跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 06:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊博傑
研究生(外文):Bo-Jei Yang
論文名稱:應用混合啟發式演算法推估地下水污染物暫態釋放問題
論文名稱(外文):Apply Hybrid Heuristic Approach to Identify the Groundwater Contaminated Source in Transient System
指導教授:葉弘德葉弘德引用關係
指導教授(外文):Hund-Der Yeh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:43
中文關鍵詞:序的最佳化模擬退火演算法禁忌演算法污染源鑑定地下水
外文關鍵詞:ordinal optimizationsimulated annealingtabu searchsource identificationgroundwater
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
當污染源的釋放歷程會隨時間改變時,污染源鑑定與歷程重建的工作將會變得較困難。隨著未知變數的增加,逆推的困難度也隨之增加。序的最佳化(Ordinal optimization)適用於解決複雜的最佳化問題,本研究利用此方法,結合模擬退火演算法、禁忌演算法、及旋轉輪盤法的優點,來處理地下水污染源暫態釋放的問題。本研究利用一個假設的污染廠址對發展方法的應用性作測試,分別探討七個及十五個未知數的問題:位置的三維座標X、Y、及Z、兩段及六段的釋放歷程與釋放濃度。利用MODFLOW-GWT地下水污染傳輸模式,可模擬監測井中污染物的濃度分布。在進行污染源鑑定與歷程重建的工作時,首先選取一污染源與鄰近格網所構成的可疑範圍,將範圍內的每一個格網視為候選污染源位置。利用禁忌演算法於候選區域中產生不同的候選污染源位置,再配合模擬退火演算法所產生的一系列釋放時間與釋放濃度的試誤解,可算得監測井中的汙染物濃度值。透過序的最佳化,可從候選格網中篩選出最好的前百分之五可能污染源位置,以縮小搜尋範圍;接著使用旋轉輪盤法,於其中挑選出下次迭代運算的污染源位置。目標函數設定為模擬濃度與實際濃度差值的平方和,當所得結果滿足收斂條件時,即視為得到最佳解。由所提出案例研究的分析結果顯示,本研究所提出的方法即使在污染物為暫態釋放的問題中仍然可得到很好的結果。
As the release of groundwater contamination source is a function of time, it will be very difficult to determine the source information such as the source location and source release history simultaneously. A method based on the ordinal optimization algorithm (OOA), simulated annealing (SA), tabu search (TS), roulette wheel approach, and MODFLOW-GWT is developed to determine the source release problem which contains at least fifteen unknowns including the location of three coordinates and six or more release periods with different concentrations. A hypothetic case for a contamination site is designed to test the applicability of the present method. In the identification process, the TS is first used to generate a candidate location within the block and SA is used to generate serial trial solutions with different release periods and concentrations. The plume concentrations at the monitoring wells can then be simulated and compared with the observed concentrations. To reduce the size of feasible solution space, the OOA is used to sift the top 5% candidate locations. Then the next location is chosen from them by the roulette wheel method. The optimal solution is obtained when the new result in the identification process satisfies the stopping criterion. The result of case study indicates that the proposed method is capable of estimating the source information even if the source release is in transient state.
摘要…. I
ABSTRACT III
TABLE OF CONTENTS V
LIST OF TABLES VI
LIST OF FIGURES VII
NOTATION VIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 1
1.3 Objective 6
Chapter 2 Methodology 7
2.1 Groundwater flow and transport simulation 7
2.2 Simulated annealing 8
2.3 Tabu search 9
2.4 Ordinal optimization 10
2.5 Roulette wheel 11
2.6 SATSO-GWT model 12
Chapter 3 Results and discussion 14
3.1 Example contamination site 14
3.2 Effect of different initial location 17
3.3 Effect of measurement errors 17
3.4 Larger suspicious area and more release periods 18
Chapter 4 Concluding remarks 21
References 22
Aral, M. M., and J. Guan (1996), Genetic algorithms in search of groundwater pollution sources, Advances in Groundwater Pollution Control and Remediation, 347-369.
Aral, M. M., J. B. Guan, and M. L. Maslia (2001), Identification of contaminant source location and release history in aquifers, J. Hydrol. Eng., 6(3), 225-234.
Atmadja, J., and A. C. Bagtzoglou (2001), State of the art report on mathematical methods for groundwater pollution source identification, Environmental Forensics, 2(3), 205-214.
Bagtzoglou, A. C., D. E. Kougherty, and A. F. B. Tompson (1992), Applications of particle methods to reliable identification of groundwater pollution sources, Water Resour. Mgmt., 6(15-23).
Glover, F. (1986), Future path for integer programming and links to artificial intelligence, Computers and Operation Research, 13(533-549).
Gorelick, S. M., B. Evans, and I. Remson (1983), Identifying Sources of Groundwater Pollution - an Optimization Approach, Water Resour. Res., 19(3), 779-790.
Guan, X. H., Y. C. L. Ho, and F. Lai (2001), An ordinal optimization based bidding strategy for electric power suppliers in the daily energy market, IEEE Trans. Power Syst., 16(4), 788-797.
Harbaugh, A. W., E. R. Banta, M. C. Hill, and M. G. McDonald (2000), MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process, Open File Rep. 00-92, U.S. Geological Survey.
Ho, Y. C. (1999), An explanation of ordinal optimization: Soft computing for hard problems, Inf. Sci., 113(3-4), 169-192.
Ho, Y. C., and M. E. Larson (1995), Ordinal Optimization Approach to Rare Event Probability Problems, Discret. Event Dyn. Syst.-Theory Appl., 5(2-3), 281-301.
Ho, Y. C., R. S. Sreenivas, and P. Vakili (1992), Ordinal Optimization in DEDS, Journal of Discrete Event Dynamic Systems, 2(61-68).
Huang, Y. C., and H. D. Yeh (2007), The use of sensitivity analysis in on-line aquifer parameter estimation, J. Hydrol., 335(3-4), 406-418. doi:10.1016/j.jhydrol.12.007.
Hwang, J. C., and R. M. Koerner (1983), Groundwater Pollution Source Identification from Limited Monitoring Well Data .1. Theory and Feasibility, J. Hazard. Mater., 8(2), 105-119.
IMSL (2003), Fortran Library User's Guide Stat/Library, Volume 2 of 2, Visual Numerics, Inc., Houston, TX.
Konikow, L. F., D. J. Goode, and G. Z. Hornberger (1996), A Three-Dimensional Method of Characteristics Solute-Transport Model (MOC3D), Water-Resources Investigations Report 96-4267, U.S. Geological Survey.
Lau, T. W. E., and Y. C. Ho (1997), Universal alignment probabilities and subset selection for ordinal optimization, J. Optim. Theory Appl., 93(3), 455-489.
Lin, S. Y., Y. C. Ho, and C. H. Lin (2004), An ordinal optimization theory-based algorithm for solving the optimal power flow problem with discrete control variables, IEEE Trans. Power Syst., 19(1), 276-286. doi:10.1109/tpwrs.2003.818732.
Lin, S. Y., and S. C. Horng (2006), Application of an ordinal optimization algorithm to the wafer testing process, IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum., 36(6), 1229-1234. doi:10.1109/tsmca.2006.878965.
Lin, Y. C., and H. D. Yeh (2005), Trihalomethane species forecast using optimization methods: Genetic algorithms and simulated annealing, J. Comput. Civil. Eng., 19(3), 248-257. doi:10.1061/(asce)0887-3801(2005)19:3(248).
Lin, Y. C., and H. D. Yeh (2008), Identifying groundwater pumping source information using optimization approach, Hydrological Processes, 22(3010-3019). doi:10.1002/hyp.6875.
Liu, C. X., and W. P. Ball (1999), Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB, Delaware, Water Resour. Res., 35(7), 1975-1985.
Liu, Y., J. Chen, and M. Xie (2006), Distribution network planning based on the ordinal optimization theory, Autom. Electr. Power Syst., 30(22), 21-24, 92.
Mahar, P. S., and B. Datta (1997), Optimal monitoring network and ground-water-pollution source identification, J. Water Resour. Plan. Manage.-ASCE, 123(4), 199-207.
Mahar, P. S., and B. Datta (2000), Identification of pollution sources in transient groundwater systems, Water Resour. Manag., 14(3), 209-227.
Mahar, P. S., and B. Datta (2001), Optimal identification of ground-water pollution sources and parameter estimation, J. Water Resour. Plan. Manage.-ASCE, 127(1), 20-29.
Mahinthakumar, G. K., and M. Sayeed (2005), Hybrid genetic algorithm - Local search methods for solving groundwater source identification inverse problems, J. Water Resour. Plan. Manage.-ASCE, 131(1), 45-57.
Milnes, E., and P. Perrochet (2007), Simultaneous identification of a single pollution point-source location and contamination time under known flow field conditions, Adv. Water Resour., 30(12), 2439-2446. doi:10.1016/j.advwatres.2007.05.013.
National Research Council (1990), Groundwater Models - Scientific and Regulatory Applications, National Academy Press, Washington D.C.
Neupauer, R. M., B. Borchers, and J. L. Wilson (2000), Comparison of inverse methods for reconstructing the release history of a groundwater contamination source, Water Resour. Res., 36(9), 2469-2475.
Neupauer, R. M., and J. L. Wilson (1999), Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant, Water Resour. Res., 35(11), 3389-3398.
Neupauer, R. M., and J. L. Wilson (2001), Adjoint-derived location and travel time probabilities for a multidimensional groundwater system, Water Resour. Res., 37(6), 1657-1668.
Pham, D. T., and D. Karaboga (2000), Intelligent Optimisation Techniques, Springer, Great Britain.
Sciortino, A., T. C. Harmon, and W. W. G. Yeh (2000), Inverse modeling for locating dense nonaqueous pools in groundwater under steady flow conditions, Water Resour. Res., 36(7), 1723-1735.
Skaggs, T. H., and Z. J. Kabala (1994), Recovering the Release History of a Groundwater Contaminant, Water Resour. Res., 30(1), 71-79.
Skaggs, T. H., and Z. J. Kabala (1995), Recovering the History of a Groundwater Contaminant Plume - Method of Quasi-Reversibility, Water Resour. Res., 31(11), 2669-2673.
Skaggs, T. H., and Z. J. Kabala (1998), Limitations in recovering the history of a groundwater contaminant plume, J. Contam. Hydrol., 33(3-4), 347-359.
Snodgrass, M. F., and P. K. Kitanidis (1997), A geostatistical approach to contaminant source identification, Water Resour. Res., 33(4), 537-546.
Sun, A. Y. (2007), A robust geostatistical approach to contaminant source identification, Water Resour. Res., 43(2), 12. W02418. doi:10.1029/2006wr005106.
Sun, A. Y., S. L. Painter, and G. W. Wittmeyer (2006a), A constrained robust least squares approach for contaminant release history identification, Water Resour. Res., 42(4), 13. W04414. doi:10.1029/2005wr004312.
Sun, A. Y., S. L. Painter, and G. W. Wittmeyer (2006b), A robust approach for iterative contaminant source location and release history recovery, J. Contam. Hydrol., 88(3-4), 181-196. doi:10.1016/j.jconhyd.2006.06.006.
Tung, C. P., and C. A. Chou (2004), Pattern classification using tabu search to identify the spatial distribution of groundwater pumping, Hydrogeol. J., 12(5), 488-496. doi:10.1007/s10040-004-0344-2.
Wagner, B. J. (1992), Simultaneous Parameter-Estimation and Contaminant Source Characterization for Coupled Groundwater-Flow and Contaminant Transport Modeling, J. Hydrol., 135(1-4), 275-303.
Woodbury, A., E. Sudicky, T. J. Ulrych, and R. Ludwig (1998), Three-dimensional plume source reconstruction using minimum relative entropy inversion, J. Contam. Hydrol., 32(1-2), 131-158.
Woodbury, A. D., and T. J. Ulrych (1996), Minimum relative entropy inversion: Theory and application to recovering the release history of a groundwater contaminant, Water Resour. Res., 32(9), 2671-2681.
Yeh, H. D., T. H. Chang, and Y. C. Lin (2007a), Groundwater contaminant source identification by a hybrid heuristic approach, Water Resour. Res., 43(9), 16. W09420. doi:10.1029/2005wr004731.
Yeh, H. D., and Y. J. Chen (2007b), Determination of skin and aquifer parameters for a slug test with wellbore-skin effect, J. Hydrol., 342(3-4), 283-294. doi:10.1016/j.jhydrol.2007.05.029.
Yeh, H. D., Y. C. Lin, and Y. C. Huang (2007c), Parameter identification for leaky aquifers using global optimization methods, Hydrological Processes, 21(7), 862-872. doi:10.1002/hyp.6274.
Zheng, C., and P. Wang (1996), Parameter structure identification using tabu search and simulated annealing, Adv. Water Resour., 19(4), 215-224.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊