跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 20:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:嚴英傑
研究生(外文):Ying-Chieh Yen
論文名稱:多面體聚矽氧烷與高分子複合材之氫鍵作用力與高分子電解質之研究
論文名稱(外文):The Study on Hydrogen Bonding Interactions and Polyelectrolyte Properties of Polyhedral Oligomeric Silsesquioxane/Polymer Composites
指導教授:張豐志
指導教授(外文):Feng-Chih Chang
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:104
中文關鍵詞:多面體聚矽氧烷氫鍵作用力高分子電解質質子傳導膜
外文關鍵詞:polyhedral oligomeric Silsesquioxanehydrogen bonding interactionpolyelectrolyteproton exchange membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
多面體聚矽氧烷 (POSS) 衍生物於許多領域均有應用性。然而,探討其於高分子電解質及質子傳導膜方面(能源儲存及來源方面)應用之論文卻十分稀少。本論文中,改質後之多面體矽氧烷經由共價鍵結(化學鍵)及非共價鍵結(物理鍵)之方法導入高分子中,形成新型高分子電解質及質子傳導膜。此外,我們也利用Painter-Coleman association model (PCAM) 理論計算改質後多面體聚矽氧烷分子內作用力常數及其與高分子間作用力常數。
本研究首先探討具八酚官能基多面體聚矽氧烷分別與聚甲基丙烯酸甲酯 [poly(methyl methacrylate) (PMMA)]、聚乙烯必喀烷酮 [poly(vinyl pyrrolidone) (PVP)],及兩者之共聚物 (PMMA-co-PVP) 形成摻合物之相溶性及作用力機制。二相混摻系統中,具八酚官能基多面體聚矽氧烷與聚甲基丙烯酸甲酯間之作用力常數為29,此常數小於聚乙烯苯酚 [poly(vinyl phenol) (PVPh)] 與聚甲基丙烯酸甲酯間之作用力常數 (37) 及乙基苯酚 [ethyl phenol (EPh)] 與聚甲基丙烯酸甲酯間之作用力常數 (101)。由上述可知,具八酚官能基多面體聚矽氧烷之酚官能基與聚甲基丙烯酸甲酯之羰基作用之機率較其他二者低。此外,我們也發現,具八酚官能基多面體聚矽氧烷之摻入可增加過氯酸鋰 (LiClO4) 與甲基丙烯酸甲酯-乙烯必喀烷酮共聚物 (PMMA-co-PVP) 高分子電解質之離子導電度。
接著觀察具八酚官能基多面體聚矽氧烷摻入過氯酸鋰與聚甲基丙烯酸甲酯高分子電解質後對於熱性質、形態,及作用力之影響。具八酚官能基多面體聚矽氧烷與聚甲基丙烯酸甲酯二相摻合物中,具八酚官能基多面體聚矽氧烷傾向自身聚集。因此,導致整體玻璃轉移溫度 (glass transition temperature) 下降。但於聚甲基丙烯酸甲酯、過氯酸鋰,與具八酚官能基多面體聚矽氧烷三相摻合物中,具八酚官能基多面體聚矽氧烷可形成約20奈米大小之聚集,導致整體之玻璃轉移溫度上升。傅立葉轉換紅外線光譜 (FTIR) 量測結果指出,過氯酸鋰有助於增加具八酚官能基多面體聚矽氧烷與聚甲基丙烯酸甲酯形成氫鍵作用力之機率。場發射掃描式電子顯微鏡 (SEM) 、熱示差掃瞄卡量計 (DSC) ,及X光繞射儀 (XRD) 之結果均指出,過氯酸鋰之摻入是可改善具八酚官能基多面體聚矽氧烷於聚甲基丙烯酸甲酯中之分散情形並使具八酚官能基多面體聚矽氧烷之物理效應由稀釋之角色轉為物理交聯之角色。
在本研究之最後一部分中,我們將多面體聚矽氧烷導入磺化聚醚醚酮 [sulfonated poly(ether ether ketone) (SPEEK)] 中,形成一新型交聯型質子傳導膜。在傳導膜中,奈米級交聯劑之分散性受其上有無磺酸根之影響而產生不同之分散程度,導致親水區域之分散及聯結程度不同。其中,含 17.5 wt% 交聯劑之新型質子傳導膜,具有高質子導電度 (0.0153 S/cm) 、低甲醇穿透率 (1.34 x 10-7 cm2/s) ,以及高選擇率 (0.0011 Ss/cm3) 之特性。
Polyhedral oligomeric silsequioxane (POSS) derivatives have the potential for the application in several fields, however, they had rarely been used in the filed of polyelectrolyte and proton exchange membrane which play a critical role in the people’s life because of the need for energy storage and cleaning energy source. In this thesis, POSSs were modified to be non-covalently and covalently incorporated into polymer matrix to form the new polyelectrolyte and proton exchange membrane. In addition, the Painter–Coleman association model (PCAM) was employed to theoretically study the intra-association and inter-association between the modified POSS and polymer.
Firstly, we investigated the miscibility behavior and mechanism of interaction of poly(methyl methacrylate) (PMMA), poly(vinyl pyrrolidone) PVP, and PMMA-co-PVP blends with octa(phenol)octasilsequioxane (OP-POSS). For the PMMA/OP-POSS binary blend, the value of the association constant (KA = 29) was smaller than that in the poly(vinyl phenol) (PVPh)/PMMA (KA = 37.4) and ethyl phenol (EPh)/PMMA (KA = 101) blend systems, implying that the phenol groups of the OP-POSS units in the PMMA/OP-POSS blends interacted to a lesser degree with the C=O groups of PMMA than they did in the other two systems. In addition, the ionic conductivity of a LiClO4/PMMA-co-PVP polymer electrolyte was increased after blending with OP-POSS.
Secondly, the thermal properties, morphologies, and interactions within the binary and ternary blends of poly(methyl methacrylate) (PMMA), octa(phenol)octasilsesquioxane (OP-POSS), and LiClO4 were described. In the binary PMMA/OP-POSS blends, the OP-POSS molecules tend to aggregate and result in a decrease (19 °C) in the glass transition temperature. In the ternary PMMA/LiClO4/OP-POSS blends, however, the OP-POSS molecules form small sphere-like domains (20 nm) leading to the composite’s glass transition temperature increasing by up to 30 °C. Based on these FTIR spectra, the addition of LiClO4 influenced the probability of hydrogen bonds formed between PMMA and OP-POSS and these SEM micrographs, DSC, and XRD data indicated that the addition of LiClO4 is a convenient and simple approach toward dispersing the OP-POSS nanoparticles within PMMA, where the presence of LiClO4 changes the physical effect of OP-POSS from that of a diluent role to a cross-linker role.
Finally, polyhedral oligomeric silsequoixane (POSS) was incorporated into sulfonated poly(ether ether ketone) (SPEEK), forming a new cross-linked proton exchange membrane (PEM). The distribution of these nano-scale cross-linkers were affected by their sulfonic acid groups and dictated the water behavior and the dispersion and connectivity of hydrophilic domains within these PEMs. A PEM formed by incorporating 17.5 wt% of the cross-linkers (containing POSS molecules and sulfonic acid groups) into SPEEK exhibited high proton conductivity (0.0153 S/cm), low methanol permeability (1.34 �e 10–7 cm2/s), and high selectivity (0.0011 Ss/cm3).
Abstract (in Chinese) I
Abstract (in English) IV
Acknowledgment VII
Outline of Contents IX
List of Tables XIV
List of Schemes XV
List of Figures XVI
Chapter 1 Introduction
1.1. Introduction to Polyhedral OligomericSilsesquioxane 1
(POSS)
References 3
1.2. Introduction to Hydrogen Bonds in Polymer/POSS 7
blends
1.2.1. Polymer/POSS blends 7
1.2.2. Introduction to Painter-Coleman Association 7
Model
1.2.3 Ternary Polymer Blends 8
References 11
1.3. Introduction to Polyelectrolyte 12
References 15
1.4. Introduction to Proton Exchange Membrane (PEM) 19
Applied in Direct Methanol Fuel Cell (DMFC)
References 21
Chapter 2 Miscibility and Hydrogen Bonding Behavior
in Organic/Inorganic Polymer Hybrids
Containing Octaphenol Polyhedral Oligomeric
Silsesquioxane
Abstract 25
2.1. Introduction 25
2.2. Experimental Part 26
2.2.1. Materials 26
2.2.2. Synthesis of Octa(phenol)octasilsequioxane-POSS 27
(OP-POSS) Oligomer
2.2.3. Syntheses of PMMA-co-PVP Random Copolymers 27
2.2.4. Blend Preparations 28
2.2.5. Characterizations 28
2.3. Results and Discussion 29
2.3.1 PMMA-co-PVP Copolymer Characterization 29
2.3.2. Analyses of OP-POSS/Homopolymer Binary Blends 30
2.3.3. Analyses of Binary Blend OP-POSS/Copolymers 36
2.3.4. Analyses of Ionic Conductivity 37
2.4. Conclusions 38
References 39
Chapter 3 Effect of LiClO4 on the Thermal and
Morphological Properties of
Organic/Inorganic Polymer Hybrids
Abstract 59
3.1. Introduction 59
3.2. Experimental Part 60
3.2.1. Materials 60
3.2.2. Characterization 61
3.3. Results and Discussion 61
3.3.1. Morphologies 61
3.3.2. Thermal Properties 63
3.4. Conclusions 64
References 66
Chapter 4 Effect of Sulfonic Acid Groups on
Properties of New Organic/Inorganic
Cross-linked Proton Exchange Membrane
Abstract 76
4.1. Introduction 76
4.2. Experimental Part 77
4.2.1. Materials 77
4.2.2. Octakis(dimethylsilyloxypropylglycidyl ether) 77
octasilsesquioxane (OG-POSS) Oligomer
4.2.3. Synthesis of 4,4´-Diaminodiphenyl Ether-2,2´- 78
disulfonic Acid (ODADS)
4.2.4. Sulfonation of PEEK 78
4.2.5. Membranes Preparations 78
4.2.6. Characterization 79
4.3. Results and Discussion 81
4.3.1. Morphologies of Cross-linkers 81
4.3.2. Thermal Analysis 82
4.3.3. Membrane Morphologies 82
4.3.4. Relationship between water sorption and 83
membrane miscibility
4.3.5. Proton conductivity, methanol permeability, 85
and selectivity
4.4. Conclusions 87
References 88
Chapter 5 Conclusions 102
Publication List 103
Introduction to the Author 104
1. Pittman, Jr. C. U.; Li, G. Z.; Ni, H. Macromol. Symp. 2003, 196, 301.
2. Scott, D. W. J. Am. Chem. Soc. 1946, 68, 356.
3. Lichtenhan, J. D.; Feher, F. J.; Gilman, J. W. Macromolecules 1993, 26, 2141.
4. Lichtenhan, J. D.; Otonary, Y.; Carr, M. J. Macromolecules 1995, 28, 8435.
5. Laine, R. M.; Sellinger, A. Macromolecules 1996, 29, 2327.
6. Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Chem. Rev. 1995, 95, 1409.
7. Zhang, X.; Shi, L. Chin. J. Polym. Sci. 1987, 5, 197.
8. Xie, Z.; He, Z.; Dai, D.; Zhang, R. Chin. J. Polym. Sci. 1989, 7, 183.
9. Maciel, G. E.; Sullivan, M. J.; Sindorf, D. W. Macromolecules 1981, 14, 1607.
10. Engelhavdt, G.; Jancke, H.; Lippmaa, E.; Samoson A. J. Organomet. Chem. 1981, 210, 295.
11. Frye, C. L.; Collins, W. T. J. Am. Chem. Soc. 1970, 92, 5586.
12. Belot, V.; Corriu, R.; Leclerq, D.; Mutin, P. H.; Vioux, A. Chem. Mater. 1991, 3,
127.
13. Adachi, H.; Hayashi, O.; Okahashi, K. Japanese Patent Kokoku-H-2-15863.
14. Adachi, H.; Hayashi, O.; Okahashi, K. Japanese Patent Kokai-S-60-108841.
15. Adachi, E.; Aiba, Y.; Adachi, H. Japanese Patent Kokai-H-2-277255.
16. Aiba, Y.; Adachi, E.; Adachi, H. Japanese Patent Kokai-H-3-6845.
17. Shoji, F.; Sudo, R.; Watanabe, T. Japanese Patent Kokai-S-56-146120.
18. Imai, E.; Takeno, H. Japanese Patent Kokai-S-59-129939.
19. Saito, Y.; Tsuchiya, M.; Itoh, Y. Japanese Patent Kokai-S-58-14928.
20. Mine, T.; Komasaki, S. Japanese Patent Kokai-S-60-210570.
21. Kuo, S. W.; Lin, H. C.; Huang, W. J.; Huang, C. F.; Chang, F. C. J. Polym. Sci., Polym. Phys. 2006, 44, 673.
22. Lee, Y. J.; Huang, J. M.; Kuo, S. W.; Chang, F. C. Polymer 2005, 46, 10056.
23. Zhang, H.; Kulkarni, S.; Wunder, S. L. J. Phys. Chem. B 2007, 111, 3583.
24. Kopesky, E. T.; Haddad, T. S.; Cohen, R. E.; McKinley, G. H. Macromolecules 2004, 37, 8992.
25. Li, G. Z.; Wang, L.; Toghiani, H.; Daulton, T. L.; Koyama, K.; Pittman, C. Y. Macromolecules 2001, 34, 8686.
26. Matejka, L.; Strachota, A.; Plestil, J.; Whelan, P.; Steinhart, M.; Slouf, M. Macromolecules 2004, 37, 9449
27. Lin, H. C.; Wang, C. F.; Kuo, S. W.; Tung, P. H.; Huang, C. F.; Lin, C. H.; Chang, F. C. J. Phys. Chem. B 2007, 111, 3404.
28. Leu, C. M.; Chang, Y. T.; Wei, K. H. Chem. Mater. 2003, 15, 2261.
29. Leu, C. M.; Chang, Y. T.; Wei, K. H. Chem. Mater. 2003, 15, 3721.
30. Phillips, S. H.; Haddad, T. S.; Tomcrzak, S. J. Curr. Opin. Solid State Mater. Sci. 2004, 8, 21.
31. Li, G. Z.; Wang, L. C.; Ni, H. L. J. Inorg. Organomet. Polym. 2001, 11, 123.
32. Chen, W. Y.; Wang, Y. Z.; Kuo, S. W.; Huang, C. F.; Tung, P. H.; Chang, F. C. Polymer 2004, 45, 6897.
33. Tamaki, R.; Choi, J.; Laine, R. M. Chem. Mater. 2003, 15, 793.
34. Lee, Y. J.; Huang, J. M.; Kuo, S. W.; Lu, J. S.; Chang, F. C. Polymer 2005, 46, 173.
35. Ye, Y. S.; Chen, W. Y.; Wang, Y. Z. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5391.
36. Liu, Y. L.; Chang, G. P.; Hsu, K. Y.; Chang, F. C. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3825.
37. Do Carmo, D. R.; Paim, L. L.; Dias, N. L. Appl. Surf. Sci. 2007, 253, 3683.
38. Voronkov, M. G.; Lavrent’ev, V. I. Top. Curr. Chem. 1982, 102, 199.
39. Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Chem. Rev. 1995, 95, 1409.
40. Provatas, J. G. Trends Polym. Sci. 1997, 5, 327.
41. Loy, D. A.; Shea, K. J. Chem. Rev. 1995, 95, 1431.
42. Lichtenhan, J. D.; In Polymeric Materials Encyclopedia, Salamone, J. C. Ed.; CRC Press: Boca Raton, FL, 1996, 7768.
43. Ni, Y.; Zheng, S. Chem. Mater. 2004, 16, 5141.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊