 0012翼型外流場、(4)流經圓柱之高速流場、(5)流經三角柱之高速流場等。由測試結果證明,不論是原始變數或守恆變數求解方式所建構之流場解子,均能執行低速不可壓縮流到高速可壓縮流之層流流場計算,均能獲得準確的收歛解且能準確地捕捉高速流場中震波的位置及強度。
Pressure-based algorithms applicable to all-speed flows, ranging from incompressible to supersonic flows, are developed in this thesis. The finite volume method is employed for discretization. The grids, which can be of arbitrary topology, are arranged in collocated manner. To tackle the abrupt change of gradient in the region of shock, either the total variation diminishing (TVD) scheme or the normalized variable (NV) scheme can be incoporated via the use of flux limiting function. These flux limiters are determined from the ratio of two consecutive gradients. To enhance solution accuracy, the gradients are calculated using a second-order linear reconstruction approach.
In this study, the mathematical formulation is based on either the primitive variables or the conservative variables. In the model using the primitive variables, a pressure-correction equation is obtained from the continuity equation by using the relations between the variations of the velocities and density and that of the pressure. The resulted equation is of mixed type, either elliptic or hyperbolic, depending on the local Mach number. The second model consider the variation of the pressure with the conserved velocities ( ). To account for the hyperbolic character of the supersonic flows, either the density or the pressure is retarded in the upwind direction.
Several strategies are adopted to enhance the stability of the solution iteration procedure as follows: (1) The convective flux is composed of a upwind part and an anti-diffusion part. The upwind part is treated implicitly and the other part explicitly; (2) The diffusive flux is divided into a part in the direction directed from the considering node to the neighboring node and a part normal to this direction. The former is tackled in an implicit manner while the latter is absorbed into the source term; (3) The time step for each control volume is based on the cell Courant number. With a fixed Courant number for all control volumes, the time steps are different for the control volumes. The smaller the cell volume, the smaller the time step; (4) The difference equations are under-relaxed during iteration. The above methods can enlarged the diagonal coefficients and ,thus, make the coeffient matrix more diagonal dominant.
The algorithm developed allows the control volumes of the meshes to be a polygon of arbitrary geometry. Different sources of grid generator can be adopted to generate computational meshes. An interface is developed to combine the meshes generated in different blocks using different grid generation methods and transfer the grid data into the format required by our computational code.
The methodology is validated via testing on a number of flows. For viscous flows there are (1) low-speed flows over a cylinder, (2) low-speed flows in a cavity, (3) flows over a NACA 0012 airfoil and (4) flows in a double throats. In inviscid flow, test cases include (1) flows in a convergent-divergent nozzle, (2) flows in a channel with a circular arc bump, (3) flows over a NACA 0012 airfoil, (4) high-speed flows over a cylinder, (5) high-speed flows over a triangle. Accurate results can be obtained effectively using the developed methods, regardless of the use of primitive or conservative variables, for the flows ranging from the incompressible to high-speed compressible flows. It is seen that the location and the strength of the shock waves in high-speed flow can be accurately predicted.
摘 要 i
目 錄 vi
表目錄 x
圖目錄 xi
符號說明 xxviii
第 1 章 緒 論 1
1.1. 簡介 1
1.2. 文獻回顧 6
1.3. 研究方向 17
1.4. 研究貢獻 19
1.4.1. 全速流流場解子程式發展 19
1.4.2. 整合式網格組合程式發展 19
1.4.3. 論文發表 20
1.5. 論文綱要 20
第 2 章 統御方程式 22
2.1. 積分型式統御方程式 22
2.2. 散度型式統御方程式 23
2.3. 張量型式統御方程式 24
第 3 章 數值方法 25
3.1. 傳輸方程式之離散 26
3.1.1. 時間項 26
3.1.2. 對流項 27
3.1.3. 擴散項 29
3.1.4. 源項 30
3.1.5. 線性代數方程 33
3.1.5.1. 動量方程式 34
3.1.5.2. 能量方程式 34
3.1.6. 鬆弛處理 35
3.2. 壓力、密度及速度偶合關係式 36
3.2.1. 面上質量流率的處理 36
3.2.2. 面上速度的處理 37
3.2.3. 面上密度的處理 39
3.2.4. 壓力修正線性代數方程 40
3.3. 邊界條件 45
3.4. 疊代殘值計算及收歛條件 48
3.5. 梯度計算模式 49
3.6. 求解程序 53
第 4 章 高階通量限制函數法 54
4.1. 簡介 54
4.2. 高階準確通量限制函數之對流項離散 57
4.3. 以特徵變數求對流通量之高階限制反擴散項 61
4.3.1. 雙曲線型系統方程式 62
4.3.2. 特徵變數通量限制子之計算 63
4.4. 求解程序 66
第 5 章 守恆變數求解法 68
5.1. 遲滯密度法 68
5.2. 遲滯壓力法 71
5.3. 傳輸方程式的離散 73
5.3.1. 對流項 73
5.3.2. 擴散項 74
5.3.3. 線性代數方程 75
5.4. 壓力、密度及速度偶合關係式 76
5.4.1. 面上質量流率的處理 76
5.4.2. 壓力修正線性代數方程 77
5.4.3. 邊界條件 79
5.4.4. 求解程序 79
第 6 章 網格產生 81
第 7 章 結果與討論 83
7.1. 以原始變數法求解 84
7.1.1. 非黏性流之驗證測試 84
7.1.1.1. 漸縮-漸擴噴嘴內流場 84
7.1.1.2. 流經下壁面圓弧之渠道內流場 89
7.1.1.3. NACA 0012翼型外流場 105
7.1.2. 黏性流之驗證測試 107
7.1.2.1. 低速空穴流流場 107
7.1.2.2. 流經圓柱之低速流外流場 108
7.1.2.3. 雙喉部噴嘴內流場 110
7.1.2.4. NACA 0012翼型外流場 114
7.2. 以特徵變數通量限制函數法求解 114
7.2.1. 非黏性流場之驗證測試 115
7.2.1.1. 漸縮-漸擴噴嘴內流場 115
7.2.1.2. 流經下壁面圓弧之渠道內流場 116
7.2.1.3. NACA 0012翼型外流場 117
7.2.1.4. 流經圓柱之高速流外流場 118
7.2.1.5. 斜震波流場解析-流經三角柱之高速流場 118
7.2.2. 黏性流之驗證測試 120
7.2.2.1. 低速空穴流流場 120
7.2.2.2. 流經圓柱之低速流外流場 121
7.2.2.3. 雙喉部噴嘴內流場 121
7.2.2.4. NACA 0012翼型外流場 122
7.3. 以守恆變數法求解 123
7.3.1. 遲滯壓力法 123
7.3.1.1. 漸縮-漸擴噴嘴內流場 123
7.3.1.2. 流經下壁面圓弧之渠道內流場 124
7.3.1.3. NACA 0012翼型外流場 125
7.3.2. 以遲滯密度法求解 126
7.3.2.1. 漸縮-漸擴噴嘴內流場 126
7.3.2.2. 流經下壁面圓弧之渠道內流場 127
7.3.2.3. NACA 0012翼型外流場 128
第 8 章 結論 130
第 9 章 參考文獻 133
附 表 150
附 圖 156
附錄A:特徵變數限制法公式推導 310
附錄B:整合式網格轉換產生程式(IGTP23D)發展及使用說明 315
附錄C:二維翼型計算網格產生方法說明 331
附錄D:正規化變數圖(NVD) 333
附錄E:Sweby的TVD關係圖 338
附錄F:無結構性網格之正規化變數計算法 342
簡 歷: 345
[1] Jacob E. Fromm, ”A method for reducing dipersion in convective difference schemes”, Journal of Computational Physics, Vol. 3, pp. 176-189 (1968).
[2] Robert W. MacCormack, “The effect of viscosity in hypervelocity impact cratering”, AIAA Paper, 69-354 (1969).
[3] Jack R. Edward and Meng-Sing Liou, “Low-Diffusion Flux-Splitting Methods for Flows at All Speeds”, AIAA Journal, Vol. 36, No. 9, pp. 1610-1617 (1998).
[4] H. Luo, J. D. Baum and R. Lohner, “Extension of Harten-Lax-Van Leer scheme for flows at all speeds”, AIAA Journal, Vol. 43, No. 6, pp. 1160-1166 (2005).
[5] A. J. Chorin, “A Numerical Method for Solving Incompressible Viscous Flow Problems,” Jounal of Computational Physics, vol. 2, pp. 12-26 (1967).
[6] A. Rizzi and L. E. Eriksson, “Computation of Inviscid Incompressible Flow with Rotation,” J. Fluid Mech., vol. 153, no. 3, pp. 275-312 (1985).
[7] D. Choi and C. L. Merkle, “Application of Time-Iterative Schemes to Incompressible Flow,” AIAA Jounal, vol 23, pp. 1518-1524 (1985).
[8] J. M. Weiss and W. A. Smith, “Preconditioning Applied to Variable and Constant Density Time-Accurate Flows on Unstructured Meshes,” AIAA Jounal, vol. 33, No. 11, pp. 2050-2057 (1995).
[9] V. Venkatakrishnan, “Preconditioned conjugate gradient methods for the compressible Navier-Stokes equations”, AIAA Journal, Vol. 29, No. 7, pp. 1092-1100 (1991).
[10] Y. H. Choi and C. L. Merkle, “The Application of Preconditioning in Viscous Flows,” Jounal of Computational Physics, vol. 105, No. 2, pp. 207-223 (1993).
[11] E. Turkel, “Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations,” Jounal of Computational Physics, vol. 72, No. 2, pp. 277-298 (1987).
[12] L. D. Daily and R. H. Pletcher, “Evauation of Multigrid Acceleration for Preconditioned Time-Accurate Navier-Stokes Algorithm,” AIAA Paper, 95-1668, Jan. (1995).
[13] C. M. Rhie, “A Pressure-Based Navier-Stokes Solver Using the Multigrid AIAA Paper, 86-0207 (1986).
[14] K. C. Karki and S. V. Patankar, “Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations”, AIAA Journal, Vol. 27, No. 9, pp. 1167-1174 (1989).
[15] F. S. Lien and M. A. Leschziner, ”A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure”, ASME Journal of Fluids Engineering, Vol. 115, pp. 717-725 (1993).
[16] I. Demirdzic, Z. Lilek and M. Preic, ”A Collocated Finite Volume Method for Predicting Flows at All Speeds”, International Journal for Numerical Methods in Fluids, Vol. 16, pp. 1029-1050 (1993).
[17] F. S. Lien and M. A. Leschziner, “A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation”, Computer Methods in Applied Mechanics and Engineering, Vol. 114, pp. 123-148 (1994).
[18] M. S. Darwish and F. H. Moukalled, “Normalized variable and space formulation methodology for high-resolution schemes”, Numerical Heat Transfer, Part B, Vol. 26, pp. 79-96 (1994).
[19] M. S. Darwish and F. Moukalled, “An efficient very-high-resolution scheme based on an adaptive-scheme strategy”, Numerical Heat Transfer, Part B, Vol. 34, pp. 191-213 (1998).
[20] Y.-Y. Tsui and T.-C. Wu, “A Pressure-Based Unstructured Grid Calculation for Compressible Flow”, The 10th National Computational Fluid Dynamics Conference Hua-Lien, August, pp. A3-1- 8, 2003.(利用壓力法之無結構性網格可壓縮流計算)
[21] Yen-Sen Chen, Huan-Min Shang and Chien-Pin Chen, “Unified CFD Algorithm with a pressure based method”, 6th ISCFD, September (1995).
[22] R. I. Issa and F. C. Lockwood, “On the prediction of two-dimensional supersonic viscous interactions near walls”, AIAA Journal, Vol. 15, No. 2, pp. 182-188 (1977).
[23] F. Moukalled and M. Darwish, “A High-Resolution Pressure-Based Algorithm for Fluid Flow at All Speeds”, Journal of Computational Physics, Vol. 168, pp. 101-133 (2001).
[24] James J. McGuirk and Gary J. Page, “Shock Capturing Using a Pressure-Correction Method”, AIAA Journal, Vol. 28, No. 10, pp. 1751-1657 (1990).
[25] Stephen F. Wornom and Mohamed M. Hafez, “Calculation of quasi-one-dimensional flows with shocks”, Computers and Fluids, Vol. 14, No. 2, pp. 131-140 (1986)
[26] M. H. Kobayashi and J. C. F. Pereira, “Characteristic-based pressure correction at all speeds”, AIAA Journal, Vol. 34, No. 2, pp. 272-280 (1996).
[27] R. I. Issa and M. H. Javareshkian, “Application of TVD schemes in pressure-based finite-volume methods”, Proceedings of the Fluids Engineering Division Summer Meeting, Vol. 3, American Society of Mechanical Engineers, New York, pp. 159-164 (1996).
[28] Bram Van Leer, “Towards the ultimate conservative difference scheme. Ⅴ. A second-order sequel to Godunov's method”, Journal of Computational Physics, Vol. 32, pp. 101-136 (1979).
[29] P. L. Roe, “Fluctuations and signals - A framework for numerical evolution problems”, Numerical Methods for Fluid Dynamics, Proceedings Conference, Reading, pp. 219-257 (1982).
[30] Ami Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of computational physic, Vol. 49, pp. 357-393 (1983).
[31] S. R. Chakravarthy and S. Osher, “High resolution of the OSHER upwind scheme for the Eluer equations”, AIAA paper, 83-1943 (1983).
[32] Ami Harten, “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM Journal Numerical Analysis, Vol. 21, No. 1, February, pp. 1-23 (1984).
[33] Ami Harten and Stanley Osher, “Uniformly high order accurate essentially non-oscillatory schemes, Ⅰ”, SIAM Journal Numer. Anal. , Vol. 24, No. 2, pp. 279-309, April (1987).
[34] H. C. Yee, “Construction of explicit and implicit symmetric TVD scheme and their applications”, Journal of Computational Physics, Vol. 68, pp. 151-179 (1987).
[35] H. Takami and H. B. Keller, “Steady Two-Dimensional Viscous Flow of an Incompressible Fluid Past a Circular Cylinder”, Phys. Fluids Suppl. II, pp. 51–56 (1969).
[36] B. P. Leonard, “A survey of finite differences with upwinding for numerical modelling of the incompressible convection diffusion equation”, C. Taylor and K. Morgan, Computational Techniques in Transient and Turbulent Flow, Pineridge Press, Swansea, U. K., Vol.2, pp. 1-35 (1981).
[37] B. P. Leonard, “Simple high-accuracy resolution program for convective modeling of discontinuities”, International Journal for Numerical Methods in Fluids, Vol. 8, pp. 1291-1318 (1988).
[38] B. P. Leonard, “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection”, Computer Methods in Applied Mechanics and Engineering, Vol. 88, pp. 17-74 (1991).
[39] Herng Lin and Ching-Chang Chieng, “Characteristic-based flux limiters of an essentially third-order flux-splitting method for hyperbolic conservation laws”, International Journal for Numerical Methods in Fluids, Vol. 13, pp. 287-307 (1991).
[40] B. Van Leer, “Upwind difference methods for aerodynamics governed by the Euler equations”, Lectures in applied mathematics, (B. Engquist, S. Osher, R. Sommerville eds.), Vol. 22, Part Ⅱ, pp. 327-336, AMS, Providence, RI. (1985).
[41] Dartzi Pan and Jen-Chieh Cheng, “A second-order upwind finite-volume method for the EULER solution on unstructured triangular meshes”, International Journal for Numerical Methods in Fluids, Vol. 16, pp. 1079-1098 (1993).
[42] N. P. Waterson and H. Deconinck, “A unified approach to the design and application of bounded higher-order convection schemes”, VKI Preprint 1995-21 (1995).
[43] S. K. Choi, H. Y. Nam and M. Cho, “Evaluation of a high-order bounded convection scheme: three-dimensional numerical experiment”, Numerical Heat Transfer, Part B, Vol. 28, pp. 23-38 (1995).
[44] B. Song, G. R. Liu, K. Y. Lam and R. S. Amano, “On a higher-order discretization scheme”, International Journal for Numerical Methods in Fluids, Vol. 32, pp. 881-897 (2000).
[45] M. A. Alves, P. J. Oliveira and F. T. Pinho, “A convergent and universally bounded interpolation scheme for the treatment of advection”, International Journal for Numerical Methods in Fluids, Vol. 41, pp. 47-75 (2003).
[46] Y.-Y. Tsui and T.-C. Wu, “A Pressure-Based Unstructured-Grid Algorithm Using High-Resolution Schemes for All-Speed Flows”, Numer. Heat Transfer, B, vol. 53, pp. 75-96 (2008).
[47] H. C. Yee , R. F. Warming and A. Harten, “Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations”, Journal of Computational Physics, Vol. 57, pp. 327-360 (1985).
[48] W. Shyy and S. Thakur, “Controlled variation scheme in a sequential solver for recirculating flows”, Numerical Heat Transfer, Part B, Vol. 25, No. 3, pp. 273-286 (1994).
[49] W. A. Mulder and B. Van Leer, “Experiments with implicit upwind methods for the Euler equations”, Journal of Computational Physics, Vol. 59, pp. 232-246 (1985).
[50] S. V. Patankar and D. B. Spalding, ”A calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal Heat Mass Transfer, Vol. 15, pp. 1787-1806 (1972).
[51] S. G. Rubin and P. K. Khosla, ”A diagonally dominant second order accurate implicit scheme”, Computers and Fluids, Vol. 2, pp. 207-209 (1974).
[52] M. Hafez, J. South and E. Murman, “Artificial compressibility methods for numerical solutions of transonic full potential equation”, AIAA Journal, Vol. 17, No. 78-1148R, pp. 838-844 (1979).
[53] C. M. Rhie and W. L. Chow, “Numerical Study of Turbulent Flow Past an Airfoil with Trailing Edge Separation”, AIAA Journal, Vol. 21, pp. 1525-1532 ( 1983).
[54] P. K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM Journal Numerical Analysis, Vol. 21, No. 5, October, pp. 995-1011 (1984).
[55] S. F. Wornom, ”A two-point difference scheme for computing steady-state solutions to the conservative one-dimensional Euler equations”, Computers and Fluids, Vol. 12, No. 1, pp. 11-30 (1984).
[56] P. H. Gaskell and A. K. C. Lau, “Curvature-compensated convective transport: SMART, A new boundedness-preserving transport algorithm”, International Journal for Numerical Methods in Fluids, Vol. 8, pp. 617-641 (1988).
[57] S. Majumdar, “Role of Under-relaxation in Momentum Interpolation for Calculation of Flow with Nonstaggered Grids”, Numerical Heat Transfer, Vol. 13, pp. 125-132 (1988).
[58] M. Peric, R. Kessler and G. Scheuerer, “Comparison of Finite-Volume Numerical Methods with Staggered and Collocated Grids”, Computers & Fluids Vol. 16, No. 4, pp. 389-403 (1988).
[59] J. Zhu and M. A. Leschziner, “A local oscillation-damping algorithm for higher-order convection schemes”, Computer Methods in Applied Mechanics and Engineering, Vol. 67, pp. 355-366 (1988).
[60] Timothy J. Barth and Dennis C. Jespersen, “The Design and application of upwind schemes on unstructured meshes”, AIAA Paper, 89-0366 (1989).
[61] J. Peraire, K. Morgan and J. Peiro, “Numerical grid generation”, Von Karman Institute for Fluid Dynamics, Lecture series 1990-06, June, pp. 11-15 (1990).
[62] J. Zhu, “A low-diffusive and oscillation-free convective scheme Communications In Applied Numerical Methods, Vol. 7, pp. 225-232 (1991).
[63] J. Zhu and W. Rodi, “A low-diffusive and bounded convection scheme”, Computer Methods in Applied Mechanics and Engineering, Vol 92, pp. 87-96 (1991).
[64] V. Venkatakrishnan, “On the accuracy of limiters and convergence to steady state solutions”, AIAA Paper, 93-0880 (1993).
[65] S. Parameswaran and Ilker Kiris, “A Steady Shock-Capturing Pressure-Based Computational Procedure for inviscid Two-Dimentional Transonic Flows”, Numerical Heat Transfer, Part B, Vol. 23, pp. 221-236 (1993).
[66] F. Moukalled and M. Darwish, “New bounded skew central difference scheme, Part Ⅱ: Application to natural convection in an eccentric annulus”, Numerical Heat Transfer, Part B, Vol. 31, pp. 111-133 (1997).
[67] F. Moukalled and M. Darwish, “New bounded skew central difference scheme, Part Ⅰ: Formulation and testing”, Numerical Heat Transfer, Part B, Vol. 31, pp. 91-110 (1997).
[68] F. Moukalled and M. Darwish, “A New family of streamline-based very-high-resolution schemes”, Numerical Heat Transfer, Part B, Vol. 32, pp. 299-320 (1997).
[69] F. Moukalled and M. S. Darwish, “New family of adaptive very high resolution schemes”, Numerical Heat Transfer, Part B, Vol. 34, pp. 215-239 (1998).
[70] F. S. Lien and M. A. Leschziner, “Upstream monotonic interpolation for scalar transport with application to complex turbulent flows”, International Journal for Numerical Methods in Fluids, Vol. 19, pp. 527-548 (1994).
[71] R. I. Issa and M. H. Javareshkian, “Pressure-Based Compressible Calculation Method Utilizing Total Variation Diminishing Schemes”, AIAA Journal, Vol. 36, No. 9, pp. 1652-1657 (1998).
[72] H. Jasak, H. G. Weller and A. D. Gosman, “High resolution NVD differencing scheme for arbitrarily unstructured meshes”, International Journal for Numerical Methods in Fluids, Vol. 31, pp. 431-449 (1999).
[73] Fue-Sang Lien, “A pressure-based unstructured grid method for all-speed flows”, International Journal for Numerical Methods in Fluids, Vol. 33, pp. 355-374 (2000).
[74] F. Moukalled and M. Darwish, “A unified formulation of the segregated class of algorithms for fluid flow at all speeds”, Numerical Heat Transfer, Part B, Vol. 37, pp. 103-139 (2000).
[75] P. Jawahar and Hemant Kamath, “A high-Resolution Procedure for Euler and Navier-Stokes computations on unstructured grids”, Journal of Computational Physics, Vol. 164, pp. 165-203 (2000).
[76] Hou Ping-Li, Tao Wen-Quan and Yu Mao-Zheng, “Refinement of the convective boundedness criterion of Gaskell and Lau”, Engineering Computations, Vol. 20, No. 8, pp. 1023-1043 (2003).
[77] Hyung-Il Choi, Dohyung Lee and Joo-Sung Maeng, “A Node-Centered Pressure-Based Method for All Speed Flows on Unstructured Grids,” Numerical Heat Transfer, B vol. 44, pp. 165–185 (2003).
[78] Hrvoje Jasak, “Error analysis and estimation for the finite volume method with applications to fluid flows”, PhD thesis, Imperial College, University of London, June (1996).
[79] Y.-Y. Tsui and T.-C. Wu, “Use of Characteristic-Based Flux Limiters in a Pressure-Based Unstructured-Grid Algorithm Incorporating High- Resolution Schemes”, Numerical Heat Transfer, B vol. 55, pp. 14–34 (2009).
[80] L. S. Caretto, R. M. Curr, and D. B. Spalding, “Two Numerical Methods for Three Dimensional Boundary Layers,” Methods Appl. Mech. Engrg., vol. 1, pp. 39 (1972).
[81] Samir Muzaferija, “Adaptive Finite Volume Method for Flow Prediction Using Unstructured Meshes and Multigrid Approach”, PhD thesis, Imperial College, University of London, March (1994).
[82] Suhas V. Partankar, “Computer analysis of fluid flow and heat transfer”, C. Taylor and K. Morgan, Computational Techniques in Transient and Turbulent Flow, Pineridge Press, Swansea, U. K., Vol.2, pp. 223-252 (1981).
[83] R. Fletcher, “Conjugate Gradient Methods for Indefinite Systems”, Lecture Notes in Mathematics, Vol. 506, pp. 773-789 (1976).
[84] Y.-Y. Tsui and Y.-F. Pan, “A Pressure-Correction Method for Incompressible Flows Using Unstructured Meshes”, Numer. Heat Transfer B, vol. 49, pp. 43-65 (2006).
[85] W. K. Anderson, J. L. Thomas, and B. Van Leer, “Comparison of Finite Volume Flux Vector Splitting for the Euler Equations”, AIAA J., vol. 24, No. 9, pp. 1453-1460 (1986).
[86] S. R. Mathur and J. Y. Murthy, “A pressure-Based method for unstructured meshes”, Numerical Heat Transfer, Part B, Vol. 31, 195-215 (1997).
[87] D. B. Spalding, “A Novel Finite Difference Formulation for Differential Expression Involving Both First and Second Derivatives”, Int. J. Numer. Meth. Eng., vol. 4, pp. 551-559 (1972).
[88] B. P. Leonard, “A stable and accurate convective modelling procedure based on quadratic interpolation”, Computer Methods in Applied Mechanics and Engineering, Vol. 19, pp. 59-98 (1979).
[89] Bram Van Leer, “Towards the ultimate conservative difference scheme. Ⅱ. Monotonicity and conservation combined in a second-order scheme”, Journal of Computational Physics, Vol. 14, pp. 361-370 (1974).
[90] J. P. Borris and D. L. Brook, “Flux corrected transport Ⅰ: SHASTA, A fluid transport algorithm that works”, Journal of Computational Physics, Vol. 11, pp. 38-69 (1973).
[91] D. L. Brook, J. P. Borris and K. Hain, “Flux corrected transport Ⅱ: Generalizations of the method”, Journal of Computational Physics, Vol. 18, pp. 248-283 (1975).
[92] J. P. Borris and D. L. Brook, “Solutions of the continuity equation by the method of flux corrected transport”, Journal of computational physics, Vol. 16, pp. 85-129 (1976).
[93] J. P. Borris and D. L. Brook, “Flux corrected transport Ⅲ: Minimal-error FCT algorithms”, Journal of Computational Physics, Vol. 20, pp. 397-431 (1976).
[94] Bram Van Leer, “Towards the ultimate conservative difference scheme. Ⅲ. Upstream-centered finite-difference scheme for ideal compressible flow”, Journal of Computational Physics, Vol. 23, pp. 263-275 (1977).
[95] Bram Van Leer, “Towards the ultimate conservative difference scheme. Ⅳ. A new approch to numerical convection”, Journal of Computational Physics, Vol. 23, pp. 276-299 (1977).
[96] C. W. S. Bruner, “Parallelization of the Euler Equations on Unstructured Grids”, AIAA paper 97-1894 (1997).
[97] M. Chapman, “FRAM nonlinear damping algorithm for the continuity equation”, Journal of Computational Physics, Vol. 44, pp. 84-103 (1981).
[98] M. Peric, “Analysis of pressure-velocity coupling on nonorthogonal grids”, Numerical Heat Transfer, Part B, Vol. 17, pp. 63-82 (1990).
[99] P. L. Roe, “Approximate Riemann solvers, parameter vectors and difference schemes”, Journal of computational Physics, Vol. 43, No. 7, pp. 357-372 (1981).
[100] P. L. Roe, “Characteristic-based schemes for the Euler equations”, Fluid Mech., Vol. 18, pp. 337-365 (1986).
[101] M. S. Darwish, “A new high-resolution scheme based on the normalized variable formulation”, Numerical Heat Transfer, Part B, Vol. 24, pp. 353-371 (1993).
[102] B. Koren, “A robust upwind discretization method for advection, diffusion and source terms”, Numerical Methods for Advection-Diffusion Problems, Ed. C. B. Vreugdenhil & B. Koren, Vieweg, Braunschweig, pp. 117-138 (1993).
[103] G. D. Van Albada, B. Van Leer and W. W. Roberts, “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophysics, Vol. 108, pp. 76-84 (1982)
[104] G. Zhou, “Numerical Simulations of Physical Discontinuities in Single and Multi-fluid Flows for Arbitrary Mach Numbers”, PhD Thesis, Chalmers University of Tech., Goteborg, Sweden (1995).
[105] P. W. Hemker and B. Koren, “Multigrid, Defect Correction and UpwindSchemes for the Steady avier-Stokes Equations,” Synopsis, HERMES Hypersonic Reseach Program Meeting, Stuttgart, Germany, Nov. (1987).
[106] P. L. Roe, “Some Contributions to the Modelling of Discontinuous Flows”, in E. Engquist, S. Osher, and R. J. C. Sommerville (eds.), Large Scale Computations in Fluid Mechanics, Part 2 (Lectures in Applied Mathematics, vol. 22), pp. 163-193, American Mathematics Society, Providence, RI (1985).
[107] Meng-Sing Liou, “Solutions of One-Dimensional Steady Nozzle Flow Revisited”, AIAA Journal, Vol. 26, No. 5, pp. 625-627 (1988).
[108] S. Parameswaran, “Steady Shock-Capturing Method Applied to One-Dimensional Nozzle Flow”, AIAA Journal, Vol. 27, NO. 9, pp. 1292-1295 (1989).
[109] 吳添成, “利用壓力法之非結構性網格可壓縮流計算”, 國立交通大學碩士論文(2001).
[110] I. Demirdzic, Z. Lilek and M. Preic, “Fluid flow and heat transfer test problems for non-orthogonal grids: bench-mark solutions”, International Journal for Numerical Methods in Fluids, Vol. 15, pp. 329-354 (1992).
[111] John D. Anderson, “Modern Compressible Flow”, McGraw-Hill Publication Company, New York, 2nd edition (1990).
[112] Shmuel Eidelman, Phillip Colella and Raymond P. Shreeve, “Application of the Godunov Method and its Second-Order Extension to Cascade Flow Modeling”, AIAA Journal, Vol. 22, NO. 11, pp. 1609-1615 (1984).
[113] M. O. Bristeau, R. Glowinski, J. Periaux and H. Viviand, “Numerical Simulation of Compressible Navier-Stokes Flows”, Notes on Numer. Fluid Mech., Vol. 18, Braunschweig; Wiesbaden, Vieweg (1987).
[114] J. R. Amaladas and H. Kamath, “Accuracy Assessment of Upwind Algorithms for Steady-State Computations”, Comput. Fluids, vol. 27, No. 8, pp. 941-962 (1998).
[115] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and A Multigrid Method”, Journal of Computational Physics, Vol. 48, pp. 387-411 (1982).
[116] D. J. Tritton, “Experiments on the Flow Past a Circular Cylinder at Low Reynolds Numbers”, J. Fluid Mech., vol. 6, pp. 547-567 (1959).
[117] F. Nieuwstadt and H. B. Keller, “Viscous Flow Past Circular Cylinder”, Comput. Fluids, vol. 1, pp. 59-71 (1973).
[118] M. Coutanceau and R. Bouard, “Experimental Determination of the Main Features of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation. Part 1. Steady Flow”, J. Fluid Mech., vol. 79, pp. 231-256 (1977).
[119] B. Fornberg, “A Numerical Study of Steady Viscous Flow past a Circular Cylinder”, J. Fluid. Mech., vol. 98, pp. 819-855 (1980).
[120] M. Braza, P. Chassaing, and H. Ha Minh, “Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder”, J. Fluid Mech., vol. 165, pp. 79-130 (1986).
[121] R. M. Beam and R. F. Warming, “An Implicit Finite-Difference Algorithm for Hyperbolic System in Conservation-Law Form”, J. Comput. Phys., vol. 22, pp. 87-110 (1976).
[122] F. Moukalled and M. Darwish, “Pressure-Based Algorithms for Multifluid Flow at Aii Speeds- Part I: Mass Conservation Formulation”, Numerical Heat Transfer, Part B, Vol. 45, pp. 495-522 (2004).
[123] Rainald Lohner, “Some Useful Data Structurees for the Generation of Unstructured Grids”, Communications in Applied Numerical Methods, Vol. 4, pp. 123-135 (1988).
[124] R. F. Warming and R. M. Beam, “On the Construction and Application of Implicit Factored Schemes for Conservation Laws”, SIAM-AMS Proceedings, Vol. 11, pp. 85-129 (1978).
[125] J. L. Steger and R. F. Warming, “Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Didderence Methods”, Journal of Computational Physics, Vol. 40, pp. 263-293 (1981).
[126] R. Magnus and H. Yoshihara, “Inviscid Transonic Flow Over Airfoils”, AIAA Journal, Vol. 8, No. 12, pp. 2157-2162 (1970).
[127] S. G. Rubin and P. K. Khosla, “Polynomial interpolation method for viscous flow calculations”, Journal of computational physics, Vol. 24, pp. 217-244 (1977).
[128] Joseph L. Steger, “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries”, AIAA Journal, Vol. 16, No. 7, pp. 679-686, July (1978).
[129] Richard L. Burden, J. Douglas Faires, Albert C. Reynolds, “Numerical Analysis”, Prindle, Weber & Schmidt, Boston, Massachusetts (1979).
[130] S. T. Zalesak, “Fully multidimensional flux-corrected transport algorithms for fluids”, Journal of Computational Physics, Vol. 31, pp. 335-362 (1979).
[131] J. L. Steger and R. F. Warming, “Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods”, J. Comput. Phys., vol. 40, pp. 263-293, 1981.
[132] R. W. MacComack, ”A Numerical Method for Solving the Equation of Compressible Viscous Flows”, AIAA Journal, Vol. 20, No. 9, pp. 1275-1281 (1982).
[133] Ron-Ho Ni, “A Multiple-Grid Scheme for Solving the Euler Equation”, AIAA Journal, Vol. 20, pp. 1565-1571 (1982).
[134] S. A. E. G. Falle, “The method of characteristics applied to problems in cosmical gas dynamics”, Numerical Methods for Fluid Dynamics, eds. KW Morton and MJ Baines, Academic Press, London, pp. 481-517 (1982).
[135] S. Osher, “Shock modelling in aeronautics”, Numerical Methods for Fluid Dynamics, eds. KW Morton and MJ Baines, Academic Press, London, pp. 179-217 (1982).
[136] Stefan Schreier, “Compressible Flow”, A Wiley-Interscience Publication, New York (1982).
[137] S. Osher and S. Chakravarthy, “High resolution schemes and the entropy condition”, SIAM Journal Numerical Analysis Vol. 21, No. 5, pp. 955-984 (1984).
[138] Stanley Osher, “Riemann solver, the entropy condition and difference scheme approximations”, SIAM Journal Numerical Analysis, Vol. 21, No. 2, pp. 217-235, April (1984).
[139] A. Jameson and V. Venkatakrishnan, “Transonic flows about oscillating airfoils using the Euler equations”, AIAA Paper, 85-1514 (1985).
[140] H. C. Yee and A. Harten, “Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates”, AIAA Paper, 85-1513 (1985).
[141] Sukurmar R. Chakravarthy and Stanley Osher, “A new class of high accuracy TVD schemes for hyperbolic conservation laws”, AIAA Paper, 85-0363 (1985).
[142] Ami Harten, “Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ”, Journal of computational physic, Vol. 71, pp. 231-303 (1987).
[143] Catherine M. Maksymiuk and Thomas H. Pulliam, “Viscous transonic airfoil workshop results using ARC2D”, AIAA 25th Aerospace Sciences Meeting, AIAA-87-0415 (1987).
[144] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz, “Adaptive Remeshing for Compressible Flow Computations”, Journal of Computational Physics, Vol. 72, pp. 449-466 (1987).
[145] S. P. Vanka, “Second-order upwind differencing in a recirculating flow”, AIAA Journal, Vol. 25, pp. 1435-1441 (1987).
[146] S. P. Spekreijse, “Multigrid solution of monotone second-order discretizations of hyperbolic conservations laws”, Mathematics of computation, Vol. 49, pp. 135-155 (1987).
[147] Stephen F. Davis, “A simplified TVD finite difference scheme via artificial viscosity”, SIAM Journal Sci. Stat. Comput., Vol. 8, No. 1, pp. 1-18, January (1987).
[148] J. P. Van Doormaal, G. D. Raithby, and B. H. McDonald, “The Segregated Approach to Predicting Viscous Compressible Fluid Flows”, ASME J. Turbomachinery, vol. 109, pp. 268-277 (1987).
[149] Shih-Hung Chang and Meng-Sing Liou, “A comparison of ENO and TVD schemes”, AIAA Paper, 88-3707-CP (1988).
[150] S. Parameswaran, “Steady Shock-Capturing Method Applied to One-Dimensional Nozzle Flow”, AIAA Journal, Vol. 27, pp. 1292-1295, Sep. (1989).
[151] B. P. Leonard and S. Mokhtari, “Beyond first-order upwinding: The ultra-sharp alternative for non-oscillatory steady-state simulation of convection”, International Journal Numerical Methods Eng., Vol. 30, pp. 729-766 (1990).
[152] I. Demirdzic and M. Preic, “Finite Volume Method for Prediction of Fluid Flow in Arbitrarily Shaped Domains with Moving Boundaries”, International Journal for Numerical Methods in Fluids, Vol. 10, pp. 771-790 (1990).
[153] C. P. Chen, Y. Jiang, Y. M. Kim and H. M. Shang, “A computer code for multiphase all-speed transient flows in complex geometries”, NASA Contractor Report, MAST version 1.0, October (1991).
[154] Hyeong-Mo Koo and Seung O. Park, “Extension and application of the QUICKER scheme to a non-uniform rectangular grid system”, Communications In Applied Numerical Methods, Vol. 7, pp. 111-122 (1991).
[155] M. H. Kobayashi and J. C. F. Pereira, “Numerical comparison of momentum interpolation methods and pressure-velocity algorithms using non-staggered grids”, Communications In Applied Numerical Methods, Vol. 7, pp. 173-186 (1991).
[156] Nobuyuki Taniguchi and Toshio Kobayashi, “Finite volume method on the unstructured grid system”, Computers and Fluids, Vol. 19, No. 3/4, pp. 287-295 (1991).
[157] Y.-Y. Tsui, “A Study of Upstream-Weighted High-Order Differencing for Approximation to Flow Convection”, Int. J. Numer. Meth. Fluids, vol. 13, pp. 167-199 (1991).
[158] A. Dadone and B. Grossman, “Characteristic-Based, Rotated Upwind Scheme for the Euler Equations”, AIAA J., vol. 30, No. 9, pp. 2219-2226 (1992).
[159] Frederic Coquel and Meng-Sing Liou, “Field by field hybrid upwind splitting methods”, AIAA-93-3302-CP, pp. 51-61 (1993).
[160] H. Paillere, H. Deconinck, R. Struijs, P. L. Roe, L. M. Mesaros and J. D. Muller, “Computations of inviscid compressible flows using fluctuation-splitting on triangular meshes”, AIAA-93-3301-CP (1993).
[161] Herng Lin and Ching-Chang Chieng, “Comparisons of TVD schemes for turbulent transonic projectile aerodynamics computations with a two-equation model of turbulence”, International Journal for Numerical Methods in Fluids, Vol. 16, pp. 365-390 (1993).
[162] P. Van Ransbeeck and Ch. Hirsch, “New upwind dissipation models with a multidimensional approach”, AIAA-93-3304-CP, pp. 81-91 (1993).
[163] W. M. Eppard and B. Grossman, “A multi-dimensional kinetic-based upwind solver for Euler Equations”, AIAA-93-3303-CP (1993).
[164] William J. Rider, “On improvements to symmetric TVD algorithms: method development”, AIAA-93-3300-CP, pp. 26-35 (1993).
[165] C. H. Marchi and C. R. Maliska, “A Nonorthogonal Finite-Volume Method for the Solution of All Speed Flows Using Co-located Variables”, Numer. Heat Transfer B, vol. 26, pp. 293-311 (1994).
[166] Dartzi Pan and Jen-Chieh Cheng, “Incompressible flow solution on unstructured triangular meshes”, Numerical Heat Transfer, Part B, Vol. 26, pp. 207-224 (1994).
[167] T. S. Wang, S. Warsi and Y. S. Chen, “CFD assessment of the pollutant environment from RD-170 propulsion system testing”, AIAA Paper, 95-0811 (1995).
[168] Y. N. Jeng and U. J. Payne, “An Adaptive TVD Limiter”, J. Comput. Phys., vol. 118, pp. 229-241 (1995).
[169] P. Batten, F. S. Lien and M. A. Leschziner, "A positivity-preserving pressure-correction method”, 15th International Conf. On Numerical Methods in Fluid Dynamics, Monterey, CA (1996).
[170] V. Venkatakrishnan, “Perspective on unstructured grid flow solvers”, AIAA Journal, Vol. 34, No. 3, March, pp. 533-547 (1996).
[171] Andreas C. Haselbacher, James J. McGuirk and Gary J. Page, “Finite-volume discreitisation aspects for viscous flows on mixed unstructured grids”, AIAA-97-1946, American Institute of Aeronautics and Astronautics (1997).
[172] Chung-Hsiung Lin and C. A. Lin, “Simple high-order bounded convection scheme to model discontinuities”, AIAA Journal, Vol. 35, No. 3, March , pp. 563-565 (1997).
[173] E. S. Politis and K. C. Giannakoglou, “A pressure-based algorithm for high-speed turbomachinery flows”, Int. J. Numer. Meth. Fluids, Vol. 25, pp. 63-80 (1997).
[174] Yong G. Lai, “An unstructured grid method for a pressure-based flow and heat transfer solver”, Numerical Heat Transfer, Part B, Vol. 32, pp. 267-281 (1997).
[175] Karl W. Schulz and Yannis Kallinderis, “Unsteady flow structure interaction for incompressible flows using deformable hybrid grids”, Journal of Computational Physics, Vol. 143, pp. 569-597 (1998).
[176] 吳尚威, “利用壓力修正法解可壓縮流”, 國立交通大學碩士論文(1998).
[177] Q. Zhou and M. A. Leschziner, “An improved particle-locating algorithm for Eulerian-Lagrangian computations of two-phase flows in general coordinates”, International Journal of Multiphase Flow, Vol. 25, pp. 813-825 (1999).
[178] M. A. Alves, F. T. Pinho and P. J. Oliveira, “Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows”, Journal Non-Newtonian Fluid Mechanics, Vol. 93, pp. 287-314 (2000).
[179] Yong G. Lai, “Unstructured grid arbitrarily shaped element method for fluid flow simulation”, AIAA Journal, Vol. 38, No. 12, December, pp. 2246-2252 (2000).
[180] 潘燕峰, “利用任意形狀非結構性網格之壓力修正流場分析法”, 國立交通大學碩士論文(2000).
[181] B. Yu, W. Q. Tao, D. S. Zhang and Q. W. Wang, “Discussion on numerical stability and boundedness of convective discretized scheme”, Numerical Heat Transfer, Part B, Vol. 40, pp. 343-365 (2001).
[182] Hans Johnston and Jian-Guo Liu, “Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term”, Journal of Computational Physics, Vol. 199, No. 1, pp. 221-259 (2004).
[183] Kyu Hong Kim and Chongam Kim, “Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows, Part Ⅰ: Spatial discretization”, Journal of Computational Physics, Vol. 208, No. 2, pp. 527-569 (2005).
[184] Kyu Hong Kim and Chongam Kim, “Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows, Part Ⅱ: Multi-dimensional limiting process”, Journal of Computational Physics, Vol. 208, No. 2, pp. 570-615 (2005).
[185] Steven J. Ruuth and Willern Hundsdorfer, “High-order linear multistep methods with general monotonicity and boundedness properties”, Journal of Computational Physics, Vol. 209, No. 1, pp. 226-248 (2005).
[186] Zhengfu Xu and Chi-Wang Shu, “Anti-diffusive flux corrections for high order finite difference WENO schemes”, Journal of Computational Physics, Vol. 205, No. 2, pp. 458-485 (2005).
[187] William R. Wolf and Joao Luiz F. Azevedo, “High-Order Unstructured Grid ENO and WENO Schemes Applied to Aerodynamic Flows,” AIAA Paper, 2005-5115, June (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top