跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡琇雅
研究生(外文):Tsai, Hsiu-Ya
論文名稱:利用熱力學方法探討半導體材料的熱電效應
論文名稱(外文):Thermodynamic Study of the Thermoelectric Effect for Semiconducting Materials
指導教授:朱超原
指導教授(外文):Zhu, Chao-Yuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:106
中文關鍵詞:熱電材料熱電效應熱力學矽化鎂矽化鐵矽化鍺介電常數Seebeck 係數極化率Causius-Mossotti 方程式
外文關鍵詞:thermoelectric materialsthermoelectric effectthermodynamicsMg2SiFeSi2SiGedielectric constantSeebeck coefficientpolarizabilityClausius-Mossotti equation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:698
  • 評分評分:
  • 下載下載:141
  • 收藏至我的研究室書目清單書目收藏:0
半導體材料的熱電效應可以藉由熱力學方法中 : 一系統存在電場的情況下,而詳加研究。併入Clausis-Mossotti方程式的這個新的方法被提出來計算固態材料的介電常數,然後便可以計算出一個決定材料熱電轉換效率的重要因子 : 熱電係數。
一般來說,在Clausis-Mossotti方程式中的極化率包含三個部份 : 電子極化率、原子極化率與方向性極化率,然而對於半導體材料的主要貢獻來自於電子極化率。從極化率得到的介電常數因為擁有粒子聚集的重要巨觀特性,因此,從電子極化率衍生而來的介電常數便可以將此巨觀特性描述為一個固態性質。Ab initio量子化學的理論被運用在計算隨著電場變化的電子極化率之上。
在目前的工作中,三種半導體的熱電材料被考慮 : 矽化鎂、二矽化鐵和矽化鍺。第一步,APT 和Mulliken電荷經由密度泛涵理論的方法在一變化的電場下而計算出來,變化的電場如下 : -0.01、-0.0075、-0.005、-0.0025、0.00、0.0025、0.005、0.0075和0.01原子單位。四種密度泛涵理論的方法被選用,如下 : B3LYP、BLYP、M05和M052X,再加上一系列的基底函數,如下 : Pople形式的基底函數,例如6-311G、6-311G(d)…等等 ﹔effective core potential形式的基底函數,例如CEP-31G、CEP-121G和LANLDZ。第二步,APT和Mulliken電荷被使用來計算在電場中的偶極矩,然後電子極化率可經由偶極矩對電場求一階導數而計算出來。最後,介電常數便可以從Clausis-Mossotti方程式與電子極化率而求得。經與實驗測量比較之下,對於矽化鎂、二矽化鐵和矽化鍺而言,在B3LYP方法之下所模擬計算出來的介電常數顯示最正確的結果。介電常數從目前的計算方法及他們相對應的實驗結果,分別如下 : 對於矽化鎂而言,εr = 11.86和13.3 ﹔對於矽化鐵而言,εr = 27.806和27.6 ﹔對於矽化鍺而言,εr = 13.571和13.95。
熱電係數可以從熱力學方法中的chemical potential計算求得,這種方法比能帶結構理論還簡單的多。Helmholtz自由能在不同溫度下被計算,而且基於溫度為一變量之下,可以得到某些分析性的函數。因此,熱電係數可經由Helmholtz自由能對溫度求一階導數而計算出來。然而,這個熱電係數還要除以先前計算的介電常數,最後才能真正表示固態材料的熱電係數。對於熱電係數而言,目前計算矽化鎂、二矽化鐵和矽化鍺的結果與實驗測量的結果非常相近。經由目前計算的熱電係數,分別如下 : 矽化鎂在溫度(300, 800)K下,Se = (284,334) μV/K ﹔ 二矽化鐵在溫度(300,900)K下,Se = (118.8,140.4) μV/K ﹔矽化鍺在溫度(300, 900)K下,Se = (196.3,220.9)。與之相對應的實驗結果,分別如下 : 矽化鎂在溫度(300, 800)K下,Se = (180,280) μV/K﹔二矽化鐵在溫度(300, 900)K下,Se = (190, 170) μV/K﹔矽化鍺在溫度(300, 900)K下,Se = (345,325) 。
總之,對於計算熱電係數而言,目前計算的方法明顯優於傳統能帶結構理論的方法。
Thermoelectric effect of semiconducting materials is studied by the thermodynamic method for a system in the presence of an electric field. The new method incorporating with the Clausis-Mossotti equation is proposed to calculate dielectric constant for solid-state materials, and then to compute the Seebeck coefficient that is key factor to determine thermoelectric conversion efficiency of the materials.
The polarizability in the Clausis-Mossotti equation in general includes three parts; electronic polariability, atomic polariability and orientation polariability. The dominant contribution for semiconducting materials comes from electronic polariability. A dielectric constant derived from the polarizability is an important bulk property of a collection of particles. Therefore, the dielectric constant derived from electronic polariability can describe bulk as a solid. Ab initio quantum chemistry theory is utilized to compute electronic polariability directly with varying strength of electric field.
In the present work, three semiconductor thermoelectric materials are considered; Mg2Si, FeSi2 and SiGe. In the first step, APT and Mulliken charges are computed with density functional theory (DFT) method at various electric fields; -0.01, -0.0075, -0.005, -0.0025, 0.00, 0.0025, 0.005, 0.0075 and 0.01 in atomic unit. Four kinds of DFT functionals are chosen: B3LYP, BLYP, M05 and M05-2X, plus a bunch of basis sets; Pople style basis sets including of 6-311G, 6-311G(d)…etc; effective core potential including of CEP-31G, CEP-121G and LANL2DZ. In the second step, APT and Mulliken charges are used to calculate dipole moments at given electric field above and then derivatives of dipole moments with respect to electric field lead to the electronic polarizability. In the final step, the dielectric constant is evaluated from the Clausis-Mossotti equation through the electronic polarizability. In comparison with experimental measurements, simulated dielectric constants with B3LYP method show the most accurate results for Mg2Si, FeSi2 and SiGe. The dielectric constants from the present calculations and their corresponding experiment results are ε¬r = 11.86 and 13.3 for Mg2Si, εr = 27.806 and 27.6 for FeSi2, and εr = 13.571 and 13.95 for SiGe, respectively.
The Seebeck coefficient is calculated from the thermodynamic method with chemical potential. This method is much simpler than energy band structure theory. The Helmholtz free energies are computed at various temperatures, and then are fitted into the certain analytical function with respect temperatures as a variable. Thus, the Seebeck coefficient can be evaluated from partial derivative of Helmholtz free energy with respect to temperature. This Seebeck coefficient that must be divided by the dielectric constant evaluated previously can finally be considered as the Seebeck coefficient for a solid-state material. The present results show good agreements with experimental measurements for the Seebeck coefficients of Mg2Si, FeSi2 and SiGe. The Seebeck coefficients from the present calculations are Se = (284, 334)μV/K at the temperature (300, 800)K for Mg2Si, Se = (118.8, 140.4)μV/K at (300,900)K for FeSi2, and Se = (196.3,220.9)μV/K at (300,900)K for SiGe. Their corresponding experiment results are Se = (180, 280)μV/K at (300, 800)K for Mg2Si, Se = (190, 170)μV/K at (300,900)K for FeSi2, and Se = (345,325)μV/K at (300,900)K for SiGe.
In conclusion, the present method surprisingly woks better than conventional energy band structure theory for calculating the Seebeck coefficient.
CONTENTSI
LIST OF FIGURES IV
LIST OF TABLES VII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 THEORY7
2-1 THE ELECTRIC PROPERTIES OF MATTER 7
2-1-1 Basic relation of electric field, energy and polarizability 7
2-1-2 Basic dielectric relations 10
2-1-3 Lorentz local field and Clausius-Mossotti equation 12
2-1-4 Orientation and distortion polarization 17
2-1-5 A summary of polarization 19
2-2 CHARGE POPULATION 21
2-2-1 Mulliken charge 21
2-2-2 Atomic polar tensor charge 22
2-3 DIPOLE MOMENT 25
2-4 DENSITY FUNCTIONAL THEORY 27
2-4-1 Historical Background 27
2-4-2 M05 and M05-2X30
2-5 THERMOELETRIC PHENOMENA 32
2-5-1 Historical Background 32
2-5 -2 Seebeck effect 33
CHAPTER 3 CALCULATION 37
3-1 DETERMINATION OF STRUCTURE 37
3-2 CALCULATION OF DIELECTRIC CONSTANT 42
3-3 CALCULATION OF SEEBECK COEFFICIENT 43
CHAPTER 4 RESULT AND DISCUSSION 44
4-1 MAGNESIUM SILICIDE (Mg2Si) 44
4-1-1 Paper work 44
4-1-2 Correction for electric field and polarizability 46
4-1-3 Dielectric constant for solid Mg2Si 52
4-1-4 Other methods ( BLYP, M05 and M05-2X ) 62
4-1-5 Seebeck coefficient 68
4-2 IRON DISILICIDE (FeSi2) 73
4-2-1 Polarizability and dielectric constant 73
4-2-2 Seebeck coefficient 86
4-3 SILICON GERMANIUM ( SiGe) 90
4-3-1 Dielectric Constant 90
4-3-2 Seebeck Coefficient 97
CHAPTER 5 CONCLUSION 101
REFERENCE 104
Reference
1. Terasaki, I., Introduction to Thermoelectricity. In.
2. Bian, Z.; Shakouri, A., Cooling Enhancement Using Inhomogeneous Thermoelectric Materials. In.
3. Vining, C. B., Semiconductors are cool. In NATURE, 2001; Vol. 413, pp 577-578.
4. Koumoto, K.; Terasaki, I.; Murayama, M., Oxide Thermoelectrics. Research Signpost: India, 2002.
5. Fairbanks, J., THERMOELECTRIC APPLICATIONS IN VEHICLES STATUS 2008. In.
6. Borisenko, V. E., Semiconducting Silicides. Springer: New York, 2000.
7. Yoshinaga, M.; Iida, T.; Noda, M.; Endo, T.; Takanashi, Y., Bulk crystal growth of Mg2Si by the vertical Bridgman method. Thin Solid Films 2004, 461, 86-89.
8. Vining, C. B. In THERMOELECTRIC FUNDAMENTALS AND PHYSICAL PHENOMENA, Short Course On Thermoelectrics, Japan, 1993; The International Thermoelectric Society: Japan, 1993.
9. Zhu, Z. H.; Zhu, C., Thermodynamical Study of the Thermoelectric Effect for Magnesium Silicide. J. Phys. Chem. A 2007, 111, 9362-9366.
10. Jensen, F., Introduction to Computational Chemistry. 2nd ed.; WILEY: New York, 2006.
11. Piela, L., Ideas of Quantum Chemstry. 1st ed.; Elsevier: New York, 2007.
12. Bonin, K. D.; Kresin, V. V., Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters. World Scientific: London, 1997.
13. Tabor, D., Gases, liquids and solids and other states of matter. 3rd ed.; Cambridge University Press: Cambridge, 1991.
14. Kittel, C., Introduction to Solid State Physics. 8th ed.; WILEY: USA, 2005.
15. Wheatley, P. J., The Determination of Molecular Structure. Dover: New York, 1968.
16. Bottcher, C. J. F., THEORY OF ELECTRIC POLARIZATION. 2nd ed.; Elsevier: New York, 1973

17. Atkins, P.; Paula, J. d., ATKINS’ Physical Chemistry. 7th ed.; Oxford University Press: Oxford, 2002.
18. Cioslowski, J., A New Population Analysis Based on Atomic Polar Tensors. JOURNAL AMERICAN CHEMICAL SOCIETY 1989, 111, 8333-8336.
19. S. Millefiori, A. A., (Hyper)polarizability of chalcogenophenes C4H4X (X = 0, S, Se, Te) Conventional ab initio and density functional theory study. Journal of Molecaular Structure (Theochem) 1998, 43 I 59-78.
20. Per-Olof Astrand, K. R., Kurt V. Mikkelsen,Trygve Helgaker,, Atomic Charges of the Water Molecule and the Water Dimer. J. Phys. Chem. A 1998, 102, 7686-7691
21. Frank De Proft, J. M. L. M., Paul Geerlings,, On the performance of density functional methods for describing atomic populations, dipole moments and infrared intensities. Chemical Physics Lette 1996, 250, 393-401
22. Michael Springborg, Methods of Electronic-Structure Calculations From Molecules to Solid. WILEY: New York, 2000.
23. Wolfram Koch, M. C. H., A Chemist's Guide to Density Functional Theory. Wiley-VCH: New York, 2001.
24. Yan Zhao, N. E. S., D. G. Truhlar, Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. THE JOURNAL OF CHEMICAL PHYSICS 2005, 123, 161103.
25. Yan Zhao, N. E. S., Donald G. Truhlar, Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2006, 2, 364-382.
26. Thomas Kent Reynolds. Design, Synthesis, and Characterization of New Materials for Thermoelectric Applications. Cornell University, United States, 2003.
27. Terry M.Tritt, M. A. S., Guest Editors, Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View. MRS BULLETIN 2006, 31, 188-194.
28. G. S. Nolas, J. S., H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments. Springer: New York, 2001.
29. David Michael Rowe, REVIEW THERMOELECTRIC WASTE HEAT RECOVERY AS A RENEWABLE ENERGY SOURCE. International Journal of Innovations in Energy Systems and Power 2006, 1, 13-23.
30. Xie An-Dong, Y. S.-Y., Zhu Zheng-He,Fu Yi-Bei, Spin polarization effect for Os2 molecule. Chinese Physics 2005, 14, 1808-1812.
31. Kevin M. Wedderburn, S. B., Mel Levy,Robert J. Gdanitz, Geometries and stabilities of 3d-transition metal-cation benzene complexes, M+Bzn (M = Sc-Cu, n=1,2). Chemical Physics 2006, 326, 600-604.
32. Masayasu Akasaka, T. I., Takashi Nemoto,Junichi Soga,Junichi Sato,Kenichiro Makino,Masataka Fukano,Yoshifumi Takanashi, Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics. Journal of Crystal Growth 2007, 304, 196-201.
33. Zhongwei Jiang, W. Z., Liqin Yan, Xinhuan Niu, Anisotropy of the Seebeck coefficient in Czochralski grown p-type SiGe single crystal. Materials Science and Engineering B 2005, 119, 182–184.
34. M. C. Bost, J. E. M., Optical properties of semiconducting iron disilicide thin films. Journal of Applied Physics 1985, 58, 2696-2703.
35. S. Sugihara, S. K., H. Katanahara,H. Suzuki,S. Mochizuki,R. Sekine, Doping Effect of Metal into Iron Disilicide on Electronic Structures and Thermoelectric Properties. In 18th International Conference on Thermoelectrics, 1999; pp 577-580.
36. The General Properties of Si, Ge, SiGe, SiO2 and Si3N4. In Virginia Semiconductor: 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊