跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張逸涵
研究生(外文):Chang, I-Han
論文名稱:表面聲波對於液晶配向層聚亞醯胺排列的影響
論文名稱(外文):Influence of Surface Acoustic Waves on Polyimide Alignment Layers of Liquid Crystals
指導教授:尹慶中
指導教授(外文):Yin, Ching-Chung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:表面聲波配向層聚亞醯胺秩序參數
外文關鍵詞:surface acoustic wavealignment layerpolyimideorder parameter.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
本研究提出一種以表面聲波誘發液晶配向層分子排列的方法。配向層聚亞醯胺為長鏈狀分子,在固化過程中,以無數週期之表面聲波所形成的穩定壓力梯度,達成有秩序的分子排列。配向層之硬烤溫度為攝氏200度,表面聲波元件鈮酸鋰基材與金屬電極的熱膨脹係數差異大,爲避免環境溫度過高而損壞,本研究設計一玻璃楔型波導將表面聲波傳遞至配向層內,不僅可增加彈性波的強度,還可降低表面聲波元件之操作溫度。在不同操作條件下驅動超音波,可造成配向層分子不同的配向效果。實驗先以偏光顯微鏡定性觀察分子排列的聲光效應,再以穿透雷射光強量測及傅立葉轉換紅外線光譜儀定量量測配向效果。實驗結果顯示表面聲波可讓聚亞醯胺分子之秩序參數達到0.23,介於磨刷配向與無配向處理之間。目前採用的超音波配向實驗裝置尚無法均勻地改變聚亞醯胺分子的排列,未來仍有改善的空間。
This thesis presents a method of surface acoustic wave (SAW) induced molecular reorientation for polyimide (PI) alignment layers of liquid crystals. After being insonified by a large number of wave cycles, the long chain PI molecules could be aligned parallel by acoustic pressure gradient stably formed in the alignment layer during curing process. The coefficients of thermal expansion for aluminum electrode and lithium niobate substrate of SAW devices are quite different so the device could be broken down at the curing temperature up to 200 degrees Celsius. A wedge-shaped glass waveguide is used to transmit SAWs generated by the interdigital transducer (IDT) adhered on top surface of the glass to PI alignment layer. The wedge tip of the waveguide is used to increase the acoustic intensity and to reduce working temperature of the transducer. The qualitative results were observed by use of a polarized optical microscope. On the other hand, the order parameter of molecular orientation was determined quantitatively by measuring the intensity of laser light transmitted through liquid crystal cell and using Fourier transform infrared spectrometer (FTIR). The experimental results indicate that value of order parameter for molecules insonified by SAW achieves 0.23, which is less than average of rubbed PI layers but much greater than those of unrubbed films. Even though PI molecules cannot be uniformly aligned by SAW in current experimental setup, it is worth further investigation to improve the homogeneity.
摘要 i
目錄 ii
圖表目錄 v
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 1
1.3 研究內容 3
第二章 理論說明 4
2.1 表面聲波元件 4
2.1.1 脈衝函數模型 4
2.1.2 頻率響應與設計參數 6
2.2 配向方法 6
2.2.1 配向技術 6
2.2.2 配向材料 9
2.2.3 排列機制 10
第三章 實驗架構與量測 12
3.1 試片的準備 12
3.2 表面聲波元件的製作 13
3.2.1 壓電基板的選擇條件 13
3.2.2 指叉電極的設計 14
3.2.3 微機電製程 14
3.3 表面聲波元件之檢測 18
3.4 實驗平台設計 18
3.5 配向層檢測方法 19
3.5.1 液晶分子之觀察 19
3.5.2 傅立葉轉換紅外線光譜儀 20
3.5.3 穿透雷射光強量測 23
第四章 實驗量測與結果分析 24
4.1 表面聲波元件之檢測結果 24
4.2 配向層之配向效果檢測 24
4.2.1 液晶分子之觀察 25
4.2.2 傅立葉轉換紅外線光譜儀 27
4.2.3 穿透雷射光強量測 28
第五章 結論與展望 30
5.1 實驗結果分析 30
5.2 未來展望 31
參考文獻 33
附表 38
附圖 43
[1] L. A. Crum (1971), “Acoustic force on a liquid droplet in an acoustic stationary wave,” J. Acoust. Soc. Am., 50(1), 157-163.
[2] H. M. Hertz (1995), “Standing-wave acoustic trap for nonintrusive positioning of microparticles,” J. Appl. Phys., 78(8), 4845-4849.
[3] A. Haake, J. Dual (2003), “Particle positioning by a two- or three-dimensional ultrasound field excited by surface waves,” WCU 2003 Conference Paris, 237-240.
[4] C. J. Strobl, C. Schaeflein, and U. Beierlein (2004), “Carbon nanotube alignment by surface acoustic waves,” Appl. Phys. Letts., 85(8), 1427-1429.
[5] M. Alvarez, J. R. Friend,and L. Y. Yeo (2008), “Surface vibration induced spatial ordering of periodic polymer patterns on a substrate,” Langmuir., 24(19), 10629-10632.
[6] J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler (2008), “Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization,” Langmuir., 24(19), 10629-10632.
[7] C. D. Wood, J. E. Cunningham, R. O’Rorke, C. Waelti, E. H. Linfield, A. G. Davies, and S. D. Evans (2009), “Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves,” Appl. Phys. Letts., 94(5), 541011-541013.
[8] R. H. Tancrell, and M. G. Holland (1971), “Acoustic surface wave filters,” IEEE Proc., 59, 393-409.
[9] P. Yeh and C. Gu (1999) “Optics of liquid crystal displays,” John Eiley & Sons, Inc., Canada
[10] 王新久 (2006),液晶光學與液晶顯示,科學出版社,北京。
[11] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto (2005), Alignment Technologies and Applications of Liquid Crystal Devices, Taylor & Francis, London and New York.
[12] D. W. Berreman (1972), “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phy. Rev. Letts., 28, 1683-1686.
[13] J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel (1987), “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Phys., 62 (10), 4100-4108.
[14] J. L. Janning (1972), “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett., 21 (4), 173-174.
[15] K. J. Han, Y. Jung, H. H. Choi, H. K Hwang, S. Lee, and S. H. Jang (1999), “Director tilting of liquid crystals on photoisomerizable polyimide alignment layers doped with homeotropic surfactant,” J. Appl. Phys., 86, 1854-1859.
[16] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov (1992), “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys., 31 (7), 2155-2164.
[17] K. Y. Wu, C. H. Chen, C. M. Yeh, and J. Hwang (2005), “Liquid-crystal alignment on a-CH films by nitrogen plasma beam scanning,” J. Appl. Phys., 98 (8), 083518-1-5.
[18] H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baik (2005), “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. Soc. Appl. Phys., 44 (6A), 4092-4097.
[19] S. H. Paek, C. J. Durning, K. W. Lee and A. Lien (1998), “A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles,” J. Appl. Phys., 83 (3), 1270-1280.
[20] X. Nie, H. Xianyu, R. Lu, T. X. Wu, Senior Member, and S. T. Wu (2007), “Pretilt angle effects on liquid crystal response time,” Journal of Display technology, 3 (3), 280-238.
[21] M. OH-E, M. Yoneya, M. Ohta, and K. Kondo (1997), “Dependence of viewing angle characteristics on pretilt angle in the in-plane switching mode,” Liquid crystal, 22 (4), 391-400.
[22] 張豐志 (2003),應用高分子手冊,五南圖書出版股份有限公司,台北,台灣。
[23] M. Oh-e, S. C. Hong, and T.R. Shen (2000), “Polar ordering at an interface between a liquid crystal monolayer and a rubbed polyimide,” J. Phys. Chem. B, 104(31), 7455-7461.
[24] 劉士榮 (2005),高分子流變學,滄海書局,台中,台灣。
[25] B. Chae, S.W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree (2003) “Sequence of the rubbing induced reorientations of polymer chain segments in nanofilms of a well defined brush polyimide with a fully rodlike backbone as determined by polarized FTIR spectroscopy and two-dimensional correlation analysis,” Langmuir, 19(22), 9459-9465.
[26] H. Ishida, S. T. Wellinghoff, E. Baer,and J. L. Koenig (1979) “Spectroscopic Studies of [N, N'-bis (phenoxyphenyl) pyromellitimide] 1. Structures of the polyimide and three model compounds,” Macromolecules, 13(4), 826-834.
[27] K. Sawa, K. Sumiyoshi, Y. Hirai, K. Tateishi, and T. Kamejima (1994), “Molecular orientation of polyimide films for liquid crystal alignment studied by infrared dichroism,” Jpn. J. Appl. Phys., 33(1), 6273-6276.
[28] R. Arafune, K. Sakamoto, and S. Ushioda (1998), “Important of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals,” Physical Review E, 58(5), 5914-5918.
[29] R. Arafune, K. Sakamoto, D. Yamakawa, and S. Ushioda (1996), “Pretilt angles of liquid crystals in contact with rubbed polyimide films with different chain inclinations,” Surface Science, 368, 208-212.
[30] K. Sakamoto, R. Arafune, N. Ito, and S. Ushioda (1996), “Determination of molecular orientation of very thin rubbed and unrubbed polyimide films,” J. Appl. Phys., 80(1), 431-439.
[31] C. Y. Lee, Y. L. Liu, K. Y. Wu, M. Y. Chen, and J. C. Hwang (2008), “Argon plasma beam scanning processes on polyimide films for liquid crystal alignment,” Jpn. J. Appl. Phys., 47(1), 226-230.
[32] K. Weiss, C. Woell, E. Boehm, B. Fiebranz, G. Forstmann, B. Peng, V. Scheumann, and D. Johannsmann (1998), “Molecular orientation at rubbed polyimide surfaces determined with x-ray absorption spectroscopy relevance for liquid crystal alignment,” Macromolecules, 31(6), 1930-1936.
[33] H. Kikuchi, J. A. Logan, and Do Y. Yoon (1996), “Study of local stress, morphology, and liquid-crystal alignment on buffed polyimide surfaces,” J. Appl. Phys., 79(9), 6811-6817.
[34] X. Liang, J. Liu, L. Han, H. Tang, and S. Y. Xu (2000), “Electric force microscopy study of the surface electrostatic property of rubbed polyimide alignment layers,” Thin Solid Films, 370, 238-242.
[35] J. Suchocki (2007),觀念化學II,天下遠見出版股份有限公司,台北,台灣。
[36] D. O. Thompson, and D. E. Chimenti (1991), “Guided wave for porosity estimation in complex shaped structures,” Review of Progress in QNDE, Vol. 10B, pp.1547-1554.
[37] J. L. Rose (1999), Ultrasonic Waves in Solid Media, Cambridge university press, USA.
[38] 呂金山 (1996),金屬基複合材料次表面性質的超音波研究,國立交通大學機械工程學系碩士論文,新竹市,台灣。
[39] 陳陵援 (1988),儀器分析,三民書局股份有限公司,台北,台灣。
[40] D. A. Skoog, F. J. Holler, S. R. Crouch (2007),儀器分析-精華版,新加坡商湯姆生亞洲私人有限公司台灣分公司,台北,台灣。
[41] V. Chigrinov, E. Prudnikova, V. Kozenkov, and H. Kwok (2002), “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liquid Crystals., 29(10), 1321-1327.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top