跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 01:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖春雄
論文名稱:藉由高分子氫鍵作用力的轉換來控制高分子薄膜表面特性之研究
論文名稱(外文):Tuning polymer surface free energy through mediating polymer hydrogen bonding interaction
指導教授:張豐志
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:197
中文關鍵詞:氧代氮代苯并環己烷表面自由能氫鍵
外文關鍵詞:benzoxazinesurface free energyhydrogen bonding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本論文中以討論高分子氫鍵作用力及多面體聚矽氧烷奈米粒子對於高分子薄膜表面特性的為主體,分為五大主題:

1. 利用低溫交聯的Polybenzoxazine薄膜去修飾高分子薄膜表面
在我們以前的研究發現Polybenzoxazine薄膜為一低表面能材料,可以用來修飾無機固體表面如金屬、玻璃或矽晶圓等等。但是對於高分子材料其熱交聯製程溫度太高因此無法去修飾高分子表面。在本章中我們發現AIBN此自由基起始劑在120℃製程下由於起始劑化學鍵斷鍵所產生的熱能可以產生一些寡聚物,而這些寡聚物會對熱交聯反應產生催化效果。因此我們利用此低溫製程成功的修飾高分子基材,史的這些高分子表面也具有低表面能特性。

2. 控制Polybenzoxazine薄膜表面能之研究
Polybenzoxazine 薄膜由於具有極強的高分子內氫鍵而擁有極低的表面能,我們利用了熱與紫外光這兩種方式來控制Polybenzoxazine薄膜中分子內與分子間作用力的比例。 藉由這兩種方式我們可以輕易的控制Polybenzoxazine薄膜的表面能。此外,我們更利用紫外光照時間與區域的不同在Polybenzoxazine薄膜 上製造親疏水性圖案的陣列與梯度。並且成功的製造出鍗化鎘量子點的規則陣列。
3. 製造擁有超疏水及超親水特性的Polybenzoxazine 有機無機混成表面
我們利用混掺二氧化矽奈米粒子提高表面粗糙度以製造具有蓮花效應的超疏水表面。再利用紫外光照讓某些特定區域形成超親水的表面,藉此我們可以得到同時具有超疏水及超親水兩種極端特性的表面。此外,在紫外光照後我們發現表面對於水滴產生極強的吸附力。我們將表面光照後產生的此特性應用在能轉移微小水滴的機械手臂上。此外我們更利用表面分析化學分析影像能譜儀對光照後的表面化學組成改變作更深入的探討。
4. 分子量及高分子氫鍵作用力對於低表面能材料Poly(4-vinyl phenol)表面特性影響之探討
在我們先前研究發現Poly(4-vinyl phenol)為一低表面能材料。在此章中我們更深入的探討分子量、多面體聚矽氧烷奈米粒子及高分子氫鍵作用力對於Poly(4-vinyl phenol)高分子薄膜表面特性的影響。為了探討高分子氫鍵的影響我們合成了不同比例的Poly(4-vinyl phenol)/Poly(methyl methacrylate) 團塊塊體共聚合物及不規則共聚合物。在其中我們發現 Poly(4-vinyl phenol)/Poly(methyl methacrylate) 團塊塊體共聚合物及不規則共聚合物系統不同於混掺系統呈現非常低的表面能,這是因為團塊塊體共聚合物及不規則共聚合物系統在熱處理在快速冷卻的過程中降低了分子間的作用力。而混掺系統雖然也降低了Poly(4-vinyl phenol)之間的分子作用力卻也增加了Poly(4-vinyl phenol)與Poly(methyl methacrylate)分子鏈之間的作用力。所以混掺系統的表面能會隨著Poly(methyl methacrylate)的含量增加而增加。

5. 多面體聚矽氧烷奈米粒子對於poly(4-vinyl phenol)表面特性與溶液相行為影響之探討
多面體聚矽氧烷奈米粒子本身為一具有低表面能的奈米粒子,所以不管當我們是混摻或是接枝上去poly(4-vinyl phenol)此種高分子上面,我們均發現隨著多面體聚矽氧烷奈米粒子的量越多,高分子薄膜的表面能降的越低。此外我們也發現在末端帶有多面體聚矽氧烷奈米粒子的Poly(4-vinyl phenol) 團塊塊體共聚合物在溶液中呈現非常獨特的自組裝行為。
Abstract

In this study, we focus on five major subjects which based on the effect of hydrogen bonding and POSS nanoparticle on surface free energy:

1. Modification of Polymer Substrates with Low Surface Free Energy Material by Low-Temperature Curing Polybenzoxazine
The B-ala/AIBN PBZ system has a higher extent of the ring-opening of oxazine because phenol-containing oligomers are formed at the early stage of the curing process. As a result, the B-ala/AIBN PBZ system possesses a relatively stronger intramolecular hydrogen bonding and lower surface energy than the pure B-ala system at low temperature curing. In this context, Poly(4-vinyl pyridine), Poly(4-vinyl phenol) thin film and polycarbonate substrates which lack liquid resistance possess low surface free energy after modification with B-ala/AIBN = 5/1 PBZ.
2. Tuning the Surface Free Energy of Polybenzoxazine Thin Films
A novel approach to manipulate the surface free energy and wettability on polybenzoxazine thin films can be achieved simply by varying time of thermal treatment or UV exposure. Fraction of the intramolecular hydrogen bonding of the as cured sample will convert into intermolecular hydrogen bonding upon thermal treatment or UV exposure and thus results in increase of hydrophilicity and wettability. This UV approach provides a simple method to generate wettability patterns or wettability gradients on the surface of polybenzoxazine film. In addition, we have applied this technique to the preparation of a large-area periodic array of CdTe colloidal nanocrystals on polybenzoxazine thin films.

3. Fabrication of patterned superhydrophobic Polybenzoxazine-hybrid surfaces
The hydrophilicity of B-ala PBZ film and superhydrophobic polybenzoxazine-hybrid surface can be controlled through UV exposure to change ratio of intra- to intermolecular hydrogen bonds. Fraction of the intramolecular hydrogen bonding of the as cured sample will convert into intermolecular hydrogen bonding upon UV exposure and thus results in increase of hydrophilicity. This simple method allows for manipulating the hydrophilicity at selected regions on superhydrophobic polybenzoxazine-hybrid surface to create patterned surface with superhydrophobic and superhydrophilic regions. Besides, we have found that the superhydrophobic polybenzoxazine-silica hybrid surface exhibits good adhesion of water droplets after UV exposure which can be served as a “mechanical hand” to transfer water droplets from a superhydrophobic surface to a hydrophilic one.
4. Effect of molecule weight and hydrogen bonding on low-Surface-Energy material of poly(vinylphenol)
We discovered that a series of poly(vinylphenol-co-methylmethacrylate) (PVPh-co-PMMA) block and random copolymers possess extremely low surface energy after a simple thermal treatment procedure, even lower than that of poly(tetrafluoroethylene) (22.0 mJ/m2) calculated on the basis of the two-liquid geometric method. The decrease of the intermolecular hydrogen-bonding fraction between hydroxyl groups of PVPh in PVPh/PMMA systems through a simple thermal treatment procedure tends to decrease the surface energy and the sequence distribution of the vinylphenol group in PVPh-co-PMMA copolymers plays an important role in dictating the final surface energy after thermal treatment.

5. Effect of POSS nanoparticle on Surface Free Energy and Phase Behavior
POSS-PAS copolymer was systhesed by atomic transfer radical polymerization with POSS-Cl initiator as a macroinitiator which was obtained by using corner-capping reaction. POSS-PVPh copolymer was obtained from the hydrolysis of POSS-PAS copolymer. We found that the POSS nanoparticle would decrease the polymer surface free energy in both POSS/PVPh and POSS-PVPh systems. With incrasing the content of POSS nanoparticle on polymer thin film surface the surface free enegy of polymer thin film would decrease dramatically. We also found that the POSS-PVPh copolymers possessed unique phase behavior in solution state and the superhydrophobic surface was prepared from POSS-PVPh in a THF/toluene mix solution.
Outline of Contents
Acknowledgments
Outline of Contents I
List of Schemes VI
List of Tables VI
List of Figures VIII
Abstract (in Chinese) XXIV
Abstract (in English) XXVII
Chapter 1 Introduction
1.1 Overview on Benzoxazines and Polybenzoxazines 1
1.2 Introduction to Polyhedral OligomericSilsesquioxane(POSS) 5
1.2.1 A quick history of Polyhedral Oligomeric Silsesquioxane (POSS) 5
1.2.2 Silsesquioxanes and Polyhedral Oligomeric Silsesquioxane (POSS) 6
1.2.3 POSS Polymers and Copolymers 9 References 10
Chapter 2 Introduction to Surface Free Energy Theory
2.1 Surface Free Energy 13
2.1.1 Interfacial Thermodynamics 13
2.1.2 Contact Angle Equilibrium: Young Equation 15
2.1.3 Determination of Surface Free Energy 18
2.1.4 Surface Free Energy of Polymer 27
2.2 Superhydrophobic Surfaces 33
2.2.1 The Laws of Wetting 34
2.2.2 Natural Examples 37
2.2.3 Synthetic Substrates 41
2.2.4 Models 46
2.3 Wettability Pattern and Wettability gradient 51
2.3.1 Methods to Control the Wettability of Surface 51
2.3.2 Fabrication of wettability pattern and periodic array of colloid nanocrystals 60
References 67
Chapter 3 Modification of Polymer Substrates with Low Surface Free Energy Material by Low-Temperature Curing Polybenzoxazine
Abstract 74
3.1 Introduction 75
3.2 Experiment section 76
3.2.1 Materials 76
3.2.2 Contact Angle Measurement 76
3.2.3 Thin-Film Formation and Polymerization 76
3.2.4 Polymer Thin-Film Formation 77
3.3 Results and Discussion 78
3.4 Conclusions 81
References 82
Chapter 4 Tuning the Surface Free Energy of Polybenzoxazine Thin Films
Abstract 95
4.1 Introduction 96
4.2 Experiment section 98
4.2.1 Materials 98
4.2.2 Contact Angle Measurement 98
4.2.3 Fourier Transform Infrared (FTIR) Spectroscopy 98
4.2.4 Ultraviolet Irradiation Exposure 99
4.2.5 Electron Spectroscopy for Chemical Analysis (ESCA) 99
4.2.6 Thin-Film Formation and Polymerization 99
4.2.7 Periodic Arrangement of Arrays of CdTe Colloidal Nanocrystals 99
4.3 Results and Discussion 101
4.4 Conclusions 104
References 105
Chapter 5 Fabrication of patterned superhydrophobic Polybenzoxazine-hybrid surfaces
Abstract 118
5.1 Introduction 119
5.2 Experiment section 121
5.2.1 Materials 121
5.2.2 Contact Angle Measurement 121
5.2.3 Fourier Transform Infrared (FTIR) Spectroscopy 121
5.2.4 Ultraviolet Irradiation Exposure 122
5.2.5 Electron Spectroscopy for Chemical Analysis (ESCA) 122
5.2.6 Atomic Force Microscopy (AFM) 122
5.2.7 Preparation of polybenzoxazine thin film and superhydrophobic superhydr-ophobic polybenzoxazine-silica hybrid surface 123
5.3 Results and Discussion 124
5.4 Conclusions 128
References 129
Chapter 6 Effect of Molecule Weight and Hydrogen Bonding on Low-Surface- Energy Material of Poly(vinylphenol)
Abstract 143
6.1 Introduction 144
6.2 Experiment section 146
6.2.1 Preparation of PVPh/PMMA Random and Block Copolymers and Blends 146
6.3 Characterizations 147
6.4 Results and Discussion 148
6.4.1 The effect of molecule weight on surface free energy in PVPh system 148
6.4.2 The effect of hydrogen bonding and sequence distribution in PVPh/PMMA system 149
6.5 Conclusions 155
References 156
Chapter 7 Effect of POSS Nanoparticle on Surface Free Energy and Phase Behavior
Abstract 170
7.1 Introduction 171
7.2 Experiment section 173
7.2.1 Preparation of PVPh/POSS Block Copolymers and Blends 173
7.3 Characterizations 175
7.4 Results and Discussion 176
7.4.1 The effect of POSS nanoparticle on surface free energy in PVPh system 176
7.4.2 The effect of POSS nanoparticle on phase behavior in POSS-PVPh copolymer 177
7.5 Conclusions 180
References 181
Chapter 8 Conclusions 193
List of Publications 195
[1] Holly, F. W.; Cope, A. C. J. Am. Chem. Soc. 1944, 66, 1875.
[2] Scheriber, H. G. Offen. 1973, 225
[3] Riess, G.; Schwob, J. M.; Guth, G.; Roche, M.; Lande, B. in “Advances in Polymer Science” (Eds B. M. Culbertson and J. E. Mcgrath), Plenum, New York, 1986.
[4] Ning, X.; Ishida, H. J. Polym. Sci., Polym. Phys. Ed. 1994, 32, 921.
[5] Ishida, H. J. Appl. Polym. Sci. 1995, 58, 1751.
[6] Burke, W. J.; Murdoch, K. C.; Ec, G. J. Am. Chem. Soc. 1954, 76, 1677.
[7] Burke, W. J.; Glennie, E. L. M.; Weatherbee, C. J. Org. Chem.1964, 24, 909.
[8] Shen, S. B.; Ishida, H. J. Appl. Polym. Sci .1996, 61, 1595.
[9] Dunkers, J.; Ishida, H. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 1913.
[10] Ning, X.; H. Ishida, J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1121.
[11] Takeichi, T.; Komiya, I.; Takayama, Y. Kyoka-Purasutikkus (in Japanese) 1997, 43, 109.
[12] Wang, Y. X.; Ishida, H. Polymer 1999, 40, 4563.
[13] Macko, J. A.; Ishida, H. Polymer 2001, 42, 227.
[14] Furukawa, N. Benzoxazine-based thermosetting polymers and their manufacture, compositions, and heat- and fire-resistant dielectric cured products with low water absorption. Jpn. Kokai Tokkyo Koho, 2004, p18.
[15] Wang, Y. X.; Ishida, H. Polym. Mater. sci. eng. 1999, 80, 211.
[16] Ishida, H.; Allen, D. J. J. Polym. Sci., Part B: Polym. Phys. 1996, 34, 1019.
[17] Kim, H. D.; Ishida, H. J. Appl. Polym. Sci. 2001, 79, 1207.
[18] Macko, J.; Ishida, H. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2687.
[19] Ishida, H.; Low, H. Y. Macromolecules 1997, 30, 1099.
[20] Ishida, H.; Rodriguez, Y. Polymer 1995, 36, 3151.
[21] Nair, C. P. R. Prog. Polym. Sci. 2004, 29, 401.
[22] Agag, T.; Takeichi, T. Macromolecules 2001, 34, 7257.
[23] Lichtenhan, J. D.; Feher, F. J.; Gilman, J. W. Macromolecules 1993, 26, 2141.
[24] Lichtenhan, J. D.; Otonari, Y.; Carr, M. J. Macromolecules 1995, 28, 8435.
[25] Laine, R. M.; Sellinger, A. Macromolecules 1996, 29, 2327.
[26] Mather, P. T.; Haddad, T. S.; Oviatt, H. W.; Schwab, J. J.; Chaffee, K. P.; Lichtenhan, J. D. Polym Prepr 1998, 39, 611.
[27] Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Chem. Rev. 1995, 95, 1409.
[28] Zhang, X.; Shi, L. C. J. Polym. Sci. 1987, 5, 197.
[29] Brown, Jr. J. F. J. Polym. Sci. C 1987, 1, 83.
[30] Xie, Z.; He, Z.; Dai, D.; Zhang, Chin. R. J. Polym. Sci. 1989, 7, 183.
[31] Maciel, G. E.; Sullivan, M. J.; Sindorf, D. W. Macromolecules 1981, 14, 1607.
[32] Engelhavdt, G.; Jancke, H.; Lippmaa, E.; Samoson, A. J. Organomet. Chem. 1981, 210, 295.
[33] Frye, C. L.; Collins, W. T. J. Am. Chem. Soc.1970, 92, 5586.
[34] Belot, V.; Corriu, R.; Leclerq, D.; Mutin, P. H.; Vioux, A. Chem. Mater. 1991, 3, 127.
[35] Adachi, H.; Hayashi, O.; Okahashi, K. Japanese Patent Kokoku-H-2-15863.
[36] Adachi, H.; Hayashi, O.; Okahashi, K. Japanese Patent Kokai-S-60-108841.
[37] Adachi, E.; Aiba, Y.; Adachi, H. Japanese Patent Kokai-H-2-277255.
[38] Aiba, Y.; Adachi, E.; Adachi,H. Japanese Patent Kokai-H-3-6845.
[39] Shoji, F.; Sudo, R.; Watanabe, T. Japanese Patent Kokai-S-56-146120.
[40] Imai, E.; Takeno, H. Japanese Patent Kokai-S-59-129939.
[41] Mishima, T.; Nishimoto, H. Japanese Patent Kokai-H-4-247406.
[42] Saito, Y.; Tsuchiya, M.; Itoh, Y. Japanese Patent Kokai-S-58-14928.
[43] Mine, T.; Komasaki, S. Japanese Patent Kokai-S-60-210570.
[44] Lichtenhan, J. D.; Schwab, J. J.; Reinerth, Sr. W. A. Chem. Innovat. 1, 3.
[45] Ellsworth, M. W.; Gin, D. L. Polym. News 24, 331.
[46] Dupré, A. Theorié mécanique de la chleur, Paris, 1869, p.368.
[47] Young, T. Phil Trans. R. Soci. Lond. 1805, 95, 65.
[48] Michaeles, A. S.; Dean, Jr. S. W. J. Phys. Chem. 1962, 66, 34.
[49] Baily, G. L. J. Proc. 2nd Int. Congr. Surf. Act. 1957, 3, 189.
[50] Poynting, J. H.; Thompson, J. J. A Textbook of Physics: Properties of Matter, 8th ed., Charles Griffin, London, 1920.
[51] Girifalco, L. A.; Good, R. J. J. Phys. Chem. 1957, 61, 904.
[52] Good, R. J.; Girifalco, L. A.; Kraus, G. J Phys. Chem. 1957, 62, 1418.
[53] Good, R. J.; Girifalco, L. A. J. Phys. Chem. 1960, 64, 561.
[54] Fowkes, F. W. Contact Angle, Wettability and Adhesion, Advances in Chemistry Series 43, R. F. Gould, Ed., American Chemical Society, Washington, DC, 1964, p. 99.
[55] Fowkes, F. W. in Adhesion and Adsorption of Polymers, Polymer Science and Technology, vol. 12A, L. H. Lee, Ed., Plenum Press, New York, 1980, p. 43.
[56] Owens, D. K.; Wendt, R. C. J. Appl. Polym. Sci. 1969, 13, 1741.
[57] Kaelble, D. H. J. Adhesion 1970, 2, 50.
[58] Wu, S. J. Polym. Sci., C 1971, 34, 19.
[59] Wu, S. Adhesion and Adsorption of Polymers, Polymer Science and Technology, vol. 12A, L. H. Lee, Ed., Plenum Press, New York, 1980, p. 53.
[60] Fowkes, F. M.; Mostafa, M. A. Int. Eng. Chem. Prod. Res. Dev. 1978, 17, 3.
[61] Fowkes, F. M.; McCarthy, D. C.; Mostafa, M. A. J. Colloid Interface Sci. 1980, 78, 200.
[62] van Oss, C. J.; Chaudhury, M. K.; Good, R. J. Chem. Rev. 1988, 88, 927.
[63] van Oss, C. J.; Ju, L.; Chaudhury, M. K.; Good, R. J. J. Colloid Interface Sci. 1989, 128, 313.
[64] van Oss, C. J.; Good, R. J. J. Macromol. Sci. Chem. 1989, A26, 1183.
[65] van Oss, C. J. J. Dispers. Sci. Technol. 1990, 11, 491.
[66] van Oss, C. J.; Arnold, K.; Good, R. J.; Gawrisch, K.; Ohki, S. J. Macromol. Sci. Chem. 1990, A27, 563.
[67] van Oss, C. J.; Good, R. J.; Busscher, H. J. J. Dispers. Sci. Technol. 1990, 11, 75.
[68] van Oss, C. J.; Giese, Jr., R. F.; Good, R. J. Langmuir 1990, 6, 1711.
[69] Good, R. J.; van Oss, C. J. in Modern Approaches to Wettability, M. E. Schrader and G. I. Loeb, Eds., Plenum Press, New York, 1992, p. 1.
[70] Good, R. J. in Contact Angle, Wetting, and Adhesion, K. L. Mittal, Ed., VSP, xxx, 1993, p. 3.
[71] Fox, H. W.; Zisman, W. A. J. Colloid Sci. 1950, 5, 514.
[72] Fox, H. W.; Zisman, W. A. J. Colloid Sci. 1952, 7, 109.
[73] H. W. Fox, W. A. Zisman, J. Colloid Sci. 1952, 7, 428.
[74] Weisenhorn, A. L.; Maivald, P.; Butt, H.-J.; Hansma, P. K. Phys. Rev. B 1992, 45, 11226.
[75] Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed.; Academic Press: London, 1992.
[76] Johnson, K. L.; Kendall, K.; Roberts, A. D. Proc. R. Soc. London, Ser. A 1971, 324, 301.
[77] Noy, A.; Vezenov, D. V.; Lieber, C. M. Annu. Rev. Mater. Sci. 1997, 27, 381.
[78] Kawai, A.; Nagata, H.; Takata, M. Jpn. J. Appl. Phys. 1992, 31, L977.
[79] Kawai, A.; Nagata, H.; Morimoto, H.; Takata, M. In Surface Modification Technologies VII; Proc. 7th Int.
[80] Sudarshan, T. S., Ishizaki, K., Takata, M., Kamata, K., Eds.; Sanjo, Niigata, Japan, 31 Oct-2 Nov 1993.
[81] Tan, S.; Sherman Jr. R. L.,; Ford, W. T. Langmuir 2004, 20, 7015
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top